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Learning phase transitions from dynamics
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We propose the use of recurrent neural networks for classifying phases of matter based on the
dynamics of experimentally accessible observables. We demonstrate this approach by training re-
current networks on the magnetization traces of two distinct models of one-dimensional disordered
and interacting spin chains. The obtained phase diagram for a well-studied model of the many-body
localization transition shows excellent agreement with previously known results obtained from time-
independent entanglement spectra. For a periodically-driven model featuring an inherently dynam-
ical time-crystalline phase, the phase diagram that our network traces in a previously-unexplored
regime coincides with an order parameter for its expected phases.

Introduction - Machine learning is emerging as a novel
tool for identifying phases of matter' '®. At its core,
this problem can be cast as a classification problem in
which data obtained from physical systems are assigned
a class (i.e. a phase) using machine learning methods.
This approach has enabled autonomous detection of or-
der parameters>®, phase transitions’3 and entire phase
diagrams* 71617 Simultaneous reserach effort at the in-
terface between machine learning and many-body physics
has focussed on the use of neural networks for efficient
representations of quantum wavefunctions'® 2%, drawing
a parallel between deep networks and the renormalization
group?” 2. Overall, these studies exemplify the power of
machine learning for extracting information from physi-
cal data without detailed physical input. In particular,
it shows potential for identifying novel phases through
automatic processing of large-scale data; possibly identi-
fying features that may have been missed before.

So far, however, these methods have relied only on
static properties of the underlying physical systems, such
as raw state configurations sampled from Monte Carlo
simulations''!® or entanglement spectra obtained using
exact diagonalization®!"17. To our knowledge, the study
of phase transitions from dynamics of physical observ-
ables has not been adressed.

Here, we suggest a machine learning approach to dis-
tinguish between phases based on dynamics of measur-
able quantities. Specifically, we introduce the use of re-
current neural networks (RNNs), designed for processing
sequential data such as time-traces. This approach does
not rely on thermal equilibrium, and applies very natu-
rally to time-dependent systems. It is therefore particu-
larly suited for the identification of dynamical as well as
Floquet phases3039,

We first test our method on a system with two inher-
ently different dynamical behaviours, namely a 1D sys-
tem with a many-body localization transition?® 3. Ma-
chine learning methods applied on entanglement spectra
of eigenstates were used to obtain a phase diagram of
the same model'!, as well as on a slightly different model
featuring two distinct MBL phases!”. Here, we insist
on using only experimentally relevant (i.e. measureable)

quantities such as the magnetization of individual spins.

We find that the network succeeds at distinguishing be-
tween the ergodic and localized phases of this model, re-
covering phase boundaries similar to those obtained by
previous methods.

We then apply our method to a periodically driven
model, featuring among its three phases one which
is unique to the time-dependent setting, namely a
time crystal** %, Indeed the method distinguishes be-
tween the time-crystalline, Floquet-ergodic and Floquet-
MBL?'%3 phases of this model.

In the following section, we first introduce the essen-
tials of recurrent neural networks. We refer the reader to
Ref.%* for an extensive introduction to the non-recurrent
feed-forward neural network. After we have introduced
the network essentials, we outline the procedure we re-
fer to as ‘blanking’ for training the network on a set of
physics data. This framework is independent of the un-
derlying model, and serves as the main supervised learn-
ing scheme in our work. Next we turn to introducing the
models and the results mentioned earlier, and conclude
with a critical evaluation of the obtained results.

Recurrent networks - Because we wish to be able to
capture non-equal-time correlations in the magnetization
traces, we choose to train a recurrent neural network
(RNN) to distinguish dynamical regimes. A recurrent
neural network is a neural network in which one or mul-
tiple outputs are fed back into the network as inputs, as
illustrated in Fig. 1. Such a recurrence creates a feedback
loop that allows information that was fed into the net-
work to persist in a self-consistent manner. This is ideal
for analyzing sequences in which the value at a particu-
lar point of that sequence may depend on the previous
entries. Consequently, RNNs are well suited for dealing
with sequential data or other types of data for which a
kind of ‘memory’ or temporal dependence is beneficial.

It is particularly useful to introduce the idea of ‘un-
rolling’ a recurrent part of a network. In Figure 1 we
show a (subsection of) a neural network N with inputs
z(t) and outputs y(t), the latter being fed back into the
inputs. We think of ¢ here as a discrete parameter, such
that inputs and outputs are computed at timesteps t,
t + 1, etcetera. The feedback should now be understood
such that at timestep ¢, the network receives both z(t)
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FIG. 1. Unrolling a recurrent network. On the left a
(subpart of a) neural network A is shown with output feed-
ing back into input, making it into a recurennt neural net-
work. On the right the unrolled version of the same network
is shown, detailing that the output at step t is fed back as
an input for time step ¢ + 1. The recurrent connections have
their own weights that are optimized during training.

and y(t — 1) as its inputs, and produces y(t) from them
via an intermediate step. This is most easily visualized
by the unrolled network shown in Fig. 1. Namely, the
network keeps track of an internal state h(t), which is
updated according to h(t) = f(h(t — 1),2(t)). The func-
tion f represents the free parameters that we wish to
learn by training the network. Given h(t), the output
y(t) = g(h(t)) is computed via another learnable func-
tion. The training of such a network is done in a super-
vised manner identical to the standard feed-forward net-
works, except that it can be thought of as done ‘unrolled
layer’ by ‘unrolled layer’. There are various choices for
the functions f and g introduced above, and we so-called
Long Short Term Memory networks (LSTMs) °°. We ex-
pect that the recurrence allows the network to build a
better model governing the dynamics, which helps it in
the task of classifying the inputs.

Blanking - Since training the recurrent network re-
quires labeled data (it is a supervised method), we use
physics intuition to label the data only in the extrem-
ities of the phase space we consider, i.e. in the limits
where we are confident about the physics of the system.
The network is trained only in these regimes, and hence
instead of the network seeing all the data we effectively
‘blank out’ outside of the known limits. This blanking
tests the network’s ability to extract the underlying es-
sential model of the data from these limits, and apply it
to unseen data as a form of generalization. Care must be
taken also that one supplies the network with enough and
representative data such that a consistent model can, at
least in princple, be extracted. As an important check
we have tested that the predictions of the network are
insensitive to adding slightly more or slightly less labeled
data at the extremities (i.e. by shrinking or enlarging
the blanked out region); that the network’s confidence is
correlated with its accuracy®®, and that the network as-
signs a confused output to phases it had not encountered
during training™®.

Additionally, one must check for and prevent the pos-
sibility of the network learning examples by heart (i.e.

overfitting). We will employ dropout®” and weight decay
(I5 regularization) to do so. We remark that empirically
for models with disorder the many realizations and their
variety even for a given disorder strength seem to already
build in an inherent robustness against overfitting. The
actual training of the network is done by minimizing the
cross-entropy using the Adam optimizer®®. Additionally,
we remark that the usual test-set validation can not be
performed in the blanked region, since the network is not
trained there.

Given the number n of regions in which we know
the physics (i.e. the number of expected phases), our
networks are constructed with a softmax output layer
with n neurons. Thus, the networks take a sequence
of magnetizations and output a probability distribution
p = (p1,-..,pn) over the n phases. This distribution de-
scribes the probability that the network assigns for the
input sequence to belong to each of the phases 1,..., n.
We then measure the confusion (uncertainty) of the net-
work by examining the reduced distribution on the two
most likely phases. Namely, assuming the probabilities
are ordered by decreasing magnitudes (p; > ps > ...),
we define the confusion as C = —log,(p1/(p1+p2)). The
confusion C' vanishes when the network confidently pre-
dicts a specific phase (p1 = 1, p2 = 0), and it takes the
maximal value of unity whenever the network cannot de-
cide between two or more phases (p; = p2). Whenever
the network changes its prediction from one phase to an-
other at a certain value of an underlying parameter, the
peak in C surrounding this value can hence indicate the
corresponding transition region.

MBL transition - We consider the random-field Heisen-
berg model®?:

H=Y"JS;Sis1+wS;. (1)

The length of the chain is given by L, and the on-site dis-
orders w; are drawn independently and uniformly from
the interval [—W, W]. This Hamiltonian exhibits a tran-
sition between a delocalized and a many-body localized
state at a critical disorder strength that depends on the
energy density of the state under consideration®%2. The
dynamics of initial product states of spin polarization dif-
fers substantially between the two phases: while spins in
the many-body localized phase retain long-term corre-
lation with their initial configuration, in the delocalized
phase this correlation is lost on much shorter timescales
as expected from an ergodic system %366, In what follows
we will be considering the dynamics of initial states that
evolve in time under the Hamiltonian of Eq. 2, by per-
forming exact time evolution on systems of size L = 20.

For the purpose of obtaining a phase diagram, we
probe dynamics at various energy densities. Similarly to
Ref.%%, we measure energy density by a parameter ¢ inter-
polating between the minimal and maximal eigenenergies
FEqy, Eq. of each disorder realization. For each disorder
realization we calculate Eg, F,,q., and pick the product
state in the S, basis (|1, 71,],1,...) etc.) whose energy ex-
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FIG. 2. Detecting the MBL transition in the random-field Heisenberg model 2. In the left panel, we show the dependence
of the network’s confusion C' on the number of LSTM neurons, N, for ¢ = 0.5 and a fixed set of parameters: dropout 0.2,
lo = 0.01, batchsize of 64 and 25 training epochs. The right panel shows the resulting phase diagram (the colorbar represents
the confusion C) in the € versus W plane, obtained with N = 32 and averaged over 10 re-trainings.

pectation value is closest to E = Ey 4 &(E a0z — Fo). We
numerically evolve this initial state in time and measure
(o) (t) for each of the spins.

The input to our networks therefore consists of these
magnetization time-traces from ¢ = 0 to ¢ = 500, which
we sample at 50 equally spaced points, and hence is of
shape (L, 50) for each disorder realization. At all energy
densities considered we assume that the weak disorder
regime (W < 0.5) is ergodic whilst the strong disorder
regime (W > 7.5) is many-body localized. We therefore
train the network on magnetization traces from these two
extreme regimes. At low disorder these traces are labelled
by a label p = (1,0), and at high disorder the label as-
signed is p = (0,1). Any data for disorder strengths in
the interval W € [0.5,7.5] is therefore blanked out.

We fix the network architecture to have a single hid-
den layer of N LSTM neurons with a dropout rate of
0.2 and [ regularization of 0.01, followed by a softmax
layer to output a probability of the input being ergodic
or non-ergodic. In the results below, we have re-trained
the network k = 10 times with identical parameters but
different initial conditions. The results are averaged over
these training cases.

We analyze the dependence of the output on the num-
ber N of LSTM units in the left panel of Fig. 2, and
find that with 32 neurons we are able to converge the re-
sults for fixed batchsize 64 and 25 epochs. This training
was done on the ¢ = 0.5 data, and uses the confidence
enhancement introduced in'!. In order to gain a bet-
ter understanding of what the LSTM neurons are doing,
we analyze the case of a single LSTM neuron trained on

a single-spin subsystem in the Supplemental Material™.
To obtain the phase diagram, we repeat the training pro-
cess over the 2-dimensional parameter space of energy
density (13 values equally spaced between ¢ = 0.2 and
e = 0.8) and disorder strength (64 values equally spaced
between W = 0.125 and W = 8), with 50 disorder re-
alizations for each point. The obtained phase diagram
is shown in the right panel of Fig. 2, and shows good
agreement with the phase diagram obtained from static
entanglement spectra in Ref.!!.

Time Crystals - Next, we consider the following binary
Floquet Hamiltonian acting on a one-dimensional spin-
1/2 chain:

0<t<Th
Ty <t <Tp.

H:{(Q_G)Ziafv (2)

A2 Z Z 2
ZiJlai0i+1 + Bjo},

Where J;, B; are random variables distributed inde-
pendently and uniformly in the interval [0, 0.5], g is fixed
to /2, and Ty +T» = T. This is a slight variation of the
model studied in*®, where we took a different distribution
for the bond terms J;. To the best of our knowledge, our
exact model has not been studied before, and its phase
diagram has not been mapped out. Moreover, it serves as
a case where a phase is inherently dynamical and cannot
be studied in a static setting.

We are interested in the effect of the driving parameter
€ on the resulting phase of the system. A guideline for
the phases is provided through the long-time imbalance,



Z(t), defined as:

(1) = Tm(1) - m(0), 3)
where the i-th component of m(t) is the expectation
value of o7 at time ¢. This definition of the imbalance
is the direct generalization of that typically used when
the initial state is only taken to be one with a charge-
density-wave ordering%3-66.

The long-time imbalance shows three distinct be-
haviours as a function of the driving parameter e (or-
ange line in Fig. 3). If ¢ = 7/2, the drive term is
just an identity operator and the system is governed by
a many-body localized Hamiltonian. Subsequently, for
e sufficiently close to /2, the imbalance retains a value
close to its initial one, indicating a trivial Floquet-MBL
phase. For intermediate values of ¢, the long-time im-
balance vanishes, indicating a transition to a Floquet-
ergodic phase. Interestingly, below a critical value of ¢,
the long-term imbalance retains a value that is close to
its initial one in magnitude, but flips sign every driving
period. In this regime the system’s response is periodic
in 2T rather than T, leading to the nomenclature ‘time
crystal’.

We proceed with training a RNN on time traces of
m(t) identically to the case of the previously discussed
MBL system, apart from having three regions in phase
space where we train the network instead of two. Namely,
for € close to 0 we assign the time-crystalline label, for
€ ~ 0.7 we assign the Floquet-ergodic label and for € =
w/2 we assign the Floquet-MBL label. We again use
32 LSTM units, dropout 0.2 and ls = 0.01 with Adam
optimization. When evaluated on a data-set with many
more € available, the resulting 1D phase diagram is shown
in Fig. 3 (green and gray lines).

Discussion and Prospects - The main point considered
in this work was the study of dynamics using machine
learning methods, and doing so using experimentally
available measurements. We employed recurrent neu-
ral networks, rather than their non-recurrent variants.
There are multiple motivations, apart from the input be-
ing sequences, for using such an approach over more com-
mon non-recurrent feed-forward networks. First, since
the data is fed into the network one time-step at a time,
the number of network parameters does not scale with
the number of time-steps. This also means that the
same recurrent network can be easily trained on various
lengths of data. In contrast, a regular feed-forward net-
work would need to be input with all of the data at once,
leading to a large initial input layer compatible with a
fixed input length. We have studied whether the use of
recurrent neurons provides a more direct way of extract-
ing what feature of the data the neurons use to output
their guess. By training one or multiple LSTM units on
single magnetization curves, it is possible to identify neu-
ron behavior’?. We speculate that it might be possible to
extract from these results a ‘dynamical order parameter’,
which takes the full magnetization traces into account.
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FIG. 3. A recurrent neural network distinguishes between
three dynamical phases of a time-dependent model, after be-
ing trained on example curves m(¢) at ¢ = 0,0.7 and w/2.
The gray curves show the outputs of the three neurons as-
signed to recognize each of the three phases (time-crystalline,
Floquet-ergodic and Floquet-MBL). In green (with dots) the
confusion C' of the network is shown, indicating two tran-
sition points between these phases. In orange we show the
long-time imbalance Z(¢) measured at an odd driving period,
taking a negative value in the time-crystalline phase; a vanish-
ing value in the Floquet-ergodic phase; and a positive value in
the Floquet-MBL phase. The phase boundaries extracted by
the network are consistent with, and seem more sharp than,
the imbalance.

Using the networks, we constructed dynamical phase
diagrams for the MBL transition and a driven model fea-
turing a time-crystalline phase, thereby circumventing
the need to manually construct a threshold criterion or
dynamical order parameter for locating the phase bound-
ary. Rather, such a threshold was automatically deter-
mined from the data. By considering the LSTM neuron
outputs for the single spin case™, we were able to gain
some understanding of the behaviour that the network
latches onto.

We emphasize that obtaining a phase boundary from
data can hence only be as accurate as the available data.
The boundary we obtain for the MBL transition is at a
slightly lower disorder strength than that of the exact di-
agonalization results in Ref.?°, but agrees well with that
obtained using the machine learned entanglement spec-
tra of Ref.!!. The alternative of finding a non-machine
learned proxy to serve as an indicator, such as the imbal-
ance for the MBL transition”’, can be ambiguous. If suf-
ficient data are available, we expect consistency of that
data to be the judge of where the transition happens.
It may be possible to use the same criterion in a feed-



back system between a machine learning algorithm and
experiments, where measurements performed on the ex-
periment are chosen to improve the phase boundary.
For the MBL transition in particular, we mention that
a more detailed investigation should also take into ac-
count the possibility of a Griffiths phase, possibly show-
ing up as a region where the network prediction is in-
creasingly uncertain as system size increases. Such a
finite-size scaling can indeed be succesfully attempted us-

ing machine learned data'"'®, and provides a useful and

interesting alternative for locating a phase boundary.
Being able to train recurrent neural networks on time-
traces of data poses the question of whether such methods
can be used to enhance the prediction of dynamics, i.e.
in numerical time evolution simulations. Such questions
are being actively adressed in order to provide accurate
control over e.g. single qubits in decohering environments

and noisy measurements®”.
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