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We analyze a simple model of quantum dynamics, which is a discrete-time deterministic version of
the Fredrickson-Andersen model. This model is integrable, with a quasiparticle description related
to the classical hard-rod gas. Despite the integrability of the model, commutators of physical
operators grow with a diffusively broadening front, in this respect resembling generic chaotic models.
In addition, local operators behave consistent with the eigenstate thermalization hypothesis (ETH).
However, large subsystems violate ETH; as a function of subsystem size, eigenstate entanglement
first increases linearly and then saturates at a scale that is parametrically smaller than half the
system size.

Thermalization, decoherence, and information scram-
bling in isolated quantum systems are central themes in
many-body physics [1–6]. Generic systems (except for
the many-body localized phase [3, 4]) are believed to obey
the eigenstate thermalization hypothesis (ETH), which
posits that local observables in a many-body eigenstate
behave as they would in an appropriately chosen thermal
state [7–11]. However, many physically important one-
dimensional systems (e.g., the Heisenberg spin chain) are
integrable—i.e., they have extensively many conservation
laws and hence do not thermalize [9, 12]. The absence
of thermalization in integrable systems, and the slow
“prethermal” relaxation of nearly integrable systems,
have been experimentally observed [5, 13–17]. Some in-
tegrable systems can be mapped to free fermions [18],
but others, including the Heisenberg chain, cannot [19].
In the latter class of “interacting” (i.e., Bethe-ansatz-
solvable) integrable systems, it is challenging to com-
pute the dynamics of physical observables, because phys-
ical operators have complicated representations in terms
of the quasiparticles [20], although coarse-grained ap-
proaches to some dynamical questions have recently been
developed [21–25]. In the quantum context, most work
on integrable systems has focused on Hamiltonian dy-
namics, though there has been some recent work on time-
periodic, driven integrable systems [26–28].

This work presents and analyzes a simple integrable
Floquet model for which many of these questions can
be explicitly addressed. This model is a determin-
istic discrete-time version of the Fredrickson-Andersen
model [29–31], which is a standard model of kinetically
constrained dynamics; we call it the Floquet-Fredrickson-
Andersen (FFA) model. This model can be regarded
as a block cellular automaton [32, 33], and its inte-
grability as such was established in Ref. [32]. Dy-
namically, the FFA model resembles a classical hard-
rod gas [24, 34], a canonical interacting integrable sys-
tem; there is a natural description in terms of ballisti-
cally propagating quasiparticles. Beyond its integrabil-
ity, what renders the model tractable is that its dynamics
maps each computational-basis product state to a unique

computational-basis product state; this allows for effi-
cient classical simulations of dynamics. Despite its sim-
plicity the FFA model retains two key features of generic
integrable systems: first, the relation between physical
observables and quasiparticles is nontrivial; and second,
each quasiparticle’s motion and available state space are
modified by the distribution of other quasiparticles.

Our main results are as follows (Fig. 1). For physi-
cal observables the OTOC displays scrambling, with a
front that broadens diffusively as expected for generic
chaotic systems [35–42], but distinct from free-fermion
systems [43]. However, the behavior inside the front is
anomalous. In addition, small subsystems appear to sat-
isfy ETH, in the sense that their reduced density matrices
approach the identity, and the fraction of outlier states
vanishes (slowly) in the thermodynamic limit, but large
subsystems are strikingly nonthermal: for subsystem size
& 2 lnL, the eigenstate entanglement crosses over from a
thermal volume law to a constant. This crossover sharp-
ens for larger systems.

Model.—The model we consider was recently intro-
duced in Ref. [44]; the system is a spin-1/2 chain, subject
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FIG. 1. Left: temporal growth of state-averaged out-of-time-
order commutator for system size L = 600, averaged over
10000 initial states. Dashed red lines show the causal light-
cone velocity, outside which the commutator strictly vanishes.
Right: second Renyi entropy S2 vs. subsystem size, aver-
aged over 30 random eigenstates, for various system sizes L.
Dashed black line has a slope of ln 2, the thermal prediction.
There is a clear crossover scale beyond which subsystem en-
tanglement saturates.
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FIG. 2. Plots of spin dynamics; black cells are spin-up and
white cells spin-down. (a) Collision of a right-moving and
left-moving quasiparticle. (b) An initial state with four adja-
cent up spins is a three-quasiparticle state. (c) Time evolu-
tion of a product state in which the left and right third are
generic, whereas the middle third has only one quasiparticle.
(d) OTOC for this product state, obtained by moving one of
the quasiparticles; note the absence of chaos.

to repeated application of the unitary

U = W (odd→ even)W (even→ odd), (1)

where W (even→ odd) consists of the following rule, ap-
plied to each odd spin n: apply the Pauli operator σx

n

unless the two neighboring even sites, n − 1 and n + 1,
are both in the | ↓〉 state. This rule can be composed from
the gate sequence Toffoli(n−1, n+1→ n)CNOT(n−1→
n)CNOT(n+ 1→ n), in which controlled NOT and Tof-
foli gates are applied to the target site from its two neigh-
bors. W (odd→ even) repeats this process with even and
odd sites exchanged. The full-cycle unitary U has a strict
causal light cone that expands at two sites per period
(dashed red lines in Fig. 1). In what follows we treat pe-
riodic boundary conditions; the effects of other boundary
conditions are deferred to future work. We also refer to
odd (even) sites as the A (B) sublattices respectively.

Eq. (1) defines a reversible block cellular automa-
ton [45, 46]. A number of works have addressed cel-
lular automata and quantum circuits involving Clifford
gates [35, 44, 47–49]. Clifford gates map each Pauli string
to a unique Pauli string, and therefore do not give rise to
operator entanglement [50, 51]. A related but Clifford-
only model, without the Toffoli gate, was analyzed in
Ref. [44] and shown to map to free particles. In contrast,
the Toffoli gate in Eq. (1) induces operator entanglement
for local operators, even after a single step of time evolu-
tion: for example, the operator σx

i evolves to σ̃x
i ≡ 1

16 (1+
σx
i−1 + σz

i−2 − σz
i−2σ

x
i−1)σx

i (1 + σx
i+1 + σz

i+2 − σx
i+1σ

z
i+2),

which cannot be factored into on-site operators. Our
methods here cannot be used to compute operator entan-
glement, however, so we defer a full discussion to future
work.

Quasiparticle picture.—We first present a simple quasi-
particle picture [32, 52] of the dynamics of this model.
The structure of quasiparticles is easiest to describe when
the density of up spins is low. In this limit, the ele-

mentary quasiparticles are pairs of two adjacent up spins
surrounded by down spins. There are two inequivalent
quasiparticles, respectively right- and left-moving, based
on whether their sublattice structure is AB or BA. (The
dynamics is symmetric under exchanging sublattices and
time-translating by half a period, but not under each
action separately.) All right-movers and all left-movers
have the same speed, so collisions necessarily involve a
right-mover and a left-mover; also, each three-body colli-
sion can only occur in one sequence, precluding diffractive
processes. Each collision induces a time delay of one time
step [Fig. 2(a)]; thus, this model resembles hard rods with
negative rod length. The quantization condition for right
(left) movers depends on the total number of left (right)
movers. Since all quasiparticles have the same velocity, a
state is characterized by spacings between adjacent left-
movers (and between adjacent right-movers). Adjacent
right-movers must have at least one empty site between
them, since the configuration in Fig. 2(b) is not just a
pair of right-movers; thus the state space is constrained,
as in Ref. [53].

At finite density [Fig. 2(c)], the quasiparticle veloc-
ity decreases by an amount proportional to the density
of other quasiparticles, which in turn is (approximately)
proportional to the density of occupied sites; however,
the dynamics still consists of ballistically moving quasi-
particles. At high density, the model remains integrable.
One can identify the quasiparticle content of a product
state by recasting the model in terms of bonds [32], as
follows [54]: assign a quasiparticle to each AB bond
where both spins are up, and assign two quasiparticles
to any spin configuration that has the sequence ↓↑↓.
Note that the number of physical up spins fluctuates,
though the number of quasiparticles remains conserved,
because quasiparticles transiently “merge” during a colli-
sion [Fig. 2(a-b)]. The quasiparticle structure is explored
further in [55], by simulating the “free expansion” [56] of
a general initial state.

OTOCs.—The clearest evidence that the model re-
mains integrable at high densities comes from studying
OTOCs. In a classical system, the OTOC corresponds
to the local overlap between two histories with identi-
cal initial conditions except for a disturbance at the ori-
gin [57]. For concreteness, consider the simplest OTOC,
C(x, t) ≡ 〈[X0(0), Zx(t)]2〉. Expanding the commutator
one finds the “out-of-time-order” term ZXZX, which
can be written as 〈ψ|Zx(t)|ψ〉〈ψ|X0Zx(t)X0|ψ〉, where
|ψ〉 is an arbitrary product state; evidently this quan-
tity measures the overlap between the expectation value
of Zx(t) in histories with an unperturbed initial state
|ψ〉 and a perturbed initial state X0|ψ〉. By expanding
an arbitrary state in a product basis and keeping track
of the phase accumulated, one can also compute generic
OTOCs from this formula.

To establish integrability we perform the following nu-
merical experiment [Fig. 2(c-d)]: we create an initial
state with a region where the density of up spins in part
of the system is low (so we can reliably create and ma-
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nipulate a single quasiparticle there) but the rest of the
system is at high density. We then move this quasi-
particle, and overlap histories with different initial po-
sitions of the quasiparticle (i.e., we consider the OTOC
[Zx(t), σ+

0 σ
+1σ−

2 σ
−
3 ]). We find that translating a sin-

gle quasiparticle does not have a “butterfly” effect: the
OTOC is simply the time trace of the quasiparticle that
was moved [Fig. 2(d)]. This indicates that the model re-
mains integrable at high densities: in a chaotic system,
“firing” a quasiparticle into the system at time time t+δt
rather than at t would cause a butterfly effect, which is
clearly absent here.

Although moving quasiparticles does not cause a
spreading disturbance, adding or removing quasiparti-
cles does, as the presence of a new quasiparticle mod-
ifies the phase shifts of all the others. Physical spin
operators create and/or move quasiparticles, depending
on the underlying product state. All simple operators
(i.e., those involving fewer than four sites) have matrix
elements for both creating and translating quasiparti-
cles: for instance, ↓↑↓↑↓ is a state with four quasipar-
ticles, while ↓↑↑↓↓ is a state with only two quasiparti-
cles. Therefore all such operators spread, although there
exist operators acting on four or more sites [one exam-
ple is (1 − σz

i )σ+
i+1σ

+
i+2σ

−
i+3σ

−
i+4(1 − σz

i+5) + h.c., which
moves a quasiparticle one unit cell, but only if no other
quasiparticles are in the way] that do not spread.

We now turn to the OTOC [Zx(t), X0(0)] averaged
over random basis states. (We have also checked the
OTOCs of more complicated operators [55] but they do
not behave appreciably differently, in contrast with the
Ising case [43].) The OTOC averaged over many ran-
domly chosen initial product states grows with a light-
cone typical of chaotic systems (Fig. 1). The shape of
the OTOC near its growth “front” matches the recent
prediction for chaotic systems [36–40], with a tail that
goes as exp[−(x − vt)2/(2σ2(t))], where σ2 ∼ t [Fig. 3].
The velocity of the OTOC front is half the light-cone
speed, since a random state is at half-filling. The FFA
model is thus distinct from other large-N or “classical”
limits, in which the OTOC front is sharp [35, 38, 39] (in
the FFA model the front is sharp only if the initial state
is a computational-basis product state). The diffusive
broadening of the front here is a natural consequence of
the random time delays due to collisions.

The late-time behavior of C(x, t) has some unusual fea-
tures, shown in the lower two panels of Fig. 3. Even at
times before the operator has wrapped around the sys-
tem, its behavior inside the front is athermal. Rather
than decorrelating completely, the two histories remain
weakly anticorrelated within the front (so the value of
the OTOC inside the front is ≈ 0.53). This anticorrela-
tion does not depend on system size. After a timescale
t ∼ L/2, this behavior changes and the two histories
compared by the OTOC become weakly correlated, giv-
ing rise to the diamond-like shape seen in the space-time
plot [Fig. 3, lower left]. The OTOC then saturates at a
value ≈ 0.42 until the much longer revival timescale Tr.
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FIG. 3. Upper panel: Value of the OTOC at a fixed time,
vs. position (left) and at a fixed position, vs. time (right),
for L = 600 systems. The operator front is Gaussian. Middle
right: squared width (variance) of operator front vs. time,
indicating diffusive broadening. Lower left: density plot of the
OTOC vs. time, for a smaller system (L = 200), showing the
unexpected overshooting effect at times longer than system
size; cross-sections at t = 50, 100, 150 are shown in the lower
right panel.

These saturation values vary depending on the operator.
Our quantitative analysis of the OTOC involved aver-

aging over eigenstates. The OTOC in a single randomly
chosen eigenstate also spreads out with a broadened light-
cone. However, the front “refocuses” on the timescale
t ∼ L/2 [55]. This can be understood within the quasi-
particle picture. In a particular eigenstate, the distri-
bution of left and right moving quasiparticles, and their
spacings, are fixed, but one averages over the point in the
trajectory at which the new quasiparticle is introduced.
Thus, the sequence of time delays experienced by (say)
a right-mover is randomized, but the total time delay is
fixed by the total number of left-movers, causing refo-
cusing at t ∝ L. We expect Gaussian front-broadening
at t � L, since on this timescale the average runs over
randomly timed collisions.

Eigenstates.—We now turn to the eigenstates of the
FFA model. Since U takes each product state to a prod-
uct state, the dynamics of an initial product state con-
sists of chains of transitions |C1〉 7→ |C2〉 7→ |C3〉 . . . 7→
|CN 〉 7→ |C1〉 7→ |C2〉 . . .. A random eigenstate can there-
fore be constructed [44] by picking a random initial prod-
uct state and summing over its orbit, with appropriate
phases, i.e.,

|E〉 =
1√
N

(|C1〉+ eiq|C2〉+ . . .+ e(N−1)iq|CN 〉). (2)
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FIG. 4. Upper left: An example of the dynamics of an initial
product state, illustrating how configurations recur after a
period of order L up to an overall translation (see arrows; in
this case the period is 45 and the shift is four sites to the
left). Upper right: typical

√
Tr vs. system size, as predicted

by the quasiparticle picture. Left: State-to-state fluctuations
of Renyi entropy S2, vs. subsystem size, for L = 80; each
line represents a randomly chosen eigenstate. Dashed black
line has a slope of ln 2. Right: histogram of the expectation
value of the spin on the first site, 〈Z1〉, across eigenstates, for
various system sizes. The histograms narrow with increasing
system size.

Such states are evidently eigenstates of U so long asNq =
2πn for some n.

A central quantity in our analysis is the recurrence
time Tr for a given initial state, which measures how
much of configuration space is accessible under unitary
evolution from a given initial state. In an “ergodic” sys-
tem (at least in the classical case relevant here), essen-
tially every configuration would be visited, and Tr would
grow exponentially with system size. This is not what
happens in the FFA model (Fig. 4); instead Tr ∼ L2.
This follows from the quasiparticle picture: a left-mover
traverses the system on a timescale set by the number of
right-movers, and vice versa. Since both numbers are of
order L, their least common multiple is ∼ L2, although
there are many configurations with a much smaller least
common multiple, and for these Tr is much smaller.Note
that Tr is a recurrence time specific to a particular initial
computational-basis product state. The recurrence time
of a random initial vector Tg is the least common multiple
of each orbit’s recurrence time. By sampling many initial
states and computing their Tr, we find that this global
recurrence time grows at least as fast as Tg & 4.8L [55], so
it is in general exponentially larger than the Hilbert space
dimension. The quasiparticle picture also suggests that
the scaling is exponential with system size: according to
this picture, Tg is the least common multiple of all possi-
ble quasiparticle periods . L, which scales as the product
of all primes . L; asymptotically this product grows ex-
ponentially in L by the prime number theorem. Thus,
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FIG. 5. Left: the fraction of nonzero off-diagonal matrix ele-
ments falls off exponentially with system size; the slope of the
fit line is − ln 2/2. Right: the distributions of the remaining
nonzero matrix elements broaden (histograms are rescaled to
have the same weight).

Tg scales exponentially rather than double-exponentially
with system size, in contrast with generic chaotic mod-
els [50].

We previously showed [44] that lnTr upper-bounds the
second Renyi entanglement entropy S2 [58] through any
bipartite cut; an implication is that S2(`) . 2 lnL for
any subsystem size ` and system size L. This is what
we find, by directly computing S2 (Fig. 1). As Fig. 4
shows, there are strong state-to-state fluctuations in the
saturation value of S2, but the entanglement of every
eigenstate saturates for subsystems well below half the
system size. Small subsystems, on the other hand, are
consistent with ETH: both S2 and the expectation values
of on-site operators are narrowly distributed, with state-
to-state spread that narrows with system size (Fig. 4).
This narrowing is slower than for generic ETH systems,
however [55].

Eigenvalues and level statistics.—From the construc-
tion of eigenstates, it follows that each eigenvalue is of

the form ωn = 2πm/T
(n)
r , 0 ≤ m ≤ 2πT

(n)
r , where n la-

bels inequivalent orbits. There is an n-fold degeneracy
at quasienergy zero (i.e., eigenvalue unity for the unitary
U), as well as other degeneracies, so the level statistics
are not Poisson or random-matrix.

Off-diagonal matrix elements.—Finally, we consider
the off-diagonal matrix elements of local operators
(specifically, the two-spin-flip operator σx

i σ
x
i+1) between

eigenstates. We restrict ourselves to matrix elements be-
tween states in the quasi-energy zero sector. Most pairs
of eigenstates have strictly zero matrix element; the frac-
tion of nonzero matrix elements decreases exponentially
with system size, approximately as 2−L/2 (Fig. 5). This
behavior has also been seen in other integrable mod-
els [59]. The distribution of the nonzero matrix elements
broadens with system size but does not seem to approach
a Gaussian.

Discussion.—This work analyzed the FFA model, a
simple interacting integrable Floquet system with a spe-
cial basis in which the dynamics is classical. The FFA
model is dynamically similar to a discretized hard-rod
gas, except that the “rods” are dispersionless and thus
all left-movers and right-movers have the same velocity.
These simplifications make it possible to concretely ad-
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dress many questions that are less tractable in other in-
teracting integrable systems such as Heisenberg chains.
As hard-rod gases are believed to be a general description
of integrable dynamics [24], however, the present model
is presumably a generic interacting integrable system in
many respects. In this model, physical operators exhibit
a butterfly effect, with a front that broadens diffusively
as for chaotic systems [36, 37]. This feature (previously
unnoticed [38, 40]) is presumably generic for interacting
integrable systems, as it arises from the generic medium-
dependence of quasiparticle velocities. Equilibrium den-
sity fluctuations exist at high temperature in all systems,
and provided the quasiparticle velocities couple to these,
the front should broaden diffusively. It remains to test
this conjecture numerically, e.g., for Heisenberg chains.

Further, in the FFA model, the entanglement of small
subsystems and local operators is consistent with ETH
(which is nontrivial, given the classical dynamics of
the model). However, large subsystems violate ETH:
eigenstate entanglement has a sharpening crossover from

volume-law growth to saturation, at a subsystem size
that grows logarithmically with full system size. The
level statistics and off-diagonal matrix elements of local
operators also diagnose the non-thermal character of this
model. Many questions remain for future work, includ-
ing perturbations of the model that restore chaos and/or
quantum fluctuations, as well as higher-dimensional gen-
eralizations.
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