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We investigate the charge and spin transport in half-metallic ferromagnet (F) and superconductor (S ) nano-
junctions. We utilize a self-consistent microscopic method that can accommodate the broad range of energy
scales present, and ensures proximity effects that account for the interactions at the interfaces are accurately
determined. Two experimentally relevant half-metallic junction types are considered: The first is a F1F2S
structure, where a half-metallic ferromagnet F1 adjoins a weaker conventional ferromagnet F2. The current
is injected through the F1 layer by means of an applied bias voltage. The second configuration involves a
S F1F2F3S Josephson junction whereby a phase difference ∆ϕ between the two superconducting electrodes
generates the supercurrent flow. In this case, the central half-metallic F2 layer is surrounded by two weak fer-
romagnets F1 and F3. By placing a ferromagnet with a weak exchange field adjacent to an S layer, we are able
to optimize the conversion process in which opposite-spin triplet pairs are converted into equal-spin triplet pairs
that propagate deep into the half-metallic regions in both junction types. For the tunnel junctions, we study the
bias-induced local magnetization, spin currents, and spin transfer torques for various orientations of the relative
magnetization angle θ in the F layers. We find that the bias-induced equal-spin triplet pairs are maximized in
the half-metal for θ ≈ 90◦ and as part of the conversion process, are anticorrelated with the opposite-spin pairs.
We show that the charge current density is maximized, corresponding to the occurrence of a large amplitude of
equal-spin triplet pairs, when the exchange interaction of the weak ferromagnet is about 0.1EF . For the half-
metallic Josephson junctions we often find that the spin current flowing in the half-metal is equivalent to the
charge supercurrent flowing throughout the junction. This is indicative that the current consists of spin-polarized
triplet pairs. The conversion process of the opposite-spin triplet pairs to the equal-spin triplet pairs in the weaker
magnets is clearly demonstrated. This is exemplified by the fact that the supercurrent in the half metal was
found to be relatively insensitive to its thickness.

I. INTRODUCTION

Superconductor (S ) and ferromagnet (F) hybrids have
opened up many new possibilities for further advancements in
spintronics devices whose purpose is to manipulate the flow
of charge and spin currents1. Central to their functionality is
experimental control of the spin degree of freedom while en-
joying the dissipationless nature of supercurrent. This control
is typically afforded through magnetization rotations of one
of the free ferromagnetic layers, achieved via weak in-plane
external magnetic fields, or by the spin transfer torque (STT)
effect. The most commonly studied transport structures based
on superconductors and ferromagnets are equilibrium Joseph-
son junctions or voltage biased superconducting tunnel junc-
tions. In any case, the underlying junction architecture often
involves spin and charge transport through a spin-valve con-
figuration. A basic superconducting spin-valve consists of two
or more ferromagnets adjacent to a superconductor2–4, where
rotation of one of the F layer magnetizations modifies the in-
duced oscillatory singlet pairing in the ferromagnets. If the
F layers are half-metallic, these oscillations rapidly dampen
out due to their incompatible nature. If however the ferro-
magnetic regions have non-collinear magnetizations, as will
be discussed shortly, triplet pairs with parallel projection of
spin can be created that extend deep within the half-metal. In
Ref. 5, it is also suggested that magnon excitation plays a role
in the conversion between singlet and triplet pairs. These spin-
polarized triplet pairs are thus of great interest, and their sig-
natures have been theoretically predicted6–8 and experimen-

tally observed9 in the superconducting critical temperature of
half-metallic spin valves when rotating one of the F layer
magnetizations. Transport measurements in a half-metallic
Josephson junction10,11 demonstrated a supercurrent through
the half-metal CrO2, also indicating the current is carried by
equal-spin Cooper pairs since singlet pairs are blocked by the
half metal. Because control of the transport of dissipationless
spin-currents is a major objective of low-temperature spin-
tronics devices, superconducting junctions that merge half-
metallic ferromagnets and superconductors are increasingly
being recognized as valuable platforms to study these two
competing orders.

Spin currents can flow within superconducting junctions
with two or more F layers due to the ferromagnetic exchange
interactions. They can also flow with the help of induced
equal-spin triplet pairing correlations, where the Cooper pairs
have a net spin of m = ±1 on the spin quantization axis. The
generation of these long-range triplet correlations in super-
conducting heterostructures with magnetic inhomogeneities
has been well studied theoretically12 and experimentally. By
introducing magnetic inhomogeneity, e.g., inclusion of mul-
tiple magnets with misaligned exchange fields13, or via the
spin-active interface14,15, the Hamiltonian no longer com-
mutes with the total spin operator and equal-spin triplet cor-
relations can be induced. Due to the imbalance between ma-
jority and minority spins in a ferromagnet, conventional sin-
glet pairing correlations decay over short distances within the
magnetic region. However, Cooper pairs with electrons that
carry the same spin (m = ±1) are not subject to the param-
agnetic pair breaking and can in principle propagate for large
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distances inside the ferromagnet, limited only by coherence
breaking processes. Such long-range m = ±1 triplet correla-
tions thus play an important role in Josephson and tunneling
junctions containing ferromagnets with noncollinear magneti-
zations.

While there has been extensive work towards isolating and
detecting the triplet pairing state, it can be difficult to dis-
entangle the equal-spin triplet and opposite-spin singlet and
triplet correlations. It is therefore of interest to investigate
heterostructures that restrict the formation of opposite spin
pairs while retaining the desired equal-spin triplet correla-
tions. The pinpointing of triplet effects can be exploited with
the use of highly polarized materials like half metallic ferro-
magnets, where only a single spin channel is present at the
Fermi level. The ordinary singlet pairs and opposite-spin
triplet pairs are consequently suppressed, as the magnet be-
haves essentially as an insulator for the opposite spin band.
Half-metallic ferromagnets are thus finding increasing use in
superconducting spin valves. Several half metallic materials
are considered in connection with superconducting hybrids
and spintronic applications. These include the manganese per-
ovskite La2/3Ca1/3MnO3

9,16–19, as well as the Heusler com-
pounds such as Cu2MnAl, which are favorable experimen-
tally, since they can be grown by sputtering techniques20. The
conducting ferromagnet CrO2

10,11,21 is also a candidate for use
in half-metallic spin valves, although it cannot be grown by
sputtering methods, and is metastable.

Experimental signatures of triplet correlations in half-
metallic S F1F2 spin valves have been demonstrated in tran-
sition temperature Tc variations that occur when rotating the
magnetization of the free ferromagnet layer9,21. Measuring
the corresponding maximal change in the critical temperature,
∆Tc, can represent the emergence of spin-polarized triplet
pairs as the singlet superconducting state weakens and is sub-
sequently converted into opposite-spin and equal-spin triplet
pairs. Most experiments for these types of spin valve struc-
tures involved weak ferromagnets for the outer F2 layer and
in-plane magnetic fields, yielding ∆Tc sensitivities from a
few mK to around 100 mK22–26. When the F2 layer is re-
placed by a half-metallic ferromagnet such as CrO2, a larger
∆Tc of ∆Tc ≈ 800 mK was measured21 using a large out-
of-plane applied magnetic field. If La0.6Ca0.4MnO3 is used
as the half metallic ferromagnet, a much weaker in-plane
magnetic field suffices to rotate the magnetization in one of
the F layers9, resulting ∆Tc ≈ 150 mK, which again is a
stronger spin valve effect compared to experiments involv-
ing standard ferromagnets25,26. These types of improvements
were shown to be consistent with theoretical work6,7,27 which
demonstrated that when the exchange field in F2 varies from
zero to half-metallic, the largest ∆Tc arises when F2 is a half-
metallic. These experimental evidences further established
the advantages of utilizing half-metallic elements in supercon-
ducting spintronics devices.

Although critical temperature measurements give valuable
information regarding half-metallic spin valves, for spintron-
ics devices it is important to also investigate the transport of
charge and spin in these types of spin-valve structures. By
placing the spin valve between two superconducting banks

with a phase difference ∆ϕ, a half-metallic based Joseph-
son junction with spin-controlled supercurrent can be gener-
ated. Interest in Josephson junctions with ferromagnetic lay-
ers has grown due to their use in cryogenic spintronic sys-
tems, including superconducting computers and nonvolatile
memories5,11,14,15,28–37 where their use in single flux quan-
tum circuits can improve switching speeds38–40. To determine
whether Josephson structures can serve as viable spintronic
devices, it is crucial to understand the behavior of the spin
currents that can flow in such systems. The interaction be-
tween the spin currents and the magnetizations in ferromag-
netic Josephson junctions is important for memory applica-
tions since the magnetization orientations in the F layers dic-
tates the storage of information bits. Controlling the magne-
tization rotation can be achieved by a torque from the spin-
polarized currents flowing perpendicular to the layers. Some
of the spin angular momentum of the polarized current will
be transferred to the ferromagnets, giving rise to the STT
effect1,41–45. This effect can result in a decrease of magneti-
zation switching times in random access memories46–48. The
STT effect is known to occur in a broad variety of ferromag-
netic materials, including half-metals, making it widely acces-
sible experimentally.

In the past, half-metallic Josephson junctions were theo-
retically studied by using circuit theory49, recursive Green’s
function method33,34, and quasiclassical theory7,35,50–52. Re-
sults presented in most of the above work concerns the impli-
cation of triplet pairs in the current-phase relation due to either
magnetic inhomogeneity or interfacial spin-flip scattering. In
contrast to previous work, we consider half-metallic Joseph-
son junctions in the clean limit by solving the self-consistent
Bogoliubov-de Gennes (BdG) equations, thereby guarantee-
ing that important conservation laws are obeyed53. Such an
approach is appropriate because the BdG equations are suit-
able for the parameter space spanning the nonmagnetic in-
teraction limit to the half-metallic limit. In this paper, we
focus on S F1F2F3S Josephson junctions where the central
F layer is half metallic. Unlike the relatively uncontrollable
spin-flip scattering at the interfaces, the built-in spin valve in
S F1F2F3S Josephson junctions offers the advantage of being
easily controlled in experiments by applying an external mag-
netic field.

Since in these half-metallic Josephson junctions the triplet
pairs are responsible for the spin supercurrents10,11, we estab-
lish in this work the connection between spin/charge trans-
port and induced triplet correlations to provide insights into
the interplay between these important physical quantities. An
essential mechanism responsible for supercurrent flow in a
half-metallic Josephson junction is Andreev reflection that oc-
curs at the ferromagnet and superconductor interfaces54–57.
In addition to continuum states, the superposition of local-
ized quasiparticle wavefunctions in the ferromagnet regions
results in subgap bound states that contribute to the total cur-
rent flow. For strong ferromagnets, the corresponding spin-
polarized Andreev bound states can be strongly affected by
the supercurrent, directly influencing the spin currents and
STT when varying the relative in-plane magnetization angle.
Although the charge current is conserved, remaining uniform
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throughout the sample, the spin current often varies spatially,
making comparisons between the two types of current dif-
ficult. Moreover, since manipulating the angle between the
magnetization vectors can generate long-ranged spin polar-
ized triplet supercurrents53, these triplet correlations also cor-
relate with spatial variations in the spin currents responsible
for the mutual torques acting on the ferromagnets.

As demonstrated in Refs. 58 and 59, these equal-spin triplet
pairs result in a more robust Josephson supercurrent that is
relatively insensitive to F layer thicknesses due to their long-
ranged nature. If one of the ferromagnets in the junction is
half-metallic, the equal-spin triplet correlations are expected
to play an even greater role in the behavior of the charge
and spin currents. This was shown experimentally10 where
a spin triplet supercurrent was measured through the half-
metal CrO2, and whose direction was switchable via magneti-
zation variation. Even in the diffusive limit, it was shown that
spin-flip scattering events at the interfaces of a half-metallic
Josephson junction also allow penetration of the equal-spin
pairs into the half-metal60. A triplet current can also be gen-
erated when resonantly tuned microwave radiation impinges
on a half-metallic Josephson junction, causing a precessing
magnetization5. Considering the potentially greater control of
spin currents afforded by Josephson junctions with strongly
spin-polarized ferromagnets, it would be illuminating to sys-
tematically investigate the interplay of the triplet pair corre-
lations with the charge and spin transport throughout half-
metallic Josephson structures with spin valves separating two
superconducting banks.

Another way to produce charge and spin currents in half-
metallic spin valve structures involves establishing a voltage
difference between the ends of a F1F2S tunnel junction, re-
sulting in an injected current into the F1 layer. The charge
and spin transport properties for these types of nonequilib-
rium tunnel junctions with relatively weak ferromagnets was
previously studied61–63 as functions of bias voltage using a
transfer matrix approach that combines the Blonder-Tinkham-
Klapwijk (BTK) formalism and self-consistent solutions to
the BdG equations. The use of this technique was also ex-
tended to accurately compute spin transport quantities, in-
cluding STT and the spin currents, while ensuring that the
appropriate conservation laws are satisfied61–63. If the F1
layer is half-metallic, the current can become strongly po-
larized, leading to a relatively large transfer of angular mo-
mentum to the F2 layer for noncollinear magnetizations, via
the STT effect. Also, the angularly averaged subgap con-
ductance in this case arises mainly from anomalous Andreev
reflection19,61,64, whereby a reflected hole with the same spin
as the incident particle is Andreev reflected, generating a spin-
polarized triplet pair.

The BTK approach applied to either tunneling structures
or Josephson junctions with the presence of half metals have
been adopted in the past36,37,64,65. The scattering approach is
also a useful scheme to study the conductance of tunneling
junctions when a half metal is present66–68. The effects of ap-
plied bias on spin-polarized tunneling conductance and STT
has also been previously studied in superconducting tunnel
junctions69 in the small bias regime. By applying an external

magnetic field, or through switching via STT, it is again possi-
ble to control the relative orientation of the intrinsic magneti-
zations and investigate the dependence of the charge and spin
currents on the misorientation angle θ between the two ferro-
magnetic layers. Thus, when a half-metallic layer is present in
a F1F2S tunnel junction, we can have greater control and iso-
lation of the spin currents and spin-polarized triplet pairs that
are critical for viable spintronics platforms. The systematic
investigation into the transport and corresponding triplet cor-
relations of half-metallic spin valves for nonequilibrium tun-
nel junctions is another main focus of this work. By extending
the formalism adopted in Ref. 61, we have successfully com-
puted the bias dependence of the induced equal-spin triplet
pair amplitudes and identify their relationship with the charge
transport.

When considering spin transport in superconducting junc-
tions, it is beneficial for the structure to contain both weakly
polarized and strongly polarized ferromagnets. This is be-
cause the singlet and the opposite spin triplet correlations in
weaker ferromagnets extend over greater lengths, dictated by
the inverse of the exchange field, making them much more
effective at hosting opposite-spin pairs. The weak ferromag-
net serves as an intermediate layer between the superconduc-
tor and half-metal, facilitating the generation of opposite-spin
pairs that will eventually become converted into the longer
ranged equal-spin triplet pairs. A hybrid ferromagnetic setup
also creates an avenue for the systematic investigation into
the interplay and ultimate control of both triplet channels. We
therefore are interested in two types of superconducting junc-
tions with spin-valve structures in this paper. The first consists
of a single superconductor in contact with two ferromagnets
(the F1F2S structure), with the inner F2 ferromagnet having
a weak exchange field, and the outer F1 being half-metallic.
The current in this nonequilibrium case is injected by means
of a voltage difference between two electrodes.

As alluded to earlier, the other scenario involves a Joseph-
son junction containing a half-metal flanked by two weaker
conventional ferromagnets. The current is established in the
usual way by a macroscopic phase difference ∆ϕ between the
two outer superconducting banks. For both junction arrange-
ments, we investigate the charge and spin transport within the
ballistic regime using a microscopic self-consistent BdG for-
malism that is capable of accommodating the broad range of
energy scales set by the exchange field h of the conventional
ferromagnets (h/EF � 1) and the half-metal (h = EF). Of
crucial importance towards the theoretical description of these
type of transport structures is to accurately be able to account
for the mutual interactions between the ferromagnetic and su-
perconducting elements, i.e., proximity effects. This requires
a self-consistent treatment, which ensures that the final solu-
tions minimize the free energy of the system and satisfies the
proper conservation laws. This numerical approach is a time-
consuming but necessary step to reveal the self-content prox-
imity effects that govern the nontrivial charge and spin cur-
rents that flow within these structures. Indeed, the tunneling
conductance in F1F2S junctions was shown to differ substan-
tially from that obtained via a non-self-consistent approach61.
Therefore, our microscopic, self-consistent treatments enable
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us to especially focus on the connections between spin and
charge transport and the long-ranged nature of superconduc-
tivity.

This paper is organized as follows: In Sec. II A, we present
the general Hamiltonian and self-consistent BdG methodol-
ogy that is applicable for both junction configurations. In
Sec. II B, the transfer matrix approach for tunnel junctions
that combines the Blonder-Tinkham-Klapwijk (BTK) formal-
ism and self-consistent solutions to the BdG equations is es-
tablished. The charge continuity equation and current den-
sity are also derived. In Sec. II C, the relevant details for the
characterization of equilibrium half-metallic Josephson junc-
tions and the expression for the associated current density are
given. In Sec. II D, we outline how to calculate the induced
triplet correlations for equilibrium Josephson junctions and
non-equilibrium tunnel junctions. In Sec. II E the techniques
used to compute the spin transport quantities including mag-
netization, spin-transfer torque, and the spin current are de-
rived for both types of junctions. Throughout Sec. II, we dis-
cuss how to properly satisfy the conservation laws for charge
and spin densities in our formalism. In Sec. III A we present
the results for half-metallic tunnel junctions. Results for the
spatial dependence to the bias-induced magnetizations, the
spin-transfer torque, the spin currents, and triplet correlations
are presented as functions of the magnetization misalignment
angle as well as the applied bias. We also report how to take
advantage of the induced triplet correlations by choosing the
optimal exchange interactions in F layers. In Sec. III B, we
present the results for the half-metallic Josephson junctions,
including the current phase relations for a variety of half-metal
thicknesses. The spatial dependencies to the spin currents and
triplet correlations are given, and a broad range of misalign-
ment angles are considered to demonstrate the propagation of
spin-polarized triplet pairs through the half-metal. The pos-
itive correlations between the equal-spin triplet correlations
and the spin-polarized supercurrents are also discussed. We
conclude with a summary in Sec. IV.

II. METHODS

A. Description of the systems

Two types of half-metallic junctions are considered in this
paper: tunneling junctions and Josephson junctions. The ef-
fective Hamiltonian that is applicable to both types of junc-
tions is

Heff =

∫
d3r

∑
s

ψ†s (r) H0ψs (r)

+
1
2

∑
s s′

(
iσy

)
ss′

∆ (r)ψ†s (r)ψ†s′ (r) + H.c.


−

∑
s s′

ψ†s (r) (h · σ)ss′ ψs′ (r)

 , (1)

where H0 is the single-particle part of Heff , h describes ex-
change interaction of the magnetism, s and s′ are spin indices

and σ are Pauli matrices. ∆(r) ≡ g (r)
〈
ψ↑ (r)ψ↓ (r)

〉
is the

superconducting pair potential and g(r) is the coupling con-
stant. In ferromagnets where there is no intrinsic supercon-
ducting pairing, g(r) is taken to be zero. Similarly, h vanishes
in intrinsically superconducting regions. Following Ref. 61,
we utilize the generalized Bogoliubov transformation70, ψs =∑

n

(
unsγn + ηsv∗nsγ

†
n

)
, where ηs ≡ 1(−1) for spin-down (up),

to write down the BdG Hamiltonian equivalent to Eq. (1):
H0 − hz −hx + ihy 0 ∆

−hx − ihy H0 + hz ∆ 0
0 ∆∗ −(H0 − hz) −hx − ihy
∆∗ 0 −hx + ihy −(H0 + hz)



un↑
un↓
vn↑
vn↓


= εn


un↑
un↓
vn↑
vn↓

 , (2)

where uns and vns in the generalized Bogoliubov transforma-
tions can be identified as the quasiparticle and quasihole am-
plitudes, respectively.

For layered tunnel junctions and Josephson junctions con-
sidered in this work, we assume each F and S layer is infinite
in the yz plane and the layer thicknesses extend along the x
axis (See Figs. 1 and 7). As a result, the BdG Hamiltonian
[Eq. (2)] is translationally invariant in the yz plane, and it be-
comes quasi-one-dimensional in x. The single-particle Hamil-
tonian is H0 = −(1/2m)(d2/dx2) + ε⊥ − EF , where we have
defined the transverse kinetic energy as ε⊥ ≡ (k2

y + k2
z )/2m,

and EF denotes the Fermi energy. Although in this work, we
do not consider Fermi energy mismatch between distinct lay-
ers, it is straightforward to include such an effect. Throughout
this paper, we take ~ = kB = 1, and all energies are measured
in units of EF . We numerically determine the pair potential
by using fully self-consistent solutions to Eq. (2). The itera-
tive self-consistent procedure has been extensively discussed
in previous work61,71. Since our BdG Hamiltonian is quasi-
one-dimensional, the pair potential is only a function of x. By
minimizing the free energy of the system, and making use of
the generalized Bogoliubov transformation, the pair potential
can be written as,

∆(x) =
g(x)

2

∑
n

′[
un↑(x)v∗n↓(x) + un↓(x)v∗n↑(x)

]
tanh

(
εn

2T

)
, (3)

where T is temperature and the prime symbol means that a
Debye cutoff energy, ωD, is introduced in the energy sum.
Additional details of our formalism used in this work can also
be found in Refs. 53 and 61.

B. Tunnel junctions

We begin first with tunnel junctions depicted in Fig. 1
where a ferromagnet and half metal are in contact with a su-
perconductor. The ferromagnet that is not adjacent to S is la-
beled F1, and the one next to S is F2. As shown in Fig. 1, the
exchange field in F1 is h1 ẑ, and in F2 it is h2 (sin θŷ + cos θ ẑ).
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FIG. 1. (Color online) Illustration of the F1F2S tunnel junction that
is infinite and translationally invariant in the yz plane. It has finite
size along the x axis. F1 is a half-metal and the associated exchange
field is fixed along the z direction. The direction of the exchange
field in F2 is in the yz plane, and makes an angle θ with the z axis.
Such a misorientation can be achieved experimentally via an external
magnetic field.

Here h1 and h2 are the magnitudes of the exchange fields in
F1 and F2, respectively. In general, we consider F1 as a fixed
layer where the exchange field is pinned and F2 as a free layer
where the relative angle θ can be controlled by an applied
magnetic field experimentally23. In this work, we take the
fixed layer F1 to be a half metal and h1 = EF .

In previous work61, a formalism based on the BTK
approach72 was generalized to study spin-transport quantities.
In Ref. 72, it was shown, starting from the Boltzmann equa-
tion, that the conductance associated with the tunnel junction
is a function of the transmission and reflection amplitudes in
the linear response regime. Therefore, to compute the tun-
neling conductance, one should start by writing down the ap-
propriate wavefunctions in each distinct region. The details
of this procedure is given in the Appendix. Following this
procedure, the formula for the spin-dependent conductance,
normalized to that of the normal state in the low temperature
regime, is given by

Gs = 1 +
k−
↑1

k+
s1

∣∣∣as↑

∣∣∣2 +
k−
↓1

k+
s1

∣∣∣as↓

∣∣∣2 − k+
↑1

k+
s1

∣∣∣bs↑

∣∣∣2 − k+
↓1

k+
s1

∣∣∣bs↓

∣∣∣2 , (4)

where
∣∣∣as↑

∣∣∣2 and
∣∣∣as↓

∣∣∣2 are the amplitudes of the Andreev re-

flected waves, and
∣∣∣bs↑

∣∣∣2 and
∣∣∣bs↓

∣∣∣2 are the amplitudes of the
normally reflected waves. In the above expression, the sub-
script s denotes the spin type of the incident wave into the F1
region. For example, a↑↓ corresponds to the process whereby
a spin-down hole is reflected when a spin-up particle is inci-
dent. Here, the k’s represent the corresponding wavevectors,
with the +(−) superscript dictating the particle (hole) nature
of the reflected wave, and the subscript 1 denoting the F1 re-
gion. For example, k−

↑1 is the wavevector of a spin-up hole
wavefunction in F1.

In Ref. 61, the BTK formalism has been generalized to
study transport quantities such as spin currents and spin trans-

fer torques. By applying the transfer matrix method outlined
in the Appendix A, these position dependent quantities can be
properly computed. For a non-zero bias, V , across the elec-
trodes of a F1F2S junction, a non-equilibrium quasi-particle
distribution is generated. In the excitation picture, it is clear
that all states with energies ε < eV incident from the elec-
trode in F1 to the electrode in S should be taken into account
in the low T limit61. Hence, the respective charge density and
current density are given by:

ρ = −e
∑
ns

|vns|
2 − e

∑
εk<eV

∑
s

(
|uks|

2 − |vks|
2
)
, (5)

Jx = −
e
m

Im

 ∑
εk<eV

∑
s

(
u∗ks

∂uks

∂x
+ v∗ks

∂vks

∂x

) , (6)

where we sum over states labeled by their momenta k with
energies less than the bias voltage. It is easy to see from
the above equations that when V = 0, Jx = 0, and ρ
is just the ground-state charge density, as one would ex-
pect. In nonequilibrium situations, the conservation law
for charge flow [see Eq. (B2) in the Appendix] contains a
source term, which in the presence of the bias, becomes:
−4eIm

[
∆

∑
εk<eV

(
u∗k↑vk↓ + vk↑u∗k↓

)]
. We emphasize here that

∆ vanishes in the intrinsically non-superconducting region
since the coupling constant is taken to be zero there. Hence,
on the F side the divergence (spatial derivative) of the current
vanishes and the current is a constant. On the S side, where
∆ exists, the derivative of the current does not vanish. This
does not mean that the conservation law for charge current is
violated, as the right-hand-side describes the process of in-
terchange between the quasi-particle current density and the
supercurrent density, as clearly discussed in Ref. 61 and 72.

C. Josephson junctions

We next discuss the pertinent aspects of the half-metallic
Josephson junctions that we shall investigate. As shown in
Fig. 7, we consider S 1F1F2F3S 2 type junctions, where the
central half-metallic layer F2 is surrounded by two ferromag-
nets F1 and F3. We will show below in Sec. III B that it is
important for the ferromagnets to be thin (relative to ξF , the
superconducting proximity length) and for them to have rel-
atively weak exchange fields so that their placement near the
superconducting banks allows for the generation of triplet cor-
relations and the associated phase coherent transport. The ex-
change fields in each of the junction layers reside in-plane and
are written

hi = hi(sin θi ŷ + cos θi ẑ), for i = 1, 2, 3. (7)

To compute the dc Josephson current where the bias across
the junction is absent, we again numerically look for solu-
tions by iteratively solving Eq. (2), which is very general and
can be applied to both the F1F2S tunneling and S 1F1F2S 2
Josephson junctions. Since we wish to determine the current-
phase relation for the Josephson junctions, the initial input
for the pairing potential is taken to be the bulk gap, ∆0, in
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S 1 and ∆0 exp(i∆ϕ) in S 2. With this input, Eq. (2) is then
numerically diagonalized and the new pair potential, ∆(x) is
computed from Eq. (3) throughout the entire junction except
for small regions (around one coherence length, ξ0, from the
sample edges) considered as boundaries of the junctions. In
these regions, the pair potential is fixed to its bulk absolute
value, with phases 0 and ∆ϕ, respectively. The newly yielded
∆(x) is then used in the BdG equations and the above process
is repeated iteratively until convergence is achieved. When
current is flowing through the junction, the self-consistently
calculated regions are always found to possess the necessary
spatially constant current. The important distinction between
tunneling and Josephson junctions is the presence of the exter-
nal bias. For dc Josephson junctions, the bias is absent and the
source term of the continuity equation should always vanish in
order to not violate the conservation law. One can also write
down the charge supercurrent associated with a fixed nonzero
phase difference between S 1 and S 2. The expression for the
current density in a Josephson junction is given by

Jx = −
e
m

∑
ns

Im
[
uns

∂u∗ns

∂x
fn + vns

∂v∗ns

∂x
(1 − fn)

]
, (8)

where fn is the Fermi function. If the phase of the order pa-
rameter is a constant throughout the junction, the current den-
sity vanishes as can be seen from Eq. (8). We emphasize here
that Eq. (8) is applicable only when the external bias is ab-
sent. Nevertheless, both Eqs. (6) and (8) are derived using the
Heisenberg approach.

D. Triplet correlations

As discussed in the introduction, for half-metallic super-
conducting junctions, the induced spin-triplet Cooper pairs
play an important role in both equilibrium and transport prop-
erties. These triplet pairing correlations are defined as

f0(r, t) =
1
2

[〈
ψ↑(r, t)ψ↓(r, 0)

〉
+

〈
ψ↓(r, t)ψ↑(r, 0)

〉]
, (9a)

f1(r, t) =
1
2

[〈
ψ↑(r, t)ψ↑(r, 0)

〉
−

〈
ψ↓(r, t)ψ↓(r, 0)

〉]
, (9b)

f2(r, t) =
1
2

[〈
ψ↑(r, t)ψ↑(r, 0)

〉
+

〈
ψ↓(r, t)ψ↓(r, 0)

〉]
, (9c)

where the subscript 0 corresponds to ms = 0, and the sub-
scripts 1 and 2 refer to the ms = ±1 projections on the spin
quantization axis. It was shown in previous work that using
this approach to find both the opposite-spin and equal-spin
triplet pairs, satisfies the Pauli exclusion principle, and that
the triplet pairs vanish at t = 073,74. If the exchange fields
between in F layers are not collinear, or equivalently, θi , 0,
the total spin operator of the pairs does not commute with
the effective Hamiltonian [Eq. (1)], and the long-ranged, spin-
polarized components f1 and f2 can be induced73,74. By using
the generalized Bogoliubov transformation and the Heisen-
berg equations of motion, it is possible to write the field oper-

ators in Eqs. (9) as,

f0(x, t) =
1
2

∑
n

[
un↑(x)v∗n↓(x) − un↓(x)v∗n↑(x)

]
ζn(t), (10a)

f1(x, t) = −
1
2

∑
n

[
un↑(x)v∗n↑(x) + un↓(x)v∗n↓(x)

]
ζn(t), (10b)

f2(x, t) = −
1
2

∑
n

[
un↑(x)v∗n↑(x) − un↓(x)v∗n↓(x)

]
ζn(t), (10c)

where ζn(t) ≡ cos(εnt)− i sin(εnt) tanh(εn/2T ) and we have as-
sumed zero bias for the junctions. The triplet amplitudes in
Eqs. (10a)-(10c) pertain to a fixed quantization axis along the
z-direction. In situations where it is more convenient to align
the spin quantization axis with the local magnetization direc-
tion, we rotate it using the transformations in the Appendix.
The exchange field orientations in each layer are described by
the angle θi, and thus we write,

f ′0 = cos θi f0 + i sin θi f2, (11a)
f ′1 = f1, (11b)
f ′2 = cos θi f2 + i sin θi f0, (11c)

where the prime denotes the rotated system.
The triplet correlations given in Eqs. (10) are only applica-

ble to both static and dynamic equilibrium situations when the
external bias is absent. When V , 0 and in the limit T → 0,
Eqs. (9) are bias dependent and we have the following contri-
butions in addition to Eqs. (10),

δ f0(x, t) = 2i
∑
εk<eV

(
uk↑(x)v∗k↓(x) − uk↓(x)v∗k↑(x)

)
sin (εkt) ,

(12a)

δ f1(x, t) = 2i
∑
εk<eV

(
uk↑(x)v∗k↑(x) + uk↓(x)v∗k↓(x)

)
sin (εkt) ,

(12b)

δ f2(x, t) = 2i
∑
εk<eV

(
uk↑(x)v∗k↑(x) − uk↓(x)v∗k↓(x)

)
sin (εkt) .

(12c)

Apparently, the bias-dependence of Eqs. (9) is entirely given
by Eqs. (12).

E. Spin transport

We now discuss the appropriate expressions for spin trans-
port quantities. We expect that with either an external bias
or a macroscopic phase difference ∆ϕ between two S banks,
there will be a leakage of magnetism due to a spin-transfer
torque53,61. The local magnetization is related to the spin den-
sity and defined as,

m(r) = −µB 〈η(r)〉 ≡ −µB

∑
ss′
〈ψ†s(r)σss′ψs′ (r)〉, (13)

where η(r) is the spin density operator and µB the Bohr mag-
neton. Again, by using the generalized Bogoliubov transfor-
mation, each component of m can be written in terms of the
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quasiparticle and quasihole wavefunctions:

mx = − 2µB

∑
n

Re
[
un↑u∗n↓ fn − vn↑v∗n↓(1 − fn)

]
(14a)

my =2µB

∑
n

Im
[
un↑u∗n↓ fn + vn↑v∗n↓(1 − fn)

]
(14b)

mz = − µB

∑
n

[(∣∣∣un↑

∣∣∣2 − ∣∣∣un↓

∣∣∣2) fn +

(∣∣∣vn↑

∣∣∣2 − ∣∣∣vn↓

∣∣∣2) (1 − fn)
]
,

(14c)

where we have suppressed the x dependence.

The expression for the spin current density can be again
derived from the Heisenberg equation (see Appendix B). It
is reduced from a tensor to a vector due to the quasi-one-
dimensional nature of our geometry. Therefore, the three
components of the spin current vector are associated with
those of spin densities and spin current flowing along the x di-
rection, which is perpendicular to the interfaces. These three
components can also be expressed in terms of the quasiparti-
cle and quasihole amplitudes:

S x =
µB

2m

∑
n

Im
[(

u∗n↑
∂un↓

∂x
+ u∗n↓

∂un↑

∂x

)
fn

−

(
vn↑

∂v∗n↓
∂x

+ vn↓

∂v∗n↑
∂x

)
(1 − fn)

]
, (15a)

S y = −
µB

2m

∑
n

Re
[(

u∗n↑
∂un↓

∂x
− u∗n↓

∂un↑

∂x

)
fn

−

(
vn↑

∂v∗n↓
∂x
− vn↓

∂v∗n↑
∂x

)
(1 − fn)

]
, (15b)

S z =
µB

2m

∑
n

Im
[(

u∗n↑
∂un↑

∂x
− u∗n↓

∂un↓

∂x

)
fn

+

(
vn↑

∂v∗n↑
∂x
− vn↓

∂v∗n↓
∂x

)
(1 − fn)

]
. (15c)

When the junctions are in static equilibrium, the spin-current
does not necessarily vanish because any inhomogeneous mag-
netization leads to a non-zero spin-transfer torque thereby
causing a net spin current53,61. The spin current S is a local
physical quantity, and τ is responsible for the change in local
magnetizations due to the flow of spin-polarized currents [see
Eq. (B5) in the Appendix]. As we shall see in Sec. III, this
conservation law (with the source torque term) for the spin
density is a fundamental relation, and one has to ensure that it
is not violated when studying these transport quantities.

The above expressions, Eqs. (14) and Eqs. (15), are appli-
cable only when the external bias is zero. Let us go back and
discuss the bias dependence of spin transport quantities for
F1F2S tunneling junctions. As in the discussion on the triplet
correlations, we first define the bias induced magnetization as
δm(V) ≡ m(V)−m0, where m0 is given by Eqs. (14) and m(V)
is the total magnetization with the presence of a finite bias. In

the low-T limit, the bias induced magnetization reads,

δmx = − µB

∑
εk<eV

(
u∗k↑uk↓ + vk↑v∗k↓ + u∗k↓uk↑ + vk↓v∗k↑

)
, (16a)

δmy = − iµB

∑
εk<eV

(
u∗k↑uk↓ + vk↑v∗k↓ − u∗k↓uk↑ − vk↓v∗k↑

)
,

(16b)

δmz = − µB

∑
εk<eV

(
|uk↑|

2 − |vk↑|
2 − |uk↓|

2 + |vk↓|
2
)
. (16c)

Similarly, we can define the corresponding bias induced spin
currents, δS(V) ≡ S(V)−S0, where S0 is identitcal to Eqs. (15).
The bias induced spin currents are given by

δS x = −
µB

m
Im

 ∑
εk<eV

u∗k↑ ∂uk↓

∂y
+ vk↑

∂v∗k↓
∂y

+ u∗k↓
∂uk↑

∂y
+ vk↓

∂v∗k↑
∂y

 ,
(17a)

δS y =
µB

m
Re

 ∑
εk<eV

u∗k↑ ∂uk↓

∂y
+ vk↑

∂v∗k↓
∂y
− u∗k↓

∂uk↑

∂y
− vk↓

∂v∗k↑
∂y

 ,
(17b)

δS z = −
µB

m
Im

 ∑
εk<eV

u∗k↑ ∂uk↑

∂y
− vk↑

∂v∗k↑
∂y
− u∗k↓

∂uk↓

∂y
+ vk↓

∂v∗k↓
∂y

 .
(17c)

In short, the finite bias leads to a nonequilibrium quasiparti-
cle distribution for the system, and results in non-static spin
current densities that are represented by Eqs. (17). Finally, we
note that the spin-transfer torque has to vanish in the super-
conductor where the exchange field is zero.

III. RESULTS

A. Tunneling Junctions

We begin this section by first discussing our numerical re-
sults on F1F2S tunneling junctions as illustrated in Fig. 1. The
thicknesses of F1, F2, and S layers are taken to be 300/kF ,
10/kF , and 130/kF , respectively. These thicknesses are fixed
throughout this subsection. The superconducting coherence
length is also fixed to be 100/kF . We consider clean inter-
faces between these layers. In other words, interfacial scat-
tering events are not taken into account in this subsection (the
main consequence from these events would be to reduce the
proximity effects). For our half-metallic tunneling junctions,
the exchange fields in F1, the layer that is farthest from the
superconductor, is h1 = EF (see Fig. 1). All energy scales
are measured with respect to the Fermi energy. As will be
demonstrated below, the spin-valve effect is maximized when
the exchange field of the ferromagnet F2 is relatively weaker,
approximately on the order of h2 = 10−1EF .

Most of the previous theoretical work based on either
BTK approach or scattering matrix formalism focuses on the
tunneling conductance of half-metallic superconducting spin
valves61,64–66. It is found that the tunneling conductance in
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the subgap region is governed by the same-spin Andreev re-
flection. As a result, the subgap conductance vanishes at zero-
bias and grows linearly in the subgap region. Since results
on the tunneling conductance of half-metallic superconduct-
ing spin valves have been extensively studied in the literature,
we therefore are mainly interested in spin transport quanti-
ties including magnetization, spin current, and spin transfer
torque. As clearly explained in Ref. 61, even in the static limit
where the bias across the junction is absent, the spin current
and the spin transfer torque in general do not vanish near the
interface between two F layers as long as the magnetic con-
figuration is noncollinear. Since dynamical transport proper-
ties are the main concern in the current work, and in order to
clearly see the bias dependence of these spin-dependent quan-
tities, for most of our results in this subsection we will restrict
ourselves to the dynamic part that is induced by the external
bias. For example, the “induced” magnetizations, δm(V) are
defined in Eqs. (16). We conveniently normalize the magne-
tization by −µBne, where ne = k3

F/3π
2 is the electron num-

ber density. Similarly, the induced spin currents, δS(V), and
the induced STT, δτ ≡ τ(V) − τ(V = 0), are normalized by
−µBneEF/kF , and by −µBneEF , respectively. Below we shall
discuss the position dependence of all spin transport quanti-
ties. For convenience, we measure lengths in units of k−1

F and
use X ≡ kF x to denote positions.

In Fig. 2, we present the angular dependence of the induced
magnetizations, spin currents, and spin-transfer torques for
the half-metallic spin valve shown in Fig. 1. The half-metallic
layer F1 is adjacent to a thinner and relatively weak ferromag-
net with h2 = 10−1EF . We begin by giving simple physical
reasons for choosing these parameters. The thickness of F2 is
chosen to be thin compared to F1 and S in order to take advan-
tage of the superconducting proximity effects. For the same
reason, the exchange field in F2 also needs to be weak enough
to study the interplay between the superconducting proximity
effects and spin-valve effects. In our coordinate system, X = 0
corresponds to the interface between F2 and S . Therefore, in
Fig. 2, the half-metal F1 lies in the range X < −10, the su-
perconductor is in the region X > 0, and the F2 layer is in the
region −10 < X < 0. The bias across the junction is set to
be 2∆0 in the figure, where ∆0 is the singlet pair amplitude in
the bulk limit. Recall that in our considerations, the exchange
field in F1 is along the ẑ axis and in F2 it is tilted with re-
spect to the ẑ axis by an angle θ in the yz plane. There are
two main effects that need to be taken into account in order
to understand the induced magnetizations: First, the magnetic
moments in F1 and F2 interact, with the magnetization of F1
leaking into F2, and vice versa, resulting in spatial precession.
Secondly, both the direction and magnitude of the static mag-
netic moments in F2 will affect any induced magnetizations
when an external bias is present.

For the three components of the induced magnetizations
(Panels (a)-(c) in Fig. 2), we first see that δmx and δmy vanish
throughout the entire junction when θ = 0◦ and 180◦. This is
because the contributions from both the precession and static
magnetizations are zero when the exchange fields are parallel
(θ = 0◦) or anti-parallel (θ = 180◦) to each other. Let us first
focus on δmx for other relative angles. The magnitudes for θ

and π − θ are of the same order in the S region because the
x component of the static magnetization is not present (recall
that the exchange fields in our system are always in-plane,
i.e. the yz plane) and only the precession effect is at work.
Turning to the δmy panel, its magnitude in S for θ = 90◦ (the
exchange field in F2 is along y) is determined purely from the
static magnetization because the precession effect will only
affect δmx and δmz at this angle. Physically, this tells us that
the system becomes spin-polarized in the xy plane in S . When
90◦ < θ < 180◦, the contribution to δmy from the precession
effect is negative while the contribution from the effect of the
static magnetization in F2 is positive. The cumulative result is
that the magnitudes are much smaller than their counterparts
for 0◦ < θ < 90◦ in the S region. For δmz, we can see that
it is the only non-zero component throughout the junction for
parallel (θ = 0◦) and anti-parallel (θ = 180◦) configurations.
The behaviors for other relative angles are simply explained
again by the precession effect, just as in the case for δmx.

Next, we analyze the behaviors of the induced spin currents
and spin transfer torques. The spin-transfer torques are deter-
mined by the local exchange fields and magnetization vectors
[see Eq. (B7) in the Appendix], which are in turn related to
the spin currents given in Eqs. (15) and (17). This is clearly
seen in the steady state, where their interplay is encapsulated
by the expression, ∂S

∂y = τ. More generally, one can intuitively
understand the role of the induced spin currents δS by consid-
ering the static magnetizations in each of the ferromagnetic
layers. The F1 layer is relatively thick, and can be regarded
as a spin source, which polarizes the incoming current along
the +z direction. When a spin current originating from F1
flows into F2, the polarization state can be rotated by means
of the local exchange field in F2 and corresponding induced
STT. For the z component of the induced spin currents, δS z,
at θ = 0◦, it is constant throughout the entire junction includ-
ing the superconducting layer as the spin density along z com-
mutes with the Hamiltonian. The same argument holds for the
other collinear orientation θ = 180◦. However, the magnitude
of δS z is larger at θ = 0◦ than at θ = 180◦, as a consequence
of the exchange fields in the F1 and F2 layers being oppo-
sitely directed while h1 � h2. In fact, the magnitude of δS z is
higher when θ < 90◦ than the counterparts at π− θ, for exactly
the same reasons. Although δS z at θ = 90◦ vanishes inside
the superconductor, we found that in general, this is not nec-
essarily the case. The magnitude and the sign of δS z depend
on both the thickness of F2 and the strength of the exchange
field. Thus, by carefully choosing the thickness of the sec-
ond ferromagnet, which plays an important role in both triplet
proximity effects and spin-transfer torques, in principle the
spin transport properties of spintronics devices can be manip-
ulated experimentally.

Let us now turn our attention to the remaining components,
δS x and δS y. In the collinear configurations (θ = 0◦ and
θ = 180◦), both the x and y components are zero because of
the absence of the precession effect. Both the sign and mag-
nitude of δS y in the S region roughly follow the y component
of the exchange field in F2. Although the y component of the
exchange field in F2 is at its maximum when θ = 90◦, we find
that the corresponding δS y in S is smaller than when at the
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FIG. 2. (Color online) In this figure, we present spin transport quantities as functions of position, kF x ≡ X, for several relative angles, θ,
between the exchange fields in the F1 and F2 layers of half-metallic F1F2S tunneling junctions. The external bias is set to be twice of the
bulk superconducting pair amplitude, V = 2∆0. The thicknesses of F1, F2, and S are set to be 300/kF , 10/kF , and 130/kF , respectively.
Panels (a)-(c) in the first row show the dynamical part, δm, of the three magnetization components, computed from Eqs. (16). Panels (d)-(f)
in the second row depicts each component of the dynamical part of the spin currents, δS, according to Eqs. (17). Spin currents are in general
third-rank tensors in three-dimensional space. However, since our system is quasi-one-dimensional, they are reduced to three-dimensional
vectors. Panels (g)-(i) in the third row presents the dynamical part of the three components of the spin-transfer torque δτ, by using the relation
δτ = δm× h. From the figure, one can easily verify the formula δτi = ∂S i/∂x for all θ.

other angles. This is because when θ , 90◦, the y component
of the spin density can still be induced via the spin density
precession coming from the half-metallic layer that possesses
a much larger magnetization strength, which in turn is more
dominant than the other effect. For the same reason, δS y in S
is higher at θ than at π − θ, where θ < 90◦. The precession
effect is seen to play an important role as well in the behavior
of δS x, where as panel (d) shows, at θ = 90◦, the dynamical
part δS x abruptly increases in F2, and then uniformly extends
into the S region where it is maximized.

The last interesting quantity is the spin-transfer torque,
which is numerically determined using the relations involv-

ing the self-consistently calculated δm and the exchange field
h [see Eq. (B7) in the Appendix]. Since h vanishes identically
inside the superconductor, all components of δτ must vanish
there. The absence of a torque in the superconductor imposes
that the spin current there cannot vary in space [see Eq. (B5) in
the Appendix]. Thus the constancy of the spin currents inside
the superconducting region shown in Fig. 2. It is also straight-
forward to understand why δτz = 0 in the half-metal F1. We
find that δτz is maximized in F2 when θ = 90◦, suggesting
that the corresponding δS z must have the greatest change in
F2. Indeed, as can be seen in panel (f), the only spatially vary-
ing region is in the ferromagnet F2, and it occurs the greatest
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FIG. 3. (Color online) In this figure, we present spin transport quantities as functions of position, kF x ≡ X, for several external biases, V ,
scaled by the bulk superconducting gap, ∆0, in half-metallic F1F2S tunneling junctions. The relative angle θ between exchange fields in F1

and F2 is set to be 90◦. The thicknesses of F1, F2, and S are set to be 300/kF , 10/kF , and 130/kF , respectively. Panels (a)-(c) in the first row
show the dynamical part, δm(V), of the three magnetization components, computed from Eqs. (16). Panels (d)-(f) in the second row show the
dynamical part, δS(V), of the three spin current components, computed from Eqs. (17).

when θ = 90◦. We emphasize here that the static part of τx
is in general non-vanishing as long as the in-plane exchange
fields are non-collinear in the F1F2S tunneling junctions. The
static part of τx is much larger than the dynamic part. There-
fore, the behavior S x does not significantly change with the
presence of bias (not shown). In panel (e), it was observed
that the precessional effect combined with the magnetization
rotation in F2, led to a reversal in the bias-induced spin current
variation as θ changed. These abrupt changes in δS x translate
into torque reversals within the relatively weaker ferromagnet
region, as well as drastic variations near the F1/F2 interface,
as demonstrated in (h).

In the linear-response regime, transport quantities are in
principle dependent on the external bias, V . However, with
the presence of superconductors, transport quantities some-
times exhibit distinct behavior above and below the super-
conducting gap. The related transport phenomena including
excess current and tunneling conductance are thoroughly dis-
cussed in Refs. 61 and 72. This gap-dependent feature can be
attributed to Andreev reflections. When the external bias is
below the superconducting gap, current is not suppressed due
to the mechanism of the Andreev scattering. Once the external
bias is above the gap, the contribution to current from ordinary
scattering emerges. As explained in Sec. II, the superconduct-
ing pair amplitudes are determined self-consistently and the
gap profiles are position-dependent, which saturate deep in-

side the bulk superconductor. The saturation values of the gap
profiles are important and usually smaller than the bulk super-
conducting gap, ∆0. Furthermore, the saturation values also
depend on the relative magnetization angle, θ.

In Fig. 3, we plot spin transport quantities at several differ-
ent biases for θ = 90◦. The thicknesses of each layer and
exchange interactions are the same as in Fig. 2. Our self-
consistent calculations reveal that the saturation value for the
superconducting gap is approximately 0.3∆0. First, we note
the trivial fact that the dynamic part of all spin transport quan-
tities vanishes when V = 0. We then pay particular attention to
the behavior above and below the saturation point 0.3∆0. Note
that all three components of δm do not significantly change
qualitatively with increased bias, and the major quantitative
change is their magnitudes. Nevertheless, δmy(V = 0.2∆0)
is greatly suppressed compared to δmy(V > 0.2∆0) while
δmx(V = 0.2∆0) is not. We also see that the magnitudes of
both δmx and δmy increase linearly with V for V > 0.3∆0.
On the other hand, δmz does not show very distinct behavior
above or below 0.3∆0, and it increases linearly in the entire V
range we considered here.

For the dynamic part of the spin currents δS, we find
that δS x and δS y disappear inside the superconducting region
when V < 0.3∆0. This is due to the fact that any spin polar-
ized current entering the superconductor is converted into a
supercurrent, which is spin unpolarized. For V > 0.3∆0, the
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FIG. 4. (Color online) In this figure, we present spin transport quantities as functions of position, kF x ≡ X, for three different h2 measured
in terms of the Fermi energy for half-metallic F1F2S tunneling junctions. The external bias is fixed to be twice the bulk superconducting
gap, V = 2∆0. The relative angle θ between exchange fields in F1 and F2 is also fixed and its value is 90◦. The thicknesses of F1, F2, and
S are set to be 300/kF , 10/kF , and 130/kF , respectively. Panels (a)-(c) in the first row show the dynamical part, δm(V = 2∆0), of the three
magnetization components, computed from Eqs. (16). Panels (d)-(f) in the second row show the dynamical part, δS(V = 2∆0), of the three spin
current components, computed from Eqs. (17).

magnitudes inside the superconductor increase linearly with
the bias, similar to what was found for δmx and δmy. At these
larger bias voltages, δS x and δS y within the half-metal are
insensitive to changes in V . Examining panel (f), the cur-
rent entering the F1 region becomes strongly polarized by the
half-metal, and δS z increases nearly linearly with greater bias
before decaying away after interacting with the adjacent fer-
romagnet whose exchange field is orthogonal to it (along y).
It is evident that unlike δS x, there are no abrupt changes in
behavior about the saturation point 0.3∆0. Examining the top
row of Fig. 3, one can infer the qualitative behavior of the
torque throughout the structure. Thus, the bias dependence to
the spin transfer torque is omitted here, as it clearly follows
that of δm.

Next, we explore spin transport properties with different
strengths of the exchange field in F2 while fixing the exchange
field in F1 to be h1 = EF . In Fig. 4, we plot δm (top row)
and δS (bottom row) for three different h2. The relative an-
gle between the exchange fields in F1 and F2 is again fixed
at θ = 90◦ (the direction of the exchange interaction in F2
is along y), and the bias is set at V = 2∆0. In panel (b), we
see that the overall trends in the induced magnetization do
not change significantly for different h2, where δmy is damped
out in the half-metal, and then peaks in F2 before propagating
into the superconductor. The half-metal has its exchange field
aligned in the z direction, thus the current is initially polarized

in this direction leading to a nearly vanishing y component of
the induced magnetization, which becomes y polarized when
entering adjacent ferromagnet. The result is that δmy from
both F1 (due to the precession effect) and F2 (due to the in-
herent magnetization) extend into the superconductor with a
magnitude proportional to h2. For the induced magnetization
normal to the interfaces, δmx, we see that it builds up within
F2, and then undergoes damped oscillations (see panel (a)).
The period of these oscillations in F2 are governed by the de-
gree of spin polarization in the ferromagnet and thus scale in-
versely proportional to h2. Therefore, one can see that for such
a thin F2, δmx with h2 = 0.1 is too confined to possess even
a full period of oscillation. As a result, when h2 = 0.1EF ,
δmx becomes “squeezed” and has a larger magnitude in F2
compared to when h2 = 0.5EF and h2 = EF . If we increase
the thickness of F2, δmx for h2 = 0.1EF will also become
negligible inside the S layer. This property provides a way
for experimentalists to control the flow of magnetization by
varying the thickness of the intermediate ferromagnetic layer.
Turning now to panel (c), it is seen that inside F1, δmz is only
very weakly dependent on h2 and is uniform in space. Inside
F2 it exhibits damped oscillations, akin to δmx, with an os-
cillation period that is inversely proportional to h2. If the F2
layer is thick enough, δmz will vanish identically inside the S
layer, irrespective of h2. This sensitivity to thickness can be
used to control not only whether δmz vanishes in the S layer,
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but also for appropriate thicknesses, whether it can be positive
or negative.

Now, let us compare spin currents for different h2. From
panel (e), we see that for a given h2, the induced δS y is con-
stant and flows uninterrupted inside both the F2 and S layers.
This is a reflection of the fact that the y component of the
spin-transfer torque vanishes in those regions. This can also
be found by simply computing the cross product between δm
and h. For the same reasons, δS x is constant inside the S lay-
ers only, while δS z is constant in the F1 and S regions. For
each h2, the relative magnitudes of δS in F2 and the super-
conducting region follow similar trends as δm, in that there is
a positive correlation between the corresponding components
of δS and δm. We also find that the spatial period for the oscil-
lation inside the F2 layer is the same as that of δm for a given
h2. Finally, it is important to stress that both the direction and
the magnitude of δS can also be adjusted by changing the F2
thickness. In practice, one would like to choose a weaker fer-
romagnet for this intermediate layer. This follows not only
from the potential triplet pair enhancement (discussed below),
but also when a strong ferromagnet is adopted, the F2 thick-
ness should be relatively thin in order to take advantage of this
thickness sensitivity. As before, we do not present the spin-
transfer torques here since they can be computed directly from
knowledge of δm [Fig. 4, first row], and h.

We now focus on the induced triplet correlations for these
half-metallic tunneling F1F2S junctions. It is useful to recall
that the triplet correlations can be induced even in the absence
of an external bias71. As discussed in Ref. 71, triplet correla-
tions with m = ±1 projections on the spin quantization axis are
important since these spin-polarized pairs are immune to pair-
breaking effects of the exchange fields in the F layers. This
is especially relevant when a very strong half-metallic layer is
present. Successful control of a dissipationless supercurrent
is regarded as one of the essential goals in the development
of practical low-temperature spintronics devices. Presumably,
this can be achieved by generating and controlling the f1 and
f2 equal-spin triplet pairs53, since they are able to propagate
over relatively long distances without serious degradation. To
simplify the discussions below, we shall focus on the f1 equal-
spin and f0 opposite-spin triplet channels, since in many cases
f2 behaves complimentary to f1.

The physics of induced triplet correlations for spin valves
in the static limit has been extensively discussed in Ref. 71.
Also, we find that in the F1 layer the dynamic part is added
constructively to the static part of the triplet amplitudes.
Therefore, we focus here on the dynamical situation where the
external bias is non-vanishing and confine our attention to the
dynamic part of the induced triplet correlations. To find the
bias dependence to the triplet pairs in our system, we define,
similar to previous quantities, the induced triplet correlations
via δ fi(V) = fi(V) − fi(V = 0), where i = 0, 1.

In Fig. 5, we present the angular dependence of both the
opposite-spin f0 and equal-spin f1 triplet pairs. The pair cor-
relations are functions of their relative time difference t, which
is set according to the dimensionless relation ωDt = 4.0. The
external bias is fixed at V = 2.0∆0. The thicknesses are the
same as in previous figures, with the exchange fields in F1

0

10

20

30

40

−120 −80 −40 0 40

0

5

10

15

−120 −80 −40 0 40

|δ
f 0
|(×

10
−
3 )

X

(a) θ = 0◦

θ = 30◦

θ = 60◦

θ = 90◦

θ = 150◦

θ = 180◦

|δ
f 1
|(×

10
−
3 )

X

(b)

FIG. 5. (Color online) The dynamical part of the induced triplet
correlations as functions of position, X, for several angles θ. In panel
(a) we have δ f0(V = 2∆0) [see Eq. (12a)], and in panel (b) we have
δ f1(V = 2∆0) [see Eq. (12b)]. The external bias is fixed to be twice
that of the bulk superconducting gap, V = 2∆0. The relative time of
these triplet correlation is ωDt = 4. The thicknesses of F1, F2, and S
are set to be 300/kF , 10/kF , and 130/kF , respectively. The exchange
fields are h1 = EF and h2 = 0.1EF .

and F2 again corresponding to h1/EF = 1 and h2/EF = 0.1,
respectively. For δ f0 shown in the top panel (a), we find that
it decays into the half-metallic layer with a very short decay
length, as it is energetically unstable due to the presence of a
single spin band at the Fermi level. Within the thin ferromag-
net (−10 < X < 0), δ f0 is largest when a single quantization
axis can be ascribed to the system, i.e., when the magnetiza-
tions of both F layers are collinear. There is a slightly more
pronounced effect when θ corresponds to the antiparallel con-
figuration, where there are greater competing effects between
the magnetizations in the F1 and F2 layers. When F1 and F2
are in the orthogonal configuration with θ = 90◦, they are then
in their most inhomogenous magnetic state, and the δ f0 am-
plitude is lowest in F2. For other orientations that are closest
to the orthogonal configurations, such as θ = 60◦, δ f0 is also
relatively weak compared to the collinear situation, but larger
compared to θ = 90◦ due a finite z component to the magne-
tization. These findings for the thin ferromagnet layer carry
over to the superconducting layer, where the following angu-
lar dependence is observed: δ f0 is minimized at θ = 90◦ (or-
thogonal configuration) and maximized for the collinear con-
figurations (θ = 0◦ and 180◦).

We turn now to the more interesting δ f1 component, which
is much more robust against the magnetic pair-breaking ef-
fects. In the bottom panel (b), we present the spatial behavior
of δ f1, again for several θ. We first see that δ f1 vanishes for
the collinear configuration, as it should, as explained earlier
in the introduction. For other relative angles, δ f1 is gener-
ated because of the non-collinear magnetic profile which pre-
vents the system from being described by a single quantization
axis. Furthermore, as shown in panel (b), the bias-induced δ f1
triplet amplitude is long-ranged in the half-metal and maxi-
mized for orientations around θ = 90◦. This is the central
result of this subsection. Once the spin-polarized triplet pairs



13

0

10

20

30

40

−300 −200 −100 0 100

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1.0

|δ
f 1
|(×

10
−
3 )

X

(a)
h2
EF

= 0.1
h2
EF

= 0.5
h2
EF

= 1

J
x
/J

0(
×
10
−
3 )

h2

(b)

FIG. 6. (Color online) In panel (a) of this figure, we present the
dynamical part of induced triplet correlations, δ f1, as functions of
position, X, for three different normalized exchange fields in the F2

layer: h2/EF = 0.1, h2/EF = 0.5, and h2/EF = 1.0. The angle θ
between exchange fields in F1 and F2 is chosen to be θ = 90◦. The
external bias is fixed at twice the bulk gap, V = 2∆0. The thicknesses
of F1, F2, and S are set at 300/kF , 10/kF , and 130/kF , respectively.
In panel (b), we show the normalized charge current density v.s. the
exchange field h2 of the intermediate F layer. The data points are
connected by lines to serve as guides to the eye. The relative angle
between the exchange fields in F1 and F2 is 90◦.

pass through F2, they enter the superconductor and become
enhanced, not for the orthogonal configuration, but rather for
slight misalignments in the relative magnetizations. These
trends are similar to what was observed in Fig. 2 for the y-
component of the bias induced magnetization. Thus, we have
demonstrated the long-range nature of the dynamic part of the
triplet pairs by showing that only the δ f1 component survives
in the half-metal. Also, due to the interactions between F lay-
ers and triplet conversion effects, spin-polarized triplets were
shown to be effectively generated within the S region. More-
over, our study revealed that δ f0 in F2 and S , and δ f1 in the
half-metal are often anticorrelated, i.e.,when δ f0 is maximized
(minimized), δ f1 is minimized (maximized).

It was mentioned at the beginning of this subsection that our
choice of h2/EF = 0.1 for the exchange field strength in the
thin intermediate F2 layer, resulted in the optimal amount of
spin-polarized pairs in the half-metallic region. To illustrate
this, it is insightful to consider differing exchange field mag-
nitudes in F2 and examine how these differences affect the
equal-spin triplet pairs throughout the entire junction. Thus,
we present in panel (a) of Fig. 6, the spatial dependence of
the magnitude of the dynamic part δ f1 for several h2. We set
θ = 90◦, creating the most magnetically inhomogenous con-
figuration possible, and thus maximizing δ f1 in F1. Note that
here the spatial range is much wider than the results presented
before in order to identify any long range behavior of the spin-
polarized triplet correlations. First, inside the superconduct-
ing layer, we find that the magnitude of δ f1 is approximately
proportional to h2. However, in the non-superconducting re-
gions, δ f1 for both h2/EF = 0.5 and h2/EF = 1.0 decays
with a very small characteristic decay length. On the other

hand, the weaker exchange field of h2/EF = 0.1 results in δ f1
penetrating quite extensively into the F regions, thereby es-
tablishing its long range behavior. This result is significant,
and it justifies our choice of for h2, mentioned earlier. Al-
though we do not show the static part of the induced triplet
correlations, we find the same behavior as before: the static
part of f1 is long-ranged when the magnetic configuration is
non-collinear and its magnitude is comparable to the dynamic
part. In the absence of a bias voltage, the corresponding static
f1 amplitudes are also maximized when h2 ∼ 0.1EF .

To further corroborate these ideas, we show in panel (b) of
Fig. 6 the charge current density, Jx, along the direction per-
pendicular to the interface as a function of h2. The current
density is normalized by J0 ≡ enevF , where vF ≡ kF/m is the
Fermi velocity. Here we fix the external bias to be V = 2.0∆0
and the relative angle between the exchange fields in the F1
and F2 layers is θ = 90◦. As in Refs. 53 and 61, it is stressed
that the current density is spatially uniform throughout the
junction in order to satisfy the continuity equation. In the S
region one should consider both the current density computed
from Eq. (6) and also the integration of the source term in
the continuity equation [see Eq. (B2) in the Appendix], since
the pair potential is not zero there. To avoid this complex-
ity, we compute the current density from Eq. (6) directly in
the F region. Furthermore, we verify that if one includes
the contribution from the source term, the current density is
indeed uniform across the entire tunneling junctions. From
panel (b) of Fig. 6, we find that the current density is max-
imized at h2/EF = 0.1. Recalling that the equal-spin triplet
correlations f1 are the most long-ranged at h2/EF = 0.1, this
suggests a correlation between the long-ranged nature of the
spin-polarized triplet pairs and the charge transport. Finally,
we see that the current density is lowest at h2/EF = 1, where
only one spin band is accessible in both F layers for the cur-
rent carrying states. The results presented in Fig. 6 there-
fore strongly suggest that by using relatively thin ferromag-
nets with weak exchange fields, the half-metallic region will
effectively host long-range spin-polarized triplet pairs that of-
fer hints of their signatures in the charge transport behavior.
Thus, to achieve these properties for the structures consid-
ered here, h2/EF = 0.1 is the optimal strength for such half-
metallic superconducting spintronic devices. We emphasize
here that our theoretical results offer a concrete evidence for
the generation of triplet current in half-metallic superconduct-
ing spin valves and further corroborate experimental results
presented in Refs. 9 and 21. If on the other hand it is desired
to generate f1 triplet pairs solely in the superconductor, one
should incorporate half-metals into both F regions.

B. Half-Metallic Josephson Junctions

In this subsection we present our results for half-metallic
S F1F2F3S Josephson junctions. A diagram of the setup is
shown in Fig. 7. A trilayer magnetic configuration is consid-
ered to allow for the generation of singlet and triplet correla-
tions by using relatively weak and thin magnets adjacent to the
half-metallic layers. This setup creates and effective combi-
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FIG. 7. (Color online) Schematic of the S F1F2F3S Josephson junc-
tion. The layers are translationally invariant and extend to infinity in
the yz plane. The central F2 layer is half-metallic (h2 = EF), while
the surrounding F1 and F3 layers are ferromagnets with weaker ex-
change fields h1 = h3 = 0.1EF . The angles θ1, θ2, and θ3 describe the
angles that the magnetic exchange field vector makes with the z axis
in the corresponding F1, F2 and F3 layers with thicknesses dF1, dF2,
and dF3, respectively.

nation of spin-mixing and breaking of spin rotation symmetry,
both necessary ingredients for the existence of a Josephson
current35. For the half-metal thicknesses considered here, a
simpler bilayer junction consisting of a thick half-metal and
weaker ferromagnet would result in the destruction of phase
coherence between the S banks. Two relatively weak ferro-
magnets are needed to be in contact with the superconductors
to effectively generate triplet correlations and establish both
charge and spin currents within the junction. For a nonuni-
form magnetization in the half-metal, there would be a modifi-
cation to the Andreev reflection amplitudes67 and correspond-
ing Josephson current. The thicknesses of the S layers are
800/kF , while F1, F2, and F3 can vary, depending on the
quantity being studied. As before, the superconducting co-
herence length is fixed to be 100/kF . For most cases, the
interfaces are generally assumed to be transparent, although
cases with interface scattering will be considered as well. Un-
less otherwise noted, the central F layer is half-metallic, with
exchange field corresponding to h2 = EF . Similar to what
was shown for tunnel junctions, the spin-valve effect is maxi-
mized when the exchange fields of F1 and F3 are weaker: We
consider here h1 = h3 = 0.1EF . For these Josephson struc-
tures, the focus of the investigation is on the influence that the
macroscopic phase difference ∆ϕ, and the relative magneti-
zation orientations have on the spin currents, charge currents,
and associated triplet correlations. The charge currents are
normalized by J0, where J0 = enevF , and vF = kF/m is the
Fermi velocity. All three components of the spin current S are
normalized similarly53.

We begin with the self-consistent current phase relation
for the S F1F2F3S structure shown in Fig. 7. In Fig. 8(a),
the normalized charge current flowing in the x direction, Jx,
is shown as a function of the macroscopic phase difference
∆ϕ. The central half-metallic F2 layer is sandwiched be-
tween two weaker ferromagnets with normalized exchange
field strengths h/EF = 0.1, and thicknesses 10/kF . This type

FIG. 8. (Color online) First row (a)-(c): The normalized current den-
sity Jx v.s. the phase difference ∆ϕ for (a) several normalized half-
metal thicknesses DF2 = kFdF2. (b) The equal-spin f0 and opposite-
spin f1 triplet correlations spatially averaged over the half metal re-
gion F2, and (c) over the ferromagnetic F1 and F3 regions. Second
row (d)-(f): The components of the normalized spin current S as a
function of dimensionless position X = kF x. In (a)-(f), the exchange
fields in F1 and F3 are aligned along the y direction, and along z in
the half-metal F2 (see Fig. 7). The ferromagnets F1 and F2 have
equal thicknesses of 10/kF . In panels (b)-(f) the F2 thickness is fixed
at 100/kF .

of configuration ensures the necessary singlet-triplet conver-
sion takes place near the superconductors7. Each of the fer-
romagnets F1 and F3 have their magnetizations oriented in
the same direction (along y) but orthogonal to F2 (along z).
To isolate the triplet spin current flowing through the half-
metal, differing dimensionless thicknesses DF2 = kFdF2 are
considered, as shown in the legend. As seen, the supercur-
rent essentially obeys a linear trend with phase difference that
is weakly dependent on the thickness of the half-metal. As
this thickness increases, the current begins to deviate from
the linear behavior, as seen developing for the DF2 = 300
case. The fact that increasing the thickness DF2 has a weak
effect on the supercurrent reflects the spin-polarized nature of
the triplet pairs involved in transport through the half-metal.
For a Josephson junction with a half-metallic junction region
and spin-flip scattering at the interfaces, a non-self-consistent
treatment showed a similar slow decline of the supercurrent
as the junction width increases37. On the other hand, the pres-
ence of impurities can result in an exponential suppression of
the supercurrent35. The range of the current phase relation in
the figure is limited for clarity, and extending the range of ∆ϕ
would result in a sawtooth-like profile with vanishing current
at ∆ϕ = nπ, where is n is an integer. Physically, the slow
decay of the equal-spin triplet correlations in the half metal
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equates to propagation lengths of the quasiparticles that can
well exceed ξF . The presence of superconducting correlations
deep within half-metals has been experimentally observed
in the form of McMillan-Rowell conductance oscillations19.
A long-ranged supercurrent has also been measured in half-
metallic CrO2 junctions, indicative of the presence of triplet
correlations11. To demonstrate the slow decay of the equal-
spin triplet correlations, in (b) the magnitude of the equal spin
correlations f1 averaged over the half-metallic region F2 are
shown. For comparison, the opposite spin correlations f0 are
also shown. To satisfy the Pauli principle, these spatially sym-
metric triplet pairing correlations must be odd in time (or fre-
quency), and hence vanish when the relative time t is zero.
For half-metallic junctions, the even-frequency triplet p-wave
component can play a non-negligible role in the Josephson
current50. For the results involving triplet pairs in this section,
we take the corresponding dimensionless time to be ωDt = 4.
Due to the presence of only one spin band in F2, the f0 cor-
relations have a very weak extent within the half-metal and
remain relatively constant for all ∆ϕ. On the other hand, the
f1 component has a relatively large presence in F2, increas-
ing as the magnitude of the current increases. In the absence
of current, the triplet amplitudes populate the half-metal, con-
sistent with what is found in half-metallic spin valves75. As
mentioned earlier, the presence of the thin ferromagnet lay-
ers is important for the generation of the opposite-spin triplet
pairs, and consequently the conversion to the equal-spin chan-
nel. This effect is clearly seen in (c), where now the magnitude
of the triplet correlations are presented averaged over the F1
and F3 layers. As the macroscopic phase difference changes,
it is evident that a nontrivial intermixture of f0 and f1 occurs
in those layers.

In the bottom row of panels ((d)-(f)), the three components
of the normalized spin currents are shown as a function of
the dimensionless position X = kF x. All components of the
spin current flow in the x direction. The dashed vertical lines
serve to identify the narrow ferromagnetic regions containing
F1 and F3. If the F layers possessed uniform magnetization,
there would be no net spin current. The introduction of an in-
homogeneous magnetization however results in a net spin cur-
rent imbalance that is finite even in the absence of a Josephson
current. In (d), we present the normalized x component of the
spin-current, S x, which is responsible for the torque that tends
to align the magnetizations in the ferromagnetic layers. This
exchange field mediated effect is present in the absence of
Josephson current and is seen to be almost independent of the
phase difference that drives the Josephson current. As seen,
this quantity is maximized at the interfaces, before undergo-
ing damped oscillations. For completeness, we have included
in (e) the y component of the spin current, which for our
magnetic configuration is clearly negligible. In panel (f), we
examine the normalized z-component of the spin current S z.
This component, which is oriented parallel to the interfaces
tends to build up on the weakly ferromagnetic layers and then
propagate uniformly in the half-metal. The magnitude of S z is
seen to correlate with the magnitude of the charge current in
(a), where the smaller phase differences result in large charge
and spin currents that decline as ∆ϕ increases. These results

FIG. 9. (Color online) Top row: (a) The normalized charge current
density Jx v.s. the phase difference ∆ϕ, (b) the z component of the
normalized spin current density S z within the half-metal region v.s.
∆ϕ for several DF3, and (c) the normalized S z as a function of di-
mensionless position X ≡ kF x for DF3 = 20. The legend in (c) labels
the different phase differences ∆ϕ (in degrees) between the S banks.
The legend in (a) depicts the ferromagnet thicknesses DF3 used in
(a), (b), and (d)-(f). Bottom row: The spatial behavior of the real part
of the triplet correlations for various thicknesses (see legend in (a))
and for a phase difference of ∆ϕ = 90◦. The dashed vertical lines
identify the F1 and F2 regions located within 800 ≤ X ≤ 810 and
810 < X ≤ 860 respectively, while the solid vertical lines mark the
various F3/S interfaces. The exchange field in F1 and F3 is aligned
along the y direction, while it points along z in the half-metal (see
Fig. 7). The thicknesses dF1, and dF2 are maintained at the constant
dimensionless values of DF1 = 10 and DF2 = 50, respectively.

indicate that the half-metal polarizes the spin current along its
magnetization direction, and that the Josephson current is due
to the propagation of equal-spin triplet pairs.

Next, in Fig. 9(a) the half metal F2 and ferromagnet F1 have
fixed thicknesses corresponding to DF2 = 50 and DF1 = 10,
respectively. The ferromagnet F3 is allowed to vary, as shown
in the legend. Asymmetric structures with unequal thick-
nesses of the ferromagnetic layers has been shown to en-
hance spin mixing effects that results in the generation of
long-ranged spin-polarized triplet pairs76. The linear behav-
ior of the charge current previously shown in Fig. 8 where
the two magnets F1 and F3 are of equal thickness is seen
to transition to a sinusoidal-like structure as the difference
in the thicknesses between F1 and F3 increases. Thus, for
highly asymmetric structures, the current phase relation re-
veals a sign change in the charge current for phase differences
between 0◦ and 180◦. Deviations from the sinusoidal current
phase relation can also arise in half-metallic Josephson junc-
tions with strong spin-flip interface scattering15. The ferro-
magnet F3 with relatively weak exchange field compared with
F2 and somewhat larger thicknesses (DF3 = 10) creates ideal
conditions for the creation and propagation of opposite-spin
triplet pairs. The center of mass momentum of a given pair
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shifts in the presence of spin splitting from the exchange field,
resulting in the observed damped oscillations for a given ∆ϕ.

If we now calculate the z component of the spin current
flowing through the half-metal portion of the junction, we find
that aside from a sign difference, it is nearly identical to the
Josephson current as seen in Fig. 9(b). This reaffirms that the
current flowing through the half-metal is comprised of Cooper
pairs that are polarized in the z direction by the half-metal.
In general, the spin current is a non-conserved quantity, in
contrast to the charge current. Thus, although S z is uniform
throughout the half-metal, it spatially varies in the other junc-
tion regions. This is demonstrated in (c) for several phase
differences ∆ϕ (see legend), where DF1 = 10, DF2 = 50, and
DF3 = 20. The spin current does not flow in the outer super-
conductor banks, and thus S z increases from zero at the S/F1
interface (X = 800) before reaching its uniform value in the
half metal, and then peaks within F3 before declining to zero
again in the superconductor.

To reveal the relative population of triplet pairs through-
out the junction, we consider in (d)-(f) the triplet correlations
f0, f1, and f2, as functions of normalized position X. The
phase difference is set according to ∆ϕ = 90◦. We still have
DF1 = 10, and DF2 = 50, but several DF3 are shown with
values given in the legend found in panel (a), thus creating
a broad range of current profiles. The opposite-spin triplet
correlations shown in (d) reveal that f0 spikes in the F1 re-
gion, weakly dependent on DF3. Within F2 however, the sin-
gle spin band present in the half-metal severely diminishes f0.
When F3 has thin layers, the greater confinement enhances the
f0 amplitudes. Increasing DF3 eventually provides sufficient
space for the exchange field to induce damped oscillations of
the opposite-spin pairs. Thus, although it is energetically un-
favorable for the f0 correlations to reside in the half metal,
they do become enhanced in the surrounding ferromagnets
when they are thin (DF3 = 5, 10). Under these conditions,
the spin polarized triplet pairs f1 and f2 propagate within the
half metallic region, as seen in (e) and (f). It is also evident
that often the equal-spin triplets do not decay within the S
regions, but rather extend deep into the superconductor banks.

Having seen the influence that the layer thicknesses in half-
metallic Josephson junctions have on the charge and spin cur-
rents, we now turn to the the effects of magnetization ro-
tations. Rotating the magnetization in one of the junction
layers can be achieved experimentally via external magnetic
fields, or spin-torque switching. In Fig. 10(a) we display the
magnitude of the normalized charge current as a function of
the magnetization angle θ1. The half metal thickness is set
at DF2 = 50, and the surrounding ferromagnets have equal
thicknesses of DF1 = DF3 = 10. The effects of scattering
at the S/F1 and F3/S interfaces are accounted for by set-
ting the dimensionless parameter HB1 ≡ H1/vF = 0.8 and
HB4 ≡ H4/vF = 0.8, respectively. Here H1 and H4 are the
delta-function scattering strengths at those two interfaces53. If
nonmagnetic impurities are present at the interfaces, there can
be an enhancement of the Andreev reflection processes, lead-
ing to an increase of the Josephson current68. The inclusion
of interfacial scattering however, generally tends to suppress
the linear sawtooth profile in the current phase relation53.

FIG. 10. (Color online) Top row: (a) Normalized charge currents
and (b) the z component of normalized spin currents in each junction
region as a function of the magnetization alignment angle θ1. Bottom
row: Spatially averaged equal-spin (c) and opposite-spin (d) triplet
correlations as a function of θ1. The thicknesses of F1, F2, and F3

are set to be 10/kF , 50/kF , and 10/kF , respectively. An interface
scattering strength of H1,4 = 0.8 is present at the interfaces (see main
text), and a phase difference of ∆ϕ = 90◦ is assumed.

The Josephson current is established with a phase difference
∆ϕ = 90◦ between the superconducting banks. The half metal
layer has its ferromagnetic exchange field directed along z
and for F3, it is directed along y (see Fig. 7). Thus, when
θ1 = 0◦ or θ1 = 180◦, both F1 and the adjacent half metal-
lic layer have magnetizations that are parallel or antiparallel,
respectively. At these points, Jx vanishes while the supercur-
rent flow is largest when θ1 = 90◦, corresponding to when
the junction layers have magnetizations that are orthogonal
to one another, and hence possess a high degree of magnetic
inhomogeneity. Similarly, manipulation of the supercurrent
through relative variations of ∆ϕ and the magnetization an-
gles was also exhibited using a non-self-consistent scattering
approach66. The half-metal tends to align the spin of any en-
tering quasiparticles along the z direction, and this component
of the normalized spin current displays essentially identical
behavior to Jx as seen in (b). The averaged spin current is dis-
tributed equally throughout the two outer ferromagnets, but
weaker overall since it must vanish at the boundaries with the
superconductors. In previous work14 an S -matrix quasiclas-
sical theory was developed for half-metallic Josephson junc-
tions with spin active interfaces, showing that the supercurrent
has to be carried by the equal-spin triplet pairs. The behavior
of the magnitudes of the triplet correlations v.s. θ1 is presented
in panels (c) and (d). When θ1 = 0◦ or θ1 = 180◦, the gener-
ation of equal-spin triplets are suppressed in the ferromagnets
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FIG. 11. (Color online) Top row: Normalized charge current (a)
and average spin currents (b) v.s. the dimensionless magnetization
strength h2/EF . Bottom row: Spatially averaged equal-spin (c) and
opposite-spin (d) triplet correlations as a function of h2/EF . The
thicknesses of F1, F2, and F3 are set to be 10/kF , 100/kF , and 10/kF ,
respectively. The legend in (b) identifies each region of the junction
in which the quantities in (b)-(d) are averaged over. Here, transparent
interfaces are considered and ∆ϕ = 30◦.

F1 and F3 due to the lowering of the overall magnetic inho-
mogeneity. For these situations, the magnetizations in the F1
and F2 layers are collinear, however, f1 does not vanish due
to the orthogonal magnetization in F3. On the contrary, when
θ1 = 90◦, the magnetization in each ferromagnet is orthogo-
nal to the adjacent one, resulting in favorable conditions for
the creation of the equal spin triplets. In (d) the importance
of having relatively weak and thin outer ferromagnets for the
triplet conversion process is exhibited by the population of the
f0 triplet components in those regions.

It was observed that the presence of the half-metal in the
junction serves to filter out the opposite-spin triplet pairs, cre-
ating a platform in which to study spin polarized triplet cor-
relations. It is of interest to clarify the role that the exchange
field strength in the half metal region has on the charge and
spin transport. The top row of Fig. 11 therefore shows the
magnitude of the charge current and the averaged spin cur-
rent, both normalized, as a function of the exchange field
strength in the half metal, h2. The phase difference is set
to ∆ϕ = 30◦. For clarity, the two ferromagnets have equal
thicknesses, DF1 = DF3 = 10, and there is no interface
scattering present. The larger half metal has a thickness of
DF2 = 100, and the exchange field varies from h2 = 0 to
h2 = EF , which coincides with a nonmagnetic normal metal
and a half-metallic phase, respectively. The junction’s mag-
netization profile is in an optimal inhomogenous state, with

alignment angles are as follows: θ1 = 90◦, θ2 = 0◦, and
θ3 = 90◦, corresponding to magnetization alignments along
y, z, and y, respectively. Examining panel (a), it is evident
that the magnitude of the charge current Jx is maximal when
the F2 layer is weakly ferromagnetic, and is minimal when F2
is half-metallic. When only one electrode is present, it was
shown that the current is optimized for intermediate exchange
field strengths and vanishes in the half-metallic limit51. The
spatially averaged spin current on the other hand is anticor-
related with Jx, as it monotonically increases with larger ex-
change fields. Indeed, S z vanishes when the central F2 layer
is a nonmagnetic normal metal, and peaks when it is half-
metallic. When the central layer is nonmagnetic S z vanishes
since the only active magnetic layers in this case are F1 and F3
which have parallel magnetization directions. Examining the
bottom row, the triplet correlations are also shown averaged
over each of the three junction layers. In (c) the magnitude
of the f1 correlations are shown v.s. h2/EF . When h2 = 0,
F1 and F3 are the only ferromagnetic layers in the junction,
and their magnetizations are oriented along y. Since they are
collinear, spin-polarized triplet pairs cannot be generated, and
hence f1 = 0. Increasing h2 and hence the degree of polariza-
tion in the F2 layer continuously increases the amount of spin
polarized triplet pairs in the ferromagnets F1 and F3, with
f1 largest when F2 is half-metallic. This is consistent with
the experimental observation of enhanced spin valve effects
arising from the increased generation of f1 correlations in a
half-metal21. The f1 correlations in F2 also become enhanced
as its exchange field get larger, until h2/EF ≈ 0.3. Further
increases in h2 result in a slight decline before ultimately in-
creasing again as F2 approaches the half-metallic limit. This
demonstrates the importance of using a highly spin-polarized
material in the central junction region to optimize triplet pair
generation in each layer. The opposite-spin pairs f0 are also
maximized in the triplet conversion layers F1 and F3 when
h2 = EF as seen in (d). Unlike what is found for f1, the f0
correlations are not constrained to vanish when h2 = 0 since
they can exist when the ferromagnets have collinear magneti-
zations. Thus the thin ferromagnetic regions have a substantial
portion of f0 pairs when h2 = 0. Within the thicker F2 layer
however, f0 is significantly reduced overall, becoming negligi-
bly small in the nonmagnetic metal (h2 = 0) and half-metallic
(h2 = EF) limits. This substantiates the idea that using a half-
metal for F2 enables one to focus on the interplay between the
spin current and the equal spin pairs f1 in the F2 region.

We now take the structure previously studied above in
Fig. 11 and incorporate interface scattering, and rotate the
magnetizations so that they are interchanged for the first two
layers. Thus, F1 and F2 have their magnetizations aligned
along the z and y axes respectively. The normalized inter-
face scattering strength is set at H1 = H4 = 0.8. With these
parameters, Fig. 12 examines the normalized Josephson su-
percurrent as a function of the phase difference ∆ϕ. Three
magnetization orientations for F3 are investigated for each of
the three panels: θ3 = 0, 90◦, and 180◦ (corresponding to the
z, y, and −z directions, respectively). The supercurrent re-
veals that, depending on whether the magnetization in F3 is
collinear or orthogonal to the adjacent half-metal, the direc-
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FIG. 12. (Color online) Charge current as a function of phase dif-
ference ∆ϕ. The thicknesses of F1, F2, and F3 are set to be 10/kF ,
100/kF , and 10/kF , respectively. The interface scattering strengths
are set to HB1 = HB4 = 0.8. The magnetization in F1 and F2 is along
the z and y directions respectively. In the ferromagnet F3, the mag-
netization orientation angles θ3 varies as shown (θ3 = 0 is along z,
θ3 = 90◦ is along y, and θ3 = 180◦ is along -z).

tion of the charge current can be reversed or turned off com-
pletely. When θ3 = 0, the magnetization in each layer is or-
thogonal to one another, and the current phase relation reveals
that when starting from zero phase difference, the magnitude
of the current increases until ∆ϕ ≈ 70◦, before declining back
to zero again at ∆ϕ = 180◦. Due to quasiparticle scattering
that takes place at the interfaces, the coherent transport of
Cooper pairs through the junction is significantly altered com-
pared to when the interfaces were transparent, resulting in the
observed overall reduction in current and deviation from the
previous linear behavior found in Fig. 8. Previously, when
studying how magnetization rotation affected the charge cur-
rent in Fig. 10(a), we found that when two adjacent layers in
the junction have collinear magnetizations, the charge current
vanished. This is consistent with Fig. 12, where the current
vanishes for all phase differences at θ3 = 90◦. Rotating the
magnetization further to θ3 = 180◦, the magnetizations in both
ferromagnets are orthogonal to the half-metal, as in the θ3 = 0
case, but antiparallel to each other. This causes a reversal of
the charge current as shown.

As shown earlier, the charge current that flows due to the
macroscopic phase differences between the S electrodes can
become spin-polarized when entering one of the ferromag-
netic or half-metal layers. This spin current can then inter-
act with the other ferromagnets and become modified by the
corresponding magnetizations. Having established in Fig. 12
how the charge current can be manipulated for a half-metallic
Josephson junction, it is important to next identify how the
spin currents behave in each layer, as control of these spin

currents is vital for spintronic applications. It has been shown
that within a quasiclassical formalism, spin supercurrents can
flow in the absence of a charge current51. To explore the
spin currents using our self-consistent, microscopic approach,
Fig. 13 shows the phase dependence for the spatially aver-
aged spin current S. We implement the same experimentally
accessible parameters used in Fig. 12. Each row of three
panels corresponds to one of the three magnetization orien-
tations θ3 (as labeled). As discussed earlier, the central half-
metallic layer maintains a constant spin current, that can cou-
ple the surrounding ferromagnets F1 and F3. This effect is
evident for S x when θ3 = 0◦ (top row), corresponding to the
z,y,z magnetic configuration for the respective F1, F2, and
F3 layers. This spin current component, normal to the in-
terfaces, is essentially the static contribution to the spin cur-
rent, which participates in spin-transfer torque effects near the
ferromagnet/half-metal interfaces where misaligned exchange
fields are present. Thus, S x varies in space, resulting in a local
STT [recall ∂S x/∂x = τx] that tends to rotate the correspond-
ing magnetizations in opposite directions. Within the half-
metal, the spin current oscillates as it damps out deep within
F2, resulting in an average S x of zero, as exhibited in (a). The
averaged spin currents clearly do not depend on the phase dif-
ference, as expected for a static effect. The strong influence of
the half-metal is exhibited by S y, the spin current component
that lies in the same direction as the exchange field in the half-
metal. The half-metal is seen to polarize not only the spin cur-
rent within it, but also within the surrounding weak magnets
whose intrinsic exchange fields are in the orthogonal z direc-
tion. Note that the y-component of spin currents in each of the
F regions have similar overall behavior as a function of ∆ϕ,
with the average S y being equal in F1 and F3, and largest in
F2. Comparing this to Fig. 12, it is clear that apart from a sign
difference, the normalized spin current S y in the half-metal
and the supercurrent Jx are nearly identical. This implies that
the spin-polarized current S y in the half-metal correlates with
the charge current that is flowing there. Therefore, the charge
transport is governed by spin-polarized Cooper pairs corre-
sponding to the equal-spin correlations. Turning now to the
middle row, where θ3 = 90◦, there is no spin current along y
for all of the F layers. Within the F3 layer, the normalized
S x is shown to vanish at ∆ϕ = 90◦, while S z is maximal for
that phase difference. Considering the phase differences that
yield no supercurrent, ∆ϕ = 0◦ and 180◦, The spin currents
S x and S z are seen to be anti-correlated, with S z now van-
ishing, and the magnitude of S x having now become largest
in F3. Finally, the bottom row depicts the spin currents for
θ3 = 180◦. As was found for the previous θ3 = 0◦ case, we see
a direct correlation between the charge supercurrent [Fig. 12]
and the y component of the spin current for this magnetic con-
figuration. The main differences being that the directions of
the charge and spin currents are reversed, due to θ3 having a
reversed collinear orientation, and non-vanishing S x in F2.
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FIG. 13. (Color online) Components of the average spin current in each region v.s. the phase difference ∆ϕ. Three magnetization orientations
of the outer ferromagnet F3 are shown: θ3 = 0 (top row), θ3 = 90◦ (middle row), and θ3 = 180◦ (bottom row). The thicknesses of F1, F2, and
F3 are set to be 10/kF , 100/kF , and 10/kF , respectively. The dimensionless interface scattering strengths correspond to HB1 = HB4 = 0.8.

IV. CONCLUSIONS

In this paper, we have studied in detail the interplay be-
tween the triplet pairs and transport properties of half-metallic
superconducting spin valves including tunnel junctions and
Josephson junctions. In tunnel junctions with the presence
of an applied bias voltage, we have discussed a useful the-
oretical approach combining the self-consistent solutions to
the Bogoliubov-de Gennes equations and the transfer matrix
method based on the Blonder-Tinkham-Klapwijk formalism.

By utilizing this approach, we were able to determine the bias
dependence of the spin transport quantities and induced triplet
pair amplitudes. We first investigated the bias-induced magne-
tizations, spin currents, and the spin-transfer torques as func-
tions of position for various misorientation angles between the
half metal and adjacent weak ferromagnet. We found that
their behaviors can be largely explained by the precessional
effect: When the injected charge current spin-polarized by the
half-metal enters the weak ferromagnet, its polarization state
can be rotated by the local exchange interaction. The bias de-
pendence of these spin transport quantities were also studied.
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We find that their magnitudes increase linearly when exter-
nal bias voltages are larger than the saturated superconduct-
ing pair amplitudes. We then showed that the spin transport
quantities are determined by two important parameters: the
exchange interaction and thickness of the weak ferromagnet.
Both m = 0 and m = ±1 triplet correlations of the tunnel
junctions were also presented. We found that they are anti-
correlated when the misorientation angle between exchange
interactions in the ferromagnetic layers is varying. Further-
more, the long-range nature of m = ±1 triplet correlations in
the half-metallic region is established and proven to be impor-
tant in the half-metallic tunnel junctions. It was shown that
by choosing the exchange interaction to be about 0.1EF , the
spin-valve effect is optimized.

We then turned to the study of half-metallic Josephson junc-
tions, consisting of a half metal sandwiched by two weak fer-
romagnets in the non-superconducting region. First, we con-
sidered a symmetric situation where the thicknesses and ex-
change fields are the same for the two weak magnets. To gen-
erate all components of triplet pairs, the exchange field in the
half metal was directed perpendicular to that of the weak mag-
nets. We studied the current phase relations and found that
the current was only weakly dependent on the thickness of
the half metal indicating that the supercurrent was carried by
equal-spin triplet pairs. This was also corroborated by the fact
that the charge current was strongly correlated with the spin
current as a function of the phase difference between the two
superconducting banks. We also investigated the asymmet-
ric situation where the thickness of one of the weak magnets
was adjusted. We again found that the equal-spin triplet pairs
were responsible for the flow of supercurrent and spin current.
Next, we analyzed the effects of changing the angle between
the exchange field in the half metal and the adjacent weak
magnet. When the misorientation angle was 90◦, the charge
current, the equal-spin triplet pair amplitudes, and the spin
currents attained their maximum values. On the other hand,
when the angle was 0◦ or 180◦, both the charge and spin cur-
rents vanished, showing the importance of the magnetic con-
figuration in half-metallic Josephson junctions. The induced
triplet correlations also depend on the exchange interaction for
the central ferromagnet. They saturate when the half-metallic
limit is reached. Finally, we showed that when the exchange
fields in the weak magnets have the same magnitude and are
perpendicular to that of the half metal, the spin-valve effect is
most pronounced.
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Appendix A: Transfer Matrix Approach

Here we present the details of how to adopt the transfer ma-
trix approach to extract relevant reflection and transmission
amplitudes. If one considers a bilayer tunnel junction that is
made up of a non-magnetic metal and a superconductor, then
the eigenfunctions in the non-magnetic metallic region are
only linear combinations of particle and hole wavefunctions72.
However, in our work, where the non-magnetic metallic re-
gion is replaced by two ferromagnetic layers, one should con-
sider the spin degree of freedom in addition to the particle-
hole nature. Because the exchange field is along z in F1 (see
Fig. 1), the appropriate eigenfunctions are

e±ik+
↑1 x

0
0
0

 ,


0
e±ik+

↓1 x

0
0

 ,


0
0

e±ik−
↑1 x

0

 ,


0
0
0

e±ik−
↓1 x

 , (A1)

where the subscript 1 denotes the F1 regions and the super-
script + is for particle-like and − is for hole-like wavefunc-
tions. When the eigenenergy ε is specified, the corresponding
wavevectors are given by the following relation

k±s1 =
[
1 − ηsh1 ± ε − k2

⊥

]1/2
, (A2)

where k2
⊥ = k2

y + k2
z . The incident angle, θI , relative to the nor-

mal of the interface with spin s is related to k⊥ and given by the
relation, tan θI = k⊥/k±s1. The reflected angles, θR, similarly
obey tan θR = k⊥/k±s1. From Eq. (A2), it is easy to see that the
reflected angles depend on both the spin as well as whether the
quasiparticle is particle-like or hole-like. The exchange field
in F2 lies on the yz plane, and it is tilted relative to the z-axis
by the angle θ. One needs again to use suitable eigenfunctions
for both particle and hole branches in F2. The particle-like
wavefunction with spin parallel to the exchange field in F2
and antiparallel to the exchange field in F2 are given as

cos (θ/2)
sin (θ/2)

0
0

 e±ik+
↑2 x,


− sin (θ/2)
cos (θ/2)

0
0

 e±ik+
↓2 x, (A3)

respectively. Similarly, the hole-like wavefunction with spin
parallel and antiparallel to the exchange field in F2 are given
by 

0
0

cos (θ/2)
− sin (θ/2)

 e±ik−
↑2 x,


0
0

sin (θ/2)
cos (θ/2)

 e±ik−
↓2 x, (A4)

respectively. Here the momenta are defined through the rela-
tion

k±s2 =
[
1 − ηsh2 ± ε − k2

⊥

]1/2
. (A5)

Note here that following previous conventions, we denote “+”
for particles, and “ − ” for holes. Because the Hamiltonian is
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translationally invariant in the yz plane, the perpendicular mo-
mentum k⊥ is a constant throughout the “entire” junction for
a given eigenstate appropriate to the entire junction. Once the
energy of the eigenstate, ε, is prescribed, the eigenfunctions in
the F2 region are given as a linear combination of these wave-
functions. Accordingly, there are eight unknowns associated
with this linear combination. On the superconducting side,
one can easily show that in 4 × 4 Nambu space, the appropri-
ate wavefunctions are

u0
0
0
v0

 e±ik+ x,


0
u0
v0
0

 e±ik+ x,


v0
0
0
u0

 e±ik−x,


0
v0
u0
0

 e±ik−x, (A6)

where k± = 1 ±
√
ε2 − ∆2

0 − k2
⊥. If a non-self-consistent pair

potential is adopted for which the pair potential in the S region
is a constant, the entire S region is just a linear combination
of the above wavefunctions with suitable constants u0 and v0
given by,

u2
0 =

1
2

1 +

√
ε2 − ∆2

0

ε

 , (A7a)

v2
0 =

1
2

1 −
√
ε2 − ∆2

0

ε

 , (A7b)

where ∆0 is the constant pair amplitude. Let us first discuss
the non-self-consistent case and suppose a spin-up particle is
sent from an electrode into the F1 region. In the F1 region,
one needs to include the incident spin-up particle wavefunc-
tion as well as four different types of reflection: (1) a re-
flected particle wavefunction with spin-up, (2) a reflected par-
ticle wavefunction with spin-down, (3) an Andreev reflected
hole wavefunction with spin-up, and (4) an Andreev reflected
hole wavefunction with spin-down. As a result, we have four
unknowns associated with these four reflected wavefunctions.
In the F2 region, all eight possibilities, Eqs. (A3) and (A4),
must be considered, since in general the waves can travel in
either the +x or −x directions. In the S region, there are four
different types of transmitted wavefunctions: two transmitted
particle-like wavefunctions,

u0
0
0
v0

 eik+ x,


0
u0
v0
0

 eik+ x, (A8)

and two transmitted hole-like wavefunctions,
v0
0
0
u0

 e−ik−x,


0
v0
u0
0

 e−ik−x. (A9)

Thus, the total number of unknowns in this process is sixteen
(four from the reflections, eight associated with the F2 region,

and four from the transmissions). We have exactly the same
number of constraints to solve for these unknowns because
there are two interfaces (F1/F2 and F2/S ) at which the con-
tinuous conditions of the wavefunction and its derivative must
hold when the interfacial barrier is absent.

If one uses a self-consistent profile for the pair amplitude,
∆ is not a constant and it varies with x. It is convenient to
consider a transfer-matrix approach to take into account the
variation of ∆. The details of this approach are presented in
Ref. 61 and will not be repeated in this paper. Here, we only
summarize the outline of this approach. One first divides the
S region into a number of small subregions and approximates
each subregion by a constant potential. One can then write
down suitable wavefunctions in each subregion. Except for
the last subregion where there are only four unknowns linked
to four types of transmission, there are eight unknowns asso-
ciated with each subregion, resulting now in an overall greater
number of unknowns. By recognizing the fact that unknowns
on one side of an interface are related to those on the other
side, we can write,

M̃ixi =Mi+1xi+1, (A10)

where i is the index of each subregion, M̃i andMi+1 are the
corresponding matrices determined by matching the boundary
conditions, and xi and xi+1 are the column vectors composed
of the unknowns in the i-th and i + 1-th subregions. By using
this recurrence relation, one naturally relates the reflection co-
efficients in the F1 region with the transmission coefficients in
the outermost S layer. Once these transmission and reflection
coefficients are found, they can be fed back into the recurrence
relation to generate solutions in each subregion. The transfer
matrix method is advantageous because the size of the matrix
equation needed to be solved is much smaller than the number
of unknowns, albeit at the cost of multiplying matrices.

Appendix B: Charge and Spin Transport

From the Heisenberg equation for the charge density ρ(r),

∂

∂t
〈ρ(r)〉 = i

〈[
He f f , ρ(r)

]〉
, (B1)

it is not difficult to obtain the following continuity condition
for the current density J:

∂

∂t
〈ρ(r)〉 + ∇ · J = −4eIm

[
∆(r)

〈
ψ†
↑
(r)ψ†

↓
(r)

〉]
. (B2)

When in the steady state, the first term on the left is dropped.
Moreover, when the system is in equilibrium without an exter-
nal bias, one can use the Bogoliubov transformation together
with the conservation law for our quasi-one-dimensional sys-
tem to conveniently write the continuity equation as:

∂Jx(x)
∂x

= 2eIm

∆(x)
∑

n

[
u∗n↑vn↓ + u∗n↓vn↑

]
tanh

(
εn

2T

) .
(B3)
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The self-consistency condition, Eq. (3), demands that the right
hand side of Eq. (B3) vanishes and that the current is a con-
stant throughout the junction, as expected.

Using again the Heisenberg equation can give the proper
conservation law61,77 for spin densities:

∂

∂t
〈η(r, t)〉 = i〈[H , η(r, t)]〉. (B4)

After carrying out some lengthy algebra, we obtain the desired
continuity equation,

∂

∂t
〈η(r, t)〉 +

∂S
∂x

= τ, (B5)

where S is the spin current and τ is the associated spin-transfer
torque. They are given by

S =
iµB

2m

∑
s

〈
ψ†sσ

∂ψs

∂x
−
∂ψ†s
∂x
σψs

〉
, (B6)

τ = 2
∑
ss′
〈ψ†s(r) (σ × h)ss′ ψs′ (r)〉 = 2m× h. (B7)

Appendix C: Spin Rotations

Here we outline the spin rotations that are performed on the
triplet components ( f0, f1, f2) in Eq. (10). By aligning the spin
axes with the local exchange field directions, the role of the
triplet correlations and their physical interpretation becomes
clearer. The central quantity that we use to perform the desired
rotations is the spin transformation matrix T in particle-hole
space. The quasiparticle amplitudes transform as,

Ψ′n(x) = TΨn(x), (C1)

where Ψn(x) = (un↑(x), un↓(x), vn↑(x), vn↓(x)), and the prime
denotes quantities in the rotated system. The matrix T can
be written solely in terms of the angles that describe the local
magnetization orientation. In particular, when the orientation
of the exchange fields in a given layer is expressed in terms of

the angles given in Eq. (7), we can write:

T =


cos (θi/2) −i sin(θi/2) 0 0
−i sin(θi/2) cos(θi/2) 0 0

0 0 cos (θi/2) −i sin(θi/2)
0 0 −i sin(θi/2) cos(θi/2)

 .
(C2)

Using the spin rotation matrix T , it is also possible to trans-
form the original BdG equations HΨn = εnΨn (Eq. (2)) by
performing the unitary transformation: H ′ = THT −1, with
T †T = 1. As is the case under all unitary transformations,
the eigenvalues here are preserved, but the eigenvectors are
modified in general according to Eq. (C1). Thus we can write,

u′n↑ = cos (θi/2) un↑ − i sin(θi/2)un↓, (C3)

u′n↓ = cos (θi/2) un↓ − i sin(θi/2)un↑, (C4)

v′n↑ = cos (θi/2) vn↑ − i sin(θi/2)vn↓, (C5)

v′n↓ = cos (θi/2) vn↓ − i sin(θi/2)vn↑. (C6)

The terms involved in calculating the singlet pair correla-
tions (Eq. (3)), thus obey the following relation between the
transformed (primed) and untransformed quantities:

u′n↑v′
∗
n↓ + u′n↓v′

∗
n↑ = un↑v∗n↓ + un↓v∗n↑. (C7)

Therefore the terms that dictate the singlet pairing are invari-
ant for any choice of quantization axis, transforming as scalars
under spin rotations.

The terms governing the triplet amplitudes on the other
hand are in general not invariant under spin-rotations. The
relevant particle-hole products in Eq. (10a) that determine f0,
upon the spin transformations obey the following relation-
ships:

u′n↑v′
∗
n↓ − u′n↓v′

∗
n↑ = cos θi(un↑v∗n↓ − un↓v∗n↑)

+ i sin θi

(
un↑v∗n↑ − un↓v∗n↓

)
,

= f0 cos θi + i sin θi f2, (C8)

For the equal-spin component f1 [Eq. (10b)], the rotation
leaves f ′1 unchanged:

u′n↑v′
∗
n↑ + u′n↓v′

∗
n↓ = un↑v∗n↑ + un↓v∗n↓. (C9)

For the other equal-spin component f2 [Eq. (10c)], it is
straightforward to show that

u′n↑v′
∗
n↑ − u′n↓v′

∗
n↓ = cos θi(un↑v∗n↑ − un↓v∗n↓)

+ i sin θi

(
un↑v∗n↓ − un↓v∗n↑

)
,

= cos θi f2 + i sin θi f0. (C10)
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