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Local observables in generic periodically driven closed quantum systems are known to relax to
values described by periodic infinite temperature ensembles. At the same time, ergodic static systems
exhibit anomalous thermalization of local observables and satisfy a modified version of the eigenstate
thermalization hypothesis (ETH), when disorder is present. This raises the question, how does the
introduction of disorder affect relaxation in periodically driven systems? In this work, we analyze
this problem by numerically studying transport and thermalization in an archetypal example. We
find that thermalization is anomalous and is accompanied by subdiffusive transport with a disorder
dependent dynamical exponent. Distributions of matrix elements of local operators in the eigenbases
of a family of effective time-independent Hamiltonians, which describe the stroboscopic dynamics of
such systems, show anomalous departures from predictions of ETH signaling that only a modified
version of ETH is satisfied. The dynamical exponent is shown to be related to the scaling of the
variance of these distributions with system size.

Introduction.—Recent advances in cold-atom1,2 and
trapped-ion3 experiments have stimulated interest in
nonequlibrium dynamics and thermalization or lack
thereof in isolated quantum systems. Thermalization in
both classical and quantum systems requires an effec-
tive loss of information contained in the initial state of
the system. For classical systems, this occurs naturally,
since the underlying equations of motion are nonlinear
and therefore typically chaotic. For quantum systems,
the situation is more delicate, since all the information
about the state of the system is encoded in the wavefunc-
tion which evolves under the linear Schrödinger equation.
While the information about the whole system cannot
be lost under unitary evolution, this is not the case for
subsystems as the corresponding reduced density matri-
ces evolve non-unitarily. Thus, the objects of interest in
the context of thermalization are local observables sup-
ported on a subsystem while the rest of the system serves
as an effective bath. Written in the eigenbasis of the
Hamiltonian, the diagonal elements of local observables
encode information about the stationary state, while the
offdiagonal elements contain dynamical information. The
probability distributions of diagonal and offdiagonal ma-
trix elements of local operators were studied already in
the 80s4–8, but regained interest after the introduction
of the “eigenstate thermalization hypothesis” (ETH) by
Deutsch9 and Srednicki10 in the following decade. ETH
was confirmed to hold in a variety of systems11–14, and is
concerned with only the first and the second moments of
the distribution of the matrix elements, implicitly assum-
ing that the probability distribution is Gaussian. This
assumption was motivated by Berry’s conjecture, which
states that eigenstates of nonintegrable quantum systems
are reminiscent of random states drawn from a Gaus-

sian distribution15,16. More specifically, ETH requires
that the matrix elements of local operators are described
by a smooth functional dependence on the extensive en-
ergy and the distance from the diagonal, superimposed
by random Gaussian fluctuations. The variance of the
fluctuations is assumed to decay exponentially with the
system size10, which was verified for a number of generic
quantum systems17–23.

In a recent Letter, it was shown that for a class of
disordered ergodic systems, which for sufficiently strong
disorder undergo the many-body localization (MBL)
transition24 (see Refs.25–27 for recent reviews), ETH has
to be modified, since the decay of the fluctuations of the
offdiagonal matrix elements acquires a power law correc-
tion to their scaling with system size28,29. This is ac-
companied with anomalous (subdiffusive) relaxation to
equilibrium, a situation which was dubbed anomalous
thermalization28.

In this work, we show that a similar phenomenology ex-
ists also in disordered periodically driven (Floquet) sys-
tems, which undergo the Floquet-MBL transition for suf-
ficiently strong disorder30–33. The stroboscopic dynam-
ics of these systems is goverened by the unitrary Floquet
operator, which is the time-evolution operator over one
period. The Floquet operator can be expressed in terms
of a family of effective Hamiltonians, which allows the
generalization of the concept of thermalization and ETH
to this time-dependent case34–37. It was shown that ETH
assumes a simplified form since the smooth part of the
diagonal matrix elements is constant and corresponds to
the trace of the local observable34–37. This is consistent
with the expectation that for any generic initial state,
the system heats up to a state which is locally indistin-
guishable from the infinite temperature state. In previ-
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ous studies it was numerically shown that disordered Flo-
quet systems exhibit anomalous heat absorption from the
periodic drive,38–41 and it was suggested that spin trans-
port in such systems is anomalous38,39. In this work using
numerically exact methods we study the nature of trans-
port and thermalization in disordered Floquet systems.

Model.—We numerically investigate a disordered one-
dimensional Heisenberg model subject to a periodic mod-
ulation of the staggered magnetization. The driving pro-
tocol we consider is generated by two alternating non-
commuting Hamiltonians, Ĥ± (each applied for half a
period, T/2),

Ĥ± =

L−1∑
i=1

JŜi · Ŝi+1 +

L∑
i=1

[
hi ± (−1)

i
∆
]
Ŝzi , (1)

where L is the length of the chain, Ŝx,y,zi are spin-1/2
operators, J is the spin-spin interaction (which we set
to unity), hi ∈ [−W,W ] are independent random fields
drawn from a uniform distribution, and ∆ is the driving
amplitude. Both Hamiltonians commute with the total
magnetization, M̂z =

∑
` Ŝ

z
` , and in what follows, we

work in the Mz = 0 sector for even L and Mz = 1/2 for
odd L. We set T = 3, such that the frequency of the
drive is well below the many-body bandwidth (of the un-
driven system) for all considered system sizes, and choose
the driving amplitude to be small enough to still have a
Floquet-MBL transition for sufficiently strong disorder
(eg. Refs.30,31), yet not much smaller than the singe-
particle bandwidth (∆ = 0.5).

Distributions of matrix elements.—In Floquet sys-
tems, the Hamiltonian is time-dependent, therefore for
the study of thermalization, the quantity of interest
is not the Hamiltonian but the unitary Floquet op-
erator, ÛF (T, 0), which we take to be, ÛF (T, 0) =

e−iĤ+T/4e−iĤ−T/2e−iĤ+T/442. Using full diagonalization,
we obtained all the eigenstates (denoted by Greek let-

ters) of ÛF (T, 0) for various system sizes and computed
the matrix elements of the local magnetization, Szαβ ≡〈
α
∣∣∣ŜzL/2∣∣∣β〉. For clean Floquet systems, it was shown

that the smooth part of the diagonal matrix elements
of local operators does not depend on the quasienergy,
with fluctuations which decrease with the system size36.
We verified that this also holds for the disordered sys-
tem we consider here43. We note in passing, that our
finding rules out the existence of a mobility edge in the
quasienergy spectrum, since assuming its existence would
imply that for the localized states |α〉, (Szαα)

2 ≈ 1/4,

while for the delocalized (Szαα)
2 ≈ 0, which is not consis-

tent with our numerical observation43.
While ETH is concerned only with the first and sec-

ond moments of the distributions of matrix elements, we
study the full distribution of both diagonal and offdiag-
onal matrix elements. The independence of the diago-
nal elements on the quasienergy allows us to accumulate
statistics not only over different disorder realizations but
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Figure 1. Probability distribution, P (Szαα) for W = 1, 2, 3,
9 and L = 10, 12, 14 and 16. The red dashed line in each
panel depicts a Gaussian distribution with the same standard
deviation as that of the correspoding P (Szα,α) for L = 16.
Statistics is obtained combining all Floquet eigenstates and
all disorder realizations (over 500 realizations for L < 16 and
50 realizations for L = 16). Other parameters are J = 1,
∆ = 0.5 and T = 3.

also across all quasienergies. To eliminate correlations,
all statistical errors are computed by bootstrap resam-
pling over the disorder realizations only.

In Fig. 1 we show the distributions computed for vari-
ous disorder strengths W and system sizes L. For weak
disorder (W ≈ 1) the distributions are very close to
Gaussian with variances which decrease with L, indi-
cating the validity of ETH. For sufficiently strong dis-
order, W = 9, the distributions become bimodal, and
almost independent of the system size, signaling the fail-
ure of ETH which occurs in the Floquet-MBL phase. The
most fascinating situation occurs for intermediate dis-
order were the variances still decrease with L, however
the tails of the distributions acquire more weight with
a clear departure from a Gaussian form. Interestingly,
after rescaling the matrix elements by the standard devi-
ation of their distributions, we find that the distributions
collapse reasonably well for various L, not only for the
Gaussian case, but also when the distributions are non-
Gaussian, indicating that the anomalous behavior per-
sists also in the thermodynamic limit43. In what follows
we set 0.5 ≤W ≤ 4 and focus only on the ergodic, albeit
anomalous phase43.

While the diagonal matrix elements of local opera-
tors are related to the stationary state of the system,
the offdiagonal matrix elements are directly connected
to thermalization, or the relaxation to the stationary
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Figure 2. Top row : Probability distribution, P
(
Szαβ

)
forW =

1, 3 and L = 10, 12, 14 and 16. Bottom row : Same as top row,
but with the distributions scaled with the standard deviation
of P

(
Szαβ

)
, σαβ . The dashed red lines in the bottom row

denote the standard normal distribution. Other parameters
are the same as in Fig. 1.

state. In Fig. 2 we show the distributions of the offdi-

agonal matrix elements, P
(
Szαβ

)
for two disorder val-

ues and various system sizes. To take statistics over
the entire quasienergy spectrum, for every Floquet eigen-
state we consider 10 Floquet eigenstates closest to it in
quasienergy and calculate Szαβ for all the pairs in each
group.The matrix elements are then accumulated over
all the groups as also over different disorder realizations.
For weak disorder (W = 1) the distributions are close to
Gaussian in accordance with what is stipulted by ETH.
However for intermediate disorder, but still in the er-
godic phase (W = 3) , the distributions are clearly non-
Gaussian. Rescaling the distributions by their standard
deviation collapses all system sizes on top of each other
(see bottom panels of Fig. 2) indicating the convergence
of the shape of the distributions to their thermodynamic
limit. Similar anomalous behavior of the distributions of
the offidiagonal elements was observed by two of us for
static disordered systems, where it was established that
only a modified version of the ETH is satisfied28.

Anomalous spin transport.—Previous works on many-
body localization in static disordered systems identified
a regime of anomalously slow dynamics at the ergodic
side of the MBL transition. In particular, subdiffusive
transport of spin or particles44–48 as well as subballis-
tic spreading of quantum information49,50 was observed.
It was also shown that these dynamical properties are
related to a regime of slow anomalous thermalization de-

scribed by a modified version of the ETH28. For the
driving in Eq. (1), the total magnetization is conserved,
which allows us to study spin transport. For this purpose
we examine the infinite temperature spin-spin correlation
function

Ci (t) =
1

N
Tr
(
Ŝzi (t) ŜzL/2

)
, (2)

where N is the Hilbert space dimension and Ŝzi (t) is
the spin operator on site i written in the Heisenberg pic-
ture and evolved according to the aforementioned driving
protocol. This correlation function encodes the spread-
ing of an initial magnetization excitation created at cen-
ter of the lattice, L/2, at time t = 0. To calculate (2)
we exploit the concept of dynamical typicality (for de-
tails see Sec 5.1.5 of Ref.51). Practically, we approxi-
mate the trace in (2) by the expectation value with re-
spect to a random state, |ψ〉, sampled according to the
Haar measure. The error of this approximation is in-
versely proportional to the square-root of the Hilbert
space dimension. After this substitution, the calcula-
tion of Ci (t) = 〈ψ| Ŝzi (t) ŜzL/2 |ψ〉 can be reduced to the

propagation of two wavefunctions according the driving
protocol in Eq. (1). The propagation is performed using
standard Krylov space time evolution methods (see Sec.
5.1.2 in Ref.51) for spin-1/2 chains of up to 27 spins. We
characterize transport by the calculation of the spin-spin
autocorrelation function, CL/2 (t) and the mean square
displacement (MSD),

X2 (t) =

L∑
i=1

(
i− L

2

)
2 [Ci (t)− Ci (0)] , (3)

which is directly related to the current-current correla-
tion function and therefore to transport (see Appendix
of Ref.51). The autocorrelation function of transported
quantities decays as CL/2 (t) ∼ t−γ and the MSD grows

as, X2 (t) ∝ tα. For diffusive systems, Ci (t) asymptoti-
cally assumes a Gaussian form, yielding the connection,
γ = α/2, with α = 1. For subdiffusive transport, α < 1,
and typically γ 6= α/2, since Ci (t) is non-Gaussian (cf.
Fig. 3). In the left panels of Fig. 3 we present the au-
tocorrelation function and the MSD for various disorder
strengths. Both quantities are calculated by averaging
the correlation function Ci (t) over 100-1000 disorder re-
alizations. For weak disorder, we observe a fast decay of
the autocorrelation function and close to linear growth of
the MSD, consistent with diffusive transport observed in
a similar clean Floquet model52. At intermediate disor-
der, we find a clearly sublinear growth of the MSD with
an exponent α < 1 which decreases as a function of the
disorder strength (see right panel of Fig. 3). The expo-
nents were obtained by restricting the fits to times for
which finite size effects on the MSD are comparable to
the statistical errors.

The analysis of the power-law decay of the autocorre-
lation function is more involved, mostly due to the su-
perimposed oscillations occurring for short times. Fast
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Figure 3. Left : Autocorrelation function, CL/2 (t) (top) and

mean square displacement, X2 (t) (bottom) as a function of
time on a log-log scale. Dashed lines, L = 23 and solid lines,
L = 27. Shades indicate statistical uncertainty (in most cases
smaller than the linewidth) and best fits of the underlying
power law are indicated by dotted black lines. Right : The
exponents γ and α/2 as a function of the disorder strength W .
Error bars indicate only statistical errors and not systematic
uncertainty.
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transport (for smaller disorder strengths) results in very
short domain of power-law decay and less reliable ex-
ponents, γ, for W ≤ 1. At stronger disorder, finite size
effects are less pronounced due to slower transport, yield-
ing a longer domain of the power laws and more reliable
γ. We have verified that the domain of the power law
decay increases with increasing the system size (see left
top panel of Fig. 3).

Anomalous thermalization.— A relation between the
scaling of the variance of the offdiagonal matrix elements
and the decay of the autocorrelation function was pre-

viously derived28. While ETH assumes
√
N std

(
Szαβ

)
=

O (1), for static systems it was shown that for energies, εα
and εβ satisfying |εα−εβ | < L−1/γ the scaling is modified

to
√
N std

(
Szαβ

)
∼ Lδ, namely the decay of std

(
Szαβ

)
with system size is not purely exponential, but includes a
power-law correction with system size. Moreover it was
shown that δ = (1− γ) / (2γ)28. While the derivation
of this relation is rather general, it was only tested for
static systems. Here, we investigate its validity for the
Floquet system (1). The exponent γ is obtained from the
decay of the autocorrelation function as explained in the
previous section. The exponent δ is extracted from the

scaling of
√
N std

(
Szαβ

)
with system size (see left panel

of Fig. 4). To calculate the standard deviation of Szαβ
we consider approximately 10 nearby (in quasienergy)
Floquet eigenstates, |α〉 and |β〉. Since the density of
states is constant and exponentially large in L, taking
a fixed finite number of nearby states guarantees that
|εα − εβ | < L−1/γ is satisfied for sufficiently large sys-
tems. The extracted exponent δ is nonzero, indicating a
regime of anomalous (slow) thermalization similar to the
situation in static disordered systems28. The exponent δ
is increasing with the disorder strength, presumably di-
verging at the Floquet-MBL transition, were both ETH
and its generalized version fail. We note that the do-
main of validity of the power law shifts to larger system
sizes at intermediate disorder since the tails of the distri-
butions are only observable for large system sizes. The
right panel of Fig. 4 shows an excellent agreement be-
tween the exponent γ, and its value calculated from δ
using the relation δ = (1− γ) / (2γ).

Discussion.—In this Letter we have studied spin trans-
port and thermalization in an archetypal disordered and
interacting Floquet system, which has a Floquet-MBL
transition for sufficiently strong disorder. We have found,
that similar to their static counterparts, spin transport
for disordered Floquet systems is subdiffusive and is ac-
companied by anomalous thermalization with a modi-
fied form of ETH. The distributions of matrix elements
of local operators written in the eigenbasis of the Flo-
quet operator are non-Gaussian, although the variance of
these distributions still decay with the system size. We
demonstrated that the decay of the variance is directly
related to the temporal decay of the spin-spin autocorre-
lation function. Given the above, we conjecture that the
slow dynamical regime and anomalous thermalization is
a generic feature of the ergodic phase of systems exhibit-
ing MBL, and does not rely on energy conservation. It
is interesting to see how removal of all conservation laws
affects on the dynamics of generic correlation functions
in the system.

Interestingly, the disordered Floquest system we con-
sider not only has a flat many-body density of states, but
also a structruless diagonal elements of local operators
written in the eigenbasis of the Floquet operator. We ar-
gue that this finding is inconsistent with a mobility-edge
in the quasienergy spectrum, such that the Floquet-MBL
transition occurs at a critical disorder strength and has
no additional structure in quasienergy. We leave a de-
tailed comparison of the MBL transition in static and
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Floquet systems for future studies.
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29 M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. B 96,

104201 (2017)
30 A. Lazarides, A. Das, and R. Moessner, Phys. Rev. Lett.

115, 030402 (2015)
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