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We present an efficient method for the design of anomalous reflectors for acoustic waves. The
approach is based on the fact that the anomalous reflector is actually a diffraction grating in which
the amplitude of all the modes is negligible except the one traveling towards the desired direction.
A supercell of drilled cavities in an acoustically rigid surface is proposed as the basic unit cell, and
analytical expressions for an inverse diffraction problem are derived. It is found that the the number
of cavities required for the realization of an anomalous reflector is equal to the number of diffracted
modes to cancel, and this number depends on the relationship between the incident and reflected
angles. Then, the “retroreflection” effect is obtained by just one cavity per unit cell, also with only
two cavities it is possible to change the reflection angle of a normally incident wave and five cavities
are enough to design a general retroreflector changing the incident and reflected angles at oblique
incidence. Finally, the concept of Snell’s law violation is extended not only to the incident and
reflected angles, but also to the plane in which it happens, and a device based on a single cavity
in a square lattice is designed in such a way that the reflection plane is rotated 7/4 with respect
to the plane of incidence. Numerical simulations are performed to support the predictions of the

analytical expressions, and an excellent agreement is found.

s Anomalous reflectors and refractors can be defined as
structured flat surfaces in which the relationship between
the angles of the incident, reflected and refracted waves
does not satisfy Snell’s law[l]. These devices, designed
mainly in the framework of the so-called generalized laws
of refraction and reflection [2], have received increasing
interest within the last years [BHIT], and a wide variety
12 of applications and effects have been envisioned for the
control of acoustic waves, like carpet cloaks[I2], acoustic
10 diodes [I3] or helical wavefront generators [14].
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15 Also named “gradient metasurfaces”, these devices re-
quires of a continuous variation of the phase of the fields
v [2], which in the case of acoustics can be implemented
18 by means of space-coiled scatterers[d] or membranes[12].
19 Their efficient design requires additionally a specific vari-
ation of the impedance of the unit cell [15] [16], after a nu-
merical optimization process, since non-local effects have
2 to be taken into account. The overall result is that effi-
cient gradient metasurfaces requires a complicated design
process including a large number of elements per unit cell,
» which has an obvious practical limitation.
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s Recently, it has been shown that some functionalities
27 of gradient metasurfaces for electromagnetic or acous-
s tic waves can be achieved by means of properly de-
2 signed diffraction gratings based on bianostropic [17H19]
or bipartite particles[20, 2I]. From this perspective, the
s anomalous reflection or refraction effect consists essen-
2 tially in cancelling all the diffracted modes except the
3 one traveling towards the desired “anomalous” direction,
s and this results in the mirage that the wave has not been
“diffracted” but “anomalously refracted”. However, cur-
3 rent approaches based on diffraction mode control have
s been applied only to retroreflectors and anomalous re-
3 flectors at normal incidence, which will be shown here
3 to be less demanding than the general anomalous reflec-
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w0 tor. Additionally, these works still requires of complex
a1 bianisotropic particles to be effective.

22 In this work we present a simplified and more general
a3 picture for the design of acoustic anomalous reflectors.
« The approach is based on the efficient engineering of the
s different diffracted modes by a periodically structured
w6 acoustic surface. The structure consists in a perforated
ar acoustically rigid surface, and it is found that the number
s of cavities per period can be set equal to the number
a0 of diffracted modes to be canceled, with the interesting
so result that only one or two cavities are required for the
st most typical applications of anomalous reflectors, while
s2 only five are required for one of the most challenging
53 applications. Finally, an off-axis anomalous reflector is
s« designed, where the planes of incidence and reflection
ss are different.

The proposed unit cell is shown in panel A of Fig[l]
It consists of an acoustically rigid surface placed in the
zy plane at z = 0 in which it is drilled a cluster of N
cavities of length L, and located at the positions R,
for « =1,2,...,N. The cross section of the cavities can
be arbitrary, but it will be assumed that only the funda-
mental mode of the waveguide they define is excited[22].
The cavities are backed by a rigid wall, so that no energy
is transferred to the other side of the surface. We as-
sume time harmonic dependence of the fields of the form
e~ If the surface is excited by an incident plane wave
of unitary amplitude and propagating along the z axis
with wavenumber k = K 4 qg2, a set of diffracted modes
with reflection coefficients Rg will be excited, so that the
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pressure and normal velocity fields will be given by

P = Z (6Goeiqcz + RGe—quz) eiKGv‘,
G

- 'le]

" kv

(1)

Z (5Goeiqcz _ Rce—iqcz) eiKc-r7 (2)
G

where the dp¢ is the Kronecker delta function and |K +
G|? + ¢% = w?/c, with G being the set of all reciprocal
lattice vectors. The reflectance in energy will be always
unitary, but we will use the grating to engineer amount of
energy that is transferred to each propagating (Im(qg) =
0) mode. The fields inside each cavity can be set as[23]

coskp(z — La)

P = iK Ry 3

€ sinkpL, (3)

o e B ginky(z — Ly) (4)
L Zb sin kbLa ’

which ensures the boundary condition v,, =0 at z = L.
The mode matching method is applied by projecting

the Bloch modes with the v, field and the cavity modes

for the P field[23], resulting in the system of equations

> Hage'@ M (6co + Rg) = BacotkyLa, (5
G

N
kK G
dgo — Rg = —i— > fsHpae "0 Bs,  (6)
qG =1

where the coupling factor is given by H,g
Q—la foa eta(r=Ra)qO) and the cavity’s filling fraction
has been defined as f, %, with Q and ©, being the
areas of the unit cell and the cavity «, respectively. Solv-
ing for R from equation (6) and inserting it into
leads to a system of equations for the B, coefficients

N
> " [bap cot ky Lo — ixap) Bs = 2Hao
B=1

(7)

where the term ., which defines the multiple scattering
interaction between the cavities in the unit cell, is defined
as

k G-
XaB = E 2 HooHpe fae G e, (8)
qG
G

Once the B, coefficients are known, the reflection coef-
ficient of each diffracted mode is obtained directly from
equation @, solving in this way the full diffraction prob-
lem.

However, equation @ can be used to set up an inverse
problem as follows: we can impose a set of values for
the amplitude of a number g of diffracted modes R¢g, de-
sign a unit cell with N = g cavities and solve for the B,
coeflicients from equation @, since it defines a system
of g equations with N = g unknowns with coefficients
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FIG. 1. A) Schematic representation of the diffraction prob-

lem considered in the text. B) Selection of the grating ge-
ometry to generate a desired diffracted mode from a given
incident plane wave with in-plane wave vectors K, and K;,
respectively. C) Number of excited diffraction orders for each
incident(6;) and diffracted(6,) angles (defined as the angle of
the wave with the z-axis).

Aga = fsHpce "“Fs. Once selected the shape and po-
sition of the cavities, and solved for the B, coefficients,
the length of each cavity is directly obtained from equa-

tion @ as
N

cot kyLa = | 2Hao +i Y XasBs | By
B=1

(9)

Equations (6) and (9) constitute therefore the basis
for the inverse design of diffraction gratings, however it
must to be pointed out that in order to have a physically
acceptable solution it is required that the right hand side
of the above equation be a real number, since the cotz
function is real valued for all the physically acceptable
ky Lo, (assuming no loss or gain elements). Therefore, the
additional condition

Im(cot kyLo) =0 (10)
has to be satisfied for a physically acceptable solution.
In the case of having dissipation in the cavity, the cotz
function might be inverted in equation @D and impose
reality on L, instead.

The above procedure considerably simplifies the de-
sign of anomalous reflectors, in which it is desired that
a wave incident with wavenumber k; be totally reflected
with wavenumber k,. From a diffraction point of view,
this is equivalent to design a diffraction grating in which
the desired reflected wave number corresponds to one of
the K + G diffracted modes, and optimize the grating
in such a way that all the other propagating diffracted
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modes present zero amplitude. The design of the geom-
etry of the lattice is illustrated in panel B of figure
we need to impose that the projections of the incident
(K;) and reflected (K,) wavevectors on the surface sat-
isfy | K,— K;| = 2%, to minimise the number of additional
diffracted modes (number of points inside the red circle).
This condition defines both the lattice orientation and
constant a.
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FIG. 2. A) Diffracted energy as a function of a/X for the fun-
damental (black line) and diffracted (red dashed line) modes
for a single groove “retroreflector”. B) Numerical simulation
of the incident (left) and reflected (right) fields, showing the
perfect retroreflection effect.

Panel C of figure [I] shows the number of diffracted
modes for all the possible incident and reflection angles
with the z axis, 6; and 6,., respectively. As can be seen,
the higher number of diffracted modes is excited for re-
flection angles similar to the incident angle, while for the
“retroreflection” and anomalous reflection effect at nor-
mal incidence, only one or two modes are excited and,
therefore, they are less demanding devices. This inter-
esting feature of diffraction gratings is the responsible of
the fact that “extreme” anomalous reflection is easier to
implement, although the present approach offers a gen-
eral method to any configuration.

After selecting the lattice geometry and obtaining the
number Ny of diffracted modes, we set the number of
cavities in the unit cell to N = Ny — 1, since we want
to impose Rg = 0 for all the Ng modes except for G =
%”ﬁ:. We will then search for the size and position of the

cavities to satisfy condition (10)) which will give us the
length of the cavities from Eq. (9)).
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Four examples of application of the previous approach
will be developed. In the first three the anomalous reflec-
tion effect will take place in-plane, for which a geometry
invariant along the y axis will be selected. In this case,
the cavities are grooves in the plate of width d,, and we
have that H2S" = sin(|K + G|da/2)/(|K + G|ds/2),
while for the fourth example a cylindrical cavity of ra-
dius a, will be employed, and now Hi‘g”ty =2J1(|K +
Glaa)/(K + Gla).

Panel C of figurdI] shows that the retroreflection effect
can be achieved by just two diffracted modes as long as
the incident angle 6; = —6,. be higher than approximately
20° (dark blue region), therefore we will need only one
cavity per unit cell to design such a device. The condition
Ry = 0 in equation @ implies By = %, and insert-
ing this into equation @ and setting the imaginary part
of cot ky Lo equal to zero we get the condition for energy
conservation,

quHg
qQHE,

1, (11)

which give us

cot kLo = Im(x00)- (12)

Given that in condition the functions Hg and gg
are computed at K;(G = 0) and K, (G = —27/a&),
this condition is trivially satisfied when K, = —Kj,
therefore the design method consists in selecting the
width dg of the groove and obtaining Ly from equa-
tion (I2). In our first example we select §; = 7/3, so
that the retroreflection diffraction condition is satisfied
at a/A = 2sinf; = 1.73, selecting dy = 0.23a defines
Lo = 0.23a.

Figure [2| panel A) shows the diffraction energy Ig =
qc/qo|Ra|? as a function of a/) for the designed retrore-
flector. We see how the energy reflected by the funda-
mental mode (black line) becomes zero and all the en-
ergy goes to the first diffraction order (red-dashed line)
at the desired a/\ point. Panel B) shows the numerical
simulations performed with the comercial finite element
software COMSOL Multiphysics, verifying that the in-
cident (left) and reflected (right) waves have the same
propagation direction.

The second example analyzed is the anomalous reflec-
tor at normal incidence, in which a wave impinges nor-
mally to the surface and it is reflected an angle 6,.. In this
case, for desired reflection angles higher than 7/6 we have
only three diffracted modes, the fundamental one and the
lateral ones at +6,., the objective is to cancel the funda-
mental and one of the diffracted orders, so that we need
only two grooves per unit cell. We will propose a unit cell
in which the two grooves, labeled o and (3, are identical
and symmetrically placed in the unit cell, zg = —2,, and
we will set up this distance by imposing that equation
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be satisﬁed. The condition Ry = Rg = 0 gives now
Ho L where zo5 = 23 — T4 = —224.
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Tag/a

FIG. 3. A) Diffracted energy as a function of a/\ for each
propagating mode for a two-grooves anomalous reflector at
normal incidence. C) Plot of Im(cot ks L) as a function of the
groove’s semi-distance zog/a, showing the points that satisfy
the energy balance condition at z,s = 0.32a. C) Numerical
simulation of the incident (left) and reflected (right) fields.

Figure |3) panel A) shows the diffracted energy Ig in
this example, where we have selected 0, = 7/4, which
sets A/a = 0.7071. It is clear how the energy of the fun-
damental (red line) and one diffracted (green dot-dashed
line) modes cancel at the desired wavelength. The width
of the grooves is set as dy = 0.2a, and the distance be-
tween them is obtained from condition (10, which is
plotted in panel B) of figure [3| as a function of z.g/a.
Finally, the incident and reflected fields computed with
COMSOL are depicted in panel C) of the figure.

Next we show an example of an anomalous reflector,
in which the reflection angle of the wave is changed
but keeping the same sign. We select §; = /3 and
0, = m/6, which corresponds to Ny = 6 in panel C)
of figure [l therefore this interesting effect can be ob-
tained with only N = 5 grooves. We set the size of the
cavity as dy = 0.02a and the B, coefficients are directly
obtained from the solution of the system of equations de-
fined by Eq. @ The result of the design can be found
in the plot of the diffracted energy in figure [4] panel
A), where the distance between grooves z.3 = 0.17a
that minimizes the imaginary part of cot k; L, has been
obtained from the plot of panel B) as in the previ-
ous example, and the required lengths of the grooves
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FIG. 4. A) Diffracted energy as a function of a/X for

each propagating mode for a five-grooves anomalous reflector.
B) Plot of Im(cot kyLo) as a function of the groove’s semi-
distance zog/a, showing the points that satisfy the energy
balance condition at g = 0.17a. C) Numerical simulation
of the incident (left) and reflected (right) fields.

are L, = 0.0613a,0.0715a,0.0776a, 0.0835a and 0.2775a.
Panel C) shows the incident Py and reflected Ps waves as
simulated with COMSOL, illustrating the nearly perfect
performance of the device. It has to be pointed out that
the optimal distance between grooves is not z,5 = a/N,
so that actually the cluster of grooves does not form a
sub-lattice of the main lattice, as it happens in devices
based on phase gradients. In other words, in this ap-
proach there is not a continuous variation of the phase of
the fields or the impedance of the surface along the unit
cell, it is a diffraction grating engineering that does not
take care of the near field and focuses on the amplitude
of the propagating fields, which are the true responsible
of the anomalous reflection effect.

Finally, the presented theory is applied to the design of
a four-channel off-axis reflector. This device reflects the
incident wave backwards but rotated a given angle in the
xy plane, as illustrated in panel A) of figure |5| therefore
the plane of incidence and reflection are different, in con-
tradiction with Snell’s law which asserts that these planes
have to be the same. We select the incident and reflected
angles with the z axis of §; = —0,, = w/3 and the rotation
angle 6; = 7/4, only one cavity per unit cell is required,
and selecting circular cavities in a square lattice ensures
a four-channel functionality, due to the four-fold symme-
try of this lattice. The design method is identical as to
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FIG. 5. A) Geometry of the off-axis reflection problem. B)
Diffracted energy as a function of a/\ for each propagating
mode for a reflector made of a single circular cavity in a square
unit cell. C) Projections of the incident and reflected fields
at the different planes of the unit cell.

the retroreflector of figure |2 since equation is triv-
ially satisfied (the projection of the wavenumber remains
unchanged) and the length of the cylindrical cavity is ob-
tained from equation . Figure [5| panel B) shows the
diffracted energy and panel C) shows the numerical simu-
lations performed with COMSOL of the incident and re-
flected fields projected at the different sides of the three-
dimensional unit cell, showing the retroreflection effect
responsable of the rotation of the reflection plane. It is
remarkable the simplicity of this device as compared with
the equivalent gradient-phase metasurface that would be
required for this functionality.
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In summary we have shown that anomalous reflection
203 from acoustic surfaces can be properly and efficiently ob-
24 tained by means of engineered diffraction gratings, in
s which subwavelength cavities are drilled in an acousti-
us cally rigid surface. The number of cavities required is in
27 general one less than the number of diffracted modes, so
xs that all these modes are cancelled except one, which is
xo the carrier of the wave at the desired reflection angle. It
»0 has been shown that unitary efficiency can be achieved
»1 for one and two cavities per unit cell, and nearly uni-

242

s tary in the case of five cavities, showing also the great
253 potential that this method has for the design of more ef-
4 ficient anomalous reflectors. This approach presents sev-
s eral advantages in comparison with previous approaches
6 based on gradient index metasurfaces, since no continu-
257 ous variation of the index or the surface’s is required, but
8 just a discrete number of properly selected cavities. The
9 presented theory therefore opens the door to a new set
x0 of devices efficiently designed for the full control of the
261 propagation direction of acoustic waves. Finally, this ap-
x2 proach could be applied as well to anomalous refractors
%3 and to other domains of physics, like elasticity or electro-
x4 magnetism, since the principles in which it is based are
x5 general for all type of waves.
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