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Superconductors can support large dissipation-free electrical currents only if vortex lines are ef-
fectively immobilized by material defects. Macroscopic critical currents depend on elemental inter-
actions of vortices with individual pinning centers. Pinning mechanisms are nontrivial for large-size
defects such as self-assembled nanoparticles. We investigate the problem of a vortex system inter-
acting with an isolated defect using time-dependent Ginzburg-Landau simulations. In particular, we
study the instability-limited depinning process and extract the dependence of the pin-breaking force
on inclusion size and anisotropy for an isolated vortex line. In the case of a vortex lattice interacting
with a large isolated defect, we find a series of first-order phase transitions at well-defined magnetic
fields, when the number of vortex lines occupying the inclusion changes. The pin-breaking force has
sharp local minima at those fields. As a consequence, in the case of isolated identical large-size de-
fects, the field dependence of the critical current is composed of a series of peaks located in between
the occupation-number transition points.

I. INTRODUCTION

The electrodynamic properties of type-II superconduc-
tors are mostly determined by vortex lines1, tubes car-
rying a quantized magnetic flux Φ0 = hc/2e screened
by circulating supercurrents. Effective immobilization of
vortices by material defects is essential for the ability of
practical superconductors to carry large electrical cur-
rents without dissipation.

Recently, impressive progress has been made in the
controlled fabrication of materials containing defect
structures which provide effective pinning landscapes, see
reviews [2–6]. The most prominent example is the syn-
thesis of cuprate high-temperature superconductors con-
taining self-assembled oxide precipitates in the form of
nanoparticles7–16 or nanorods.17–21 In this paper we focus
on materials in which the dominant pinning centers are
large-size nanoparticles. Another promising technique to
generate particle-like pinning centers in the form of small
clusters, is proton or ion irradiation.22–27 Despite these
practical advances, the understanding of pinning mecha-
nisms in those materials remains unsatisfactory.

The development of qualitative and quantitative de-
scriptions of vortex pinning by point defects has been
subject to intense theoretical28–37 and numerical38–49 re-
search over the past decades. Theoretical studies are
mostly focused on two major topics: weak collective pin-
ning by large number of atomic defects29,33,34 or strong
pinning by dilute distribution of defects.28,29,32,35,37 The
second scenario is most relevant for superconducting ma-
terials in which nanoparticles are the main pinning cen-
ters. Hereby, the elemental interaction of a vortex line
with a single defect constitutes the basic ingredient for
the theoretical description. This microscopic interaction
is characterized by two pinning parameters: the pin-
breaking force and the associated pinning energy. In

a conventional approach, where one assumes strong but
point-like defects, both quantities can be evaluated quan-
titatively.

Recently, large-scale simulations of the time-dependent
Ginzburg-Landau model have been demonstrated to be
very useful for exploring different pinning regimes.48–53

In this paper we use this approach to investigate a single
vortex line (zero-field limit) and a vortex lattice at finite
magnetic field interacting with an isolated large-size in-
clusion. In contrast to small defects, the depinning from
a large defect is a nontrivial process strongly influenced
by elastic deformation of the vortex line outside defect.

 0.1
 0.2

 0.3
 0.4

 2
 3

 4
 5

 6

 0.5

 1

 1.5

B [H
c2] defe

ct 
siz

e a
 [ξ

]

f p
 [

ε 0
]

≥ 3

≥ 3

2

2

2

1

1

1

1

1

FIG. 1. Critical force fp to depin a vortex lattice from an
isolated defect as a function of field strength B and defect
diameter a. At a specific field B2(a) (dashed, magenta line)
double-occupation of the defect becomes favorable as com-
pared to single occupation. At this transition, fp(B) shows
a sharp cusp. For large defects a second cusp at B3(a) (dot-
dashed, purple line) marks the transition to triple-occupancy
of the defect.
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We quantify this process and compute the dependence of
the pin-breaking force on the inclusion size and on the
material’s anisotropy.

It is generally believed that the pinning characteristics
of a defect—such as its pin-breaking force—are mostly
determined by the defect’s intrinsic properties (its size,
shape, internal structure) and only weakly depend on
external parameters (e.g., the field strength)29,33,35. We
find, however, that this assumption is strongly violated
for large inclusions. By studying the simple setting of
an isolated defect interacting with a vortex lattice, we
show that surrounding vortex lines influence the pin-
ning/depinning process far more than expected from a
conventional elastic approach and lead to a strong de-
pendence of the pin-breaking force on the field strength.
This means that, in general, the pin-breaking force is not
an intrinsic defect property.

Moreover, at high magnetic fields, the inclusion may
capture more than one vortex. Each increase of the in-
clusion’s occupation number corresponds to a first-order
phase transition between pinning ground states. This
manifests itself through pronounced features in the pin-
breaking force. The field dependences of this key param-
eter for inclusions with different sizes, shown in Fig. 1,
highlight the main phenomenon discussed here: we re-
port a peak effect associated with transitions of the de-
fect’s pinning ground-states between different (vortex)
occupancies.

The paper is organized as follows: In section II the
critical state of a single flux line detaching from an inclu-
sion is investigated as function of the defect’s size and of
the superconductor’s uniaxial anisotropy. In section III
we review existing theoretical descriptions of the single-
defect problem, discuss possible limitations, and propose
generalizations. We then study the capability of a single
defect to pin a vortex lattice by numerical means. In par-
ticular, the field strength B [or equivalently the intervor-
tex distance a4 = (4/3)1/4(Φ0/B)1/2] is shown to play an
important role. While details about the implementation
of the numerical solver for the Ginzburg-Landau equa-
tion on graphics processing units (GPUs) is published
elsewhere,50 the specifications used in this work are dis-
cussed in Appendix B. Appendix C is devoted to the
vortex lattice’s response to small external forces (elas-
tic regime). While the main text primarily focuses on
the critical current, a discussion of another observable—
the ac penetration depth (or Campbell length) of a low-
frequency field oscillation—shall be given in Appendix D.

II. INTERACTION OF A SINGLE VORTEX
WITH AN ISOLATED SPHERICAL INCLUSION

In this section we investigate the size- and anisotropy-
dependences of the maximum (or pin-breaking) force for
an isolated vortex line depinning from a spherical de-
fect. To evaluate this key parameter characterizing an
individual pinning center, we will numerically compute
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FIG. 2. Time dependence of the applied current (blue steps)
and the resulting electric field (red) from TDGL simulations of
a single vortex line pinned at an isolated inclusion. The data
is shown for spherical inclusions with diameters 4ξ and 16ξ.
At specific times [marked by vertical dashed lines (green)],
snapshots of the vortex configurations are shown. The units
of time t0, electric field E0, and current j0 are defined in the
Appendix B.

the critical current jc necessary to depin a single vortex
from an isolated defect. The current j (applied along y)
acts on the flux line (threading along z) with the total
Lorentz force fL = Φ0jLz/c (along x) over the vortex’
entire length Lz (here c is the speed of light; we use CGS
units). For small currents54, j < jc, the vortex remains
trapped in the inclusion by a counteracting pinning force
but deforms due to the action of the Lorentz force out-
side the defect. At the depinning transition, j = jc, the
Lorentz force is exactly balanced by the maximal pinning
force, fp, the defect can provide. A current exceeding jc
strips the vortex line off the inclusion and the motion of
the freed line generates a finite voltage.

For pins with lateral sizes larger than the coherence
length ξ, the depinning process is strongly influenced by
deformations caused by the Lorentz force on the free vor-
tex segments. These deformations force the vortex entry
and exit points to slide along the inclusion surface and
approach each other. When the local angle θ between the
segments at these points is reduced below a certain value
(π/2 in isotropic case), the segments start to attract. At
a somewhat lower critical angle θ = θc, the static config-
uration becomes unstable, the segments reconnect, and
the flux line moves away from the defect. The current j
imposing this critical angle defines the critical current jc.
For this release scenario, the pin-breaking force is mostly
determined by the line tension of the vortex rather than
by properties of the pin itself.

For a spheroid inclusion with sizes ax = ay > ξ and
az > ξz = ξ/γ in an anisotropic 3D superconductor, a
scaling analysis discussed in Appendix A leads to the
following form for the pin-breaking force55

fp(ax, az, γ) = G1

(γaz
ax

)ε0
γ

ln
[
G2

(γaz
ax

)ax
ξ

]
, (1)
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FIG. 3. (a) Pin-breaking force fp necessary to depin a
single vortex from a spherical inclusion of diameter a. Colors
differentiate between anisotropies, i.e. γ = 1 (blue) and γ = 5
(red), while the color shade indicates the system size. The
dashed and dash-dotted lines are logarithmic fits suggested
by Eq. (1) with fitting parameters G1,2(γ). (b) Dependence
of the pin-breaking force on the anisotropy γ. Colors/symbols
are associated with defect sizes.

where γ is the anisotropy factor, ε0 = (Φ0/4πλ)2 is the
scale for the vortex line energy, λ is the London penetra-
tion depth, and Gi are dimensionless functions of order
unity.

We have executed two sets of time-dependent
Ginzburg-Landau simulations to study the depinning
process from an isolated spherical defect: The first set
focuses on the dependence of fp on the defect size (in
the range a = 2-20ξ) for both an isotropic material,
γ = 1, and a superconductor with anisotropy γ = 5,
corresponding approximately to the anisotropy found in
YBa2Cu3O7−x. These simulations are done in a cuboid
volume with side lengths Lx, Ly, Lz, each measuring ei-
ther 50ξ or 100ξ with 128 or 256 mesh points respectively.
At the volume’s center [defining the origin (x, y, z) = 0
of the coordinate system] we place a spherical inclusion.
Inside the inclusion the linear coefficient in the time-
dependent Ginzburg-Landau equation assumes a nega-
tive value ε = −1, see Appendix B. In the second set we
investigate the anisotropy dependence of fp in the range
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FIG. 4. (a) Enlarged view of the critical vortex configuration
in the vicinity of particles of different sizes a. The solid circle
segment lines mark the particle boundaries and the lines with
symbols show vortex configurations in the critical state. (b)
Critical angle θ and distance d between vortex tips versus
defect diameter.

1 ≤ γ ≤ 6 for fixed inclusion diameters between 5ξ and
16ξ. These simulations are done for a cubic system with
lateral sizes 32ξ or 64ξ and two mesh points per ξ.

Figure 2 illustrates the vortex-line depinning dynam-
ics in an isotropic superconductor for two spherical in-
clusions with diameters 4ξ and 16ξ, respectively. The
left column of Fig. 2 shows representative time depen-
dences of the current ramping (blue steps) and the re-
sulting space-averaged electric field (red). At the criti-
cal current, the flux line detaches from the inclusion, as
manifested by a rapid increase of the electric field. The
columns on the right of Fig. 2 show isosurfaces of the or-
der parameter for representative configurations near crit-
icality. These isosurfaces image both the vortex line and
the inclusion. Animations of line depinning can be found
in the Supplementary Materials56.

Once the critical current jc is obtained from the nu-
merical simulations (here, in units of j0 = cΦ0/8π

2λ2ξ

comparable to the depairing current jdp = 2j0/3
√

3),
the pin-breaking force can be calculated from the rela-
tion fp = (Φ0/c)jcLz = 2ε0(jc/j0)(Lz/ξ). The size de-
pendence of fp is presented in Fig. 3(a) for two values
of the anisotropy, where the force is expressed through
the natural scale ε0 of the vortex line tension. We find
that for a > 4ξ, the size dependence of fp is well de-
scribed by the logarithmic function, as suggested by Eq.
(1), see fits in Fig. 3. In particular, for the isotropic
case, the dependence of the maximal pinning force on
the defect size for large inclusions is well described by
fp(a) ≈ 2ε0 ln(0.42a/ξ). The rather weak logarithmic
dependence on the particle size confirms the assumption
that the pin-breaking force is mostly determined by the
vortex line tension. The anisotropy dependences of the
pin breaking force is shown in Fig. 3(b) for several inclu-
sion sizes. The decrease of fp with the anisotropy factor
γ indicates again the relevance of the line tension in the
depinning process. We find that fp(a) ∝ ln(a) for all
anisotropies and the coefficient in front of the logarithm
monotonically decreases with the anisotropy factor but
slower than 1/γ. The function G1 in Eq. (1) can be found
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by size-dependent fittings of fp for fixed γ and is well de-
scribed by the simple dependence, G1(γ) ≈ 1.5 + 0.5γ for
1<γ < 6; note that γ→ γaz/ax for non-spherical parti-
cles. We also find that G2(γ) is a non-monotonic function
weakly-varying within the range 0.42 - 0.56, which can be
interpolated as G2(γ) ≈ 0.354 + 0.097γ − 0.011γ2.

Investigating the vortex shape, in the vicinity (includ-
ing the inside) of the inclusion, we have identified two
parameters characterizing the last stable configuration:
(i) the critical angle between the vortex segments at the
points where they enter the inclusion (defined as an an-
gle between the linear interpolations at these points) and
(ii) the distance between the entrance points. From the
critical vortex-line configurations in the vicinity of spher-
ical defects, see Fig. 4, we find a monotonically decreas-
ing critical angle with increasing particle size saturating
near 60◦ for the large-size particle. At the same time,
the distance between the vortex tips intersecting with the
inclusion’s surface does not show a saturation behavior.
As a consequence, the distance between the vortex seg-
ments significantly exceeds the coherence length for large
inclusions. Indeed, it reaches up to 9ξ for the largest par-
ticle a = 20ξ. We conclude from this analysis that the
critical angle—rather than the nearest distance between
vortex segments—is the relevant parameter determining
the critical state.

From a more technical perspective, we find that the
depinning force is generally robust against changing the
system size. In the anisotropic case for a = 5ξ and a =
6ξ, the critical force in the cubic volume (50ξ)3 slightly
deviates (5-10%) from the larger cubic system (100ξ)3.
We attribute this effect to the large vortex deformation
∼ 20-30ξ, i.e., reaching a significant fraction of the lateral
system size. For this reason, we limit ourselves to the
larger simulation volume for inclusions with a > 6ξ.

III. INTERACTION OF A VORTEX LATTICE
WITH AN ISOLATED SPHERICAL INCLUSION

In this section we explore the interaction of an iso-
lated inclusion with a vortex lattice at different magnetic
fields. We investigate the simplest geometry of Nv vor-
tices with length Lz arranged in an ideal lattice with
period a4, which is driven along a nearest-neighbor di-
rection (x axis) by the current j flowing along the y
axis. A spherical inclusion is placed at the origin, with-
ing the vortex-row plane, as illustrated in Fig. 5. The
pin-breaking force is typically considered as an intrin-
sic property of a defect. We will see, however, that for
large-size inclusions a finite magnetic field strongly af-
fects the depinning process leading to a nontrivial field
dependence of the pin-breaking force. Before studying
this problem numerically, we first give a brief account of
the theoretical expectations.

x

u

L z

a∆
FIG. 5. An isolated inclusion interacting with the vortex
lattice. This simulation snapshot highlights the vortex row
(thick, dark blue) impacting the spherical defect in their
path. Vortices from lateral rows are shown as well (semi-
transparent). The vortex (lattice) displacement x, the defor-
mation u imposed on the pinned flux line, and the system’s
vertical size Lz are highlighted.

A. Theoretical background

1. Linear response

At small forces, the pinned flux-line lattice is expected
to respond linearly to an external force. When a total
Lorentz force fL = NvLzΦ0j/c acts on the vortex sys-
tem, the defect will react with the same force of opposite
sign, i.e., fpin = −fL. At the same time, this force dis-
places the vortex lattice by a distance x > 0 relative to
its unperturbed position. Furthermore, a maximal defor-
mation u < 0 is imposed on the pinned vortex, see Fig.
5. In the linear regime, where x ∝ fpin, this deformation
satisfies an elastic force-balance equation of the form

fpin(x) = C̄u. (2)

Here the effective spring constant C̄ relates to the elastic
Green’s function Gαβ(r, z) giving the α component of the
vortex lattice displacement at the point (r, z) caused by
the β component of the force acting at the origin. Usu-
ally, the defect is approximated by a point-like pin having
a δ-shaped potential. In this case C̄0 = [Gxx(0, 0)]−1 and
a proper evaluation5,49 in the limit B � Hc2 provides the
estimate,

C̄0 ≈ 3
√
ε1ε0/a4 ≈ 1.2(ε0/γξ)(B/Hc2)1/2, (3)

where ε1 ≈ ε0/γ2 is the vortex line tension.
The point-force approximation is however expected to

break down once the defect’s vertical size az meets or
exceeds the characteristic healing length `h = a4/γ of
the vortex perturbation. As shown in Appendix C, the
elastic Green’s function Gxx(r, z) is then probed along a
finite length ≈ az parallel to the z-axis, yielding

C̄(az) = C̄0
χaz/`h

ln(1 + χaz/`h)
, (4)
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with χ a numerical constant of order unity (numerical cal-
culations give χ ≈ 2−2.5). For small inclusions az � `h,
the result reduces to the zero-size expression (3). In the
opposite limit of long inclusions, az � `h, the spring
constant reduces to C̄2D ≈ ε0/a

2
4 ln(azγ/a4), i.e., the

elasticity of vortices in two-dimensional films. The loga-
rithmic divergence has to be properly cut off.

Regarding the applicability of expression (4), it is
worth noting that the requirements a � a4 (low-field,
in-plane) and az 6� `h = a4/γ (along z) are antithetic.
For spherical inclusions in an isotropic superconductor
(γ = 1), this only leaves little room for this type of
defect-size effect. Therefore, the result (4) is mostly rel-
evant for either anisotropic superconductors (γ > 1) or
for elongated inclusions [ax = ay = a and az > γa].

2. Pinning force profile

The linear elastic approximation breaks down at larger
forces, i.e., near the depinning transition. More precisely,
a vortex at a distance x away from the defect deforms
according to the nonlinear equation35

fp(x+ u) = C̄u (5)

with fp(r) the (bare) force associated with the defect’s
pinning well. The system described by this equation goes
through a weak-to-strong pinning transition when the
Labusch parameter κ≡maxr[f

′
p(r)]/C̄ reaches unity (the

prime denotes the derivative with respect to the func-
tion’s argument, here r). In the strong-pinning regime,
κ>1, the equation (5) exhibits multiple solutions u(x) in
a finite interval x ∈ [x−, x+], the boundaries of which are
characterized by a softening of the vortex deformation,
u′(x→ x±)→∞.

Similar to the linear-response regime, Eq. (2), a pin-
ning force fpin(x) ≡ fp[x + u(x)] may be defined. Due
to the existence of multiple solutions u(x), the force pro-
file fpin(x) itself is also multivalued. It is this pinning
landscape that is probed by the vortex state as it adia-
batically moves through the defect. If initially pinned at
x = 0, the vortex state assumes a pinned solution until
reaching the critical value x+ ≈ uc ≡ fp/C̄. This point
defines the pin-breaking force fp ≡ maxr[fp(r)], which in
this basic picture is a field-independent parameter. The
vortex deformation in the critical state uc then depends
on the field strength B through the elastic spring con-
stant C̄(B) ∝ B1/2 and is proportional to a4. At the
point x = x+ the pinned branch terminates, the vortex
pinches off from the defect, and only the unpinned so-
lution is realized. On the other hand, as a vortex ap-
proaches the defect from the opposite side, the unpinned
solution is realized for x < −x−, where it undergoes a
trapping instability and snaps into the defect.

The described basic scenario assumed in the majority
of theoretical studies28–37 is valid if the critical deforma-
tion uc is much smaller than the lattice period a4. This
condition may break for large inclusions at sufficiently

strong magnetic field, especially in strongly-anisotropic
superconductors. In this case, the trapping instability of
a second vortex approaching the defect may occur before
the departure of the pinned flux line. The force-balance
equation for this second vortex reads49

fp(xs + us) = C̄(us − Γu) (6)

where us is the deformation of the second vortex at
xs = x − a4. The term Γu describes the contribution
to the second-vortex displacement coming from the force
acting on the pinned vortex with Γ ≈ Gxx(0)/Gxx(a4)
(estimates provide Γ ≈ 0.23, see Ref. [49]). This equa-
tion gives a trapping instability of the unpinned vortex
at xt = (a4 − x−)/(1 − Γ). For xt < x+, the depinning
scenario changes qualitatively. In this case the second
vortex jumps into the inclusion and forces the departure
of an (already) pinned one. This yields the reduction of
the pin-breaking force

fp(B) ≈ (xt/x+)fp. (7)

As x+ is approximately proportional to a4, the field de-
pendence of the pin-breaking force is dominated by the
factor 1−x−/a4, hence extrapolating to zero where the
intervortex distance a4 matches x− ≈ a at B ≈ Φ0/a

2.
The condition xt < x+ also implies that the inclusion is
always occupied.

It is beyond the scope of the above analysis to tell
if the trapping of the second vortex causes the pinned
vortex to leave. In fact, it is reasonable to assume that
for sufficiently large fields, B � Φ0/a

2, the defect will
realize a double-occupied pinning ground state.

3. Averaging and observable quantities

In a realistic scenario of a superconductor with a low
density np of randomly distributed defects, each vortex-
to-pin distance x (along the force direction) occurs with
equal probability. In addition, the inclusion may be lo-
cated at a finite impact distance y in the direction trans-
verse to the vortex motion. In this case, the vortex is
trapped by the inclusion only if |y| < x−. Macroscopic
observables (such as the critical current measured in ex-
periments) arise from a proper average over the realized
states of the pinning force. For this purpose, the di-
rection transverse to the vortex motion is approximately
accounted for by the factor 2x−/a4, i.e., identifying vor-
tices that impact the defect within a transverse trap-
ping distance 2x− with one impacting head-on the defect
(y = 0). For the specific case of the critical current, one
then finds35,49,57,58 jc≈ (cnp/B)(2x−/a4)〈fpin〉. In this
regime the critical current decreases with the field ap-
proximately as 1/

√
B. At high fields, i.e., when a4≈ x−,

the bulk critical current further simplifies to

jc ≈
cnp
B
〈fpin〉. (8)

In the simplest case with field-independent 〈fpin〉 the crit-
ical current is expected to decay as 1/B.
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the inset—follow the empirical laws B2,3(a)/Hc2 = C2,3(ξ/a)2

(black solid lines), with C2 = 3.5 and C3 = 7.5.

B. Numerical results

In order to explore the pinning properties in differ-
ent regimes beyond simple analytical estimates, we in-
vestigate the interaction of an isolated inclusion with a
vortex lattice using large-scale time-dependent Ginzburg-
Landau simulations.50 Specifically, we initialized the sim-
ulations with an ideal flux-line lattice composed of Nv =
36 vortices, hence adjusting the system’s lateral dimen-
sions Lx = (3/4)1/2Ly = 6a4 to the field strength

B = (4/3)1/2Φ0/a
2
4. For the vertical system size, we

used Lz = 50ξ. Furthermore, a central row of vortices
was aligned along y = 0. This configuration allows to
probe the linear-elastic (see Appendix C), pin-breaking,
and dynamic regimes numerically by placing defects of
various diameters a at the volume’s origin and ramping
up the applied current.

1. Pin-breaking force

At the defect’s pin-breaking force fp the vortex lat-
tice departs from its static configuration and the tran-
sition to a dynamic regime is manifested by the onset
of dissipation. The appearance of a finite voltage hence
provides an ideal criterion to determine the defect’s max-
imal pinning force, fp. We systematically evaluate this

key parameter for different inclusion sizes and magnetic
fields. The overall behavior of fp for all studied sizes and
fields is illustrated by the waterfall plot in Fig. 1. For
a more detailed presentation and quantitative compari-
son, we show the magnetic field dependences of the pin-
breaking force for three selected inclusion sizes, 2ξ, 4ξ,
and 6ξ in Fig. 6. Starting with the smallest inclusion,
a = 2ξ, the pin-breaking force shows two regimes: At
low fields, fp slightly increases with increasing magnetic
field. We attribute this weak field dependence to the
confining effect of the vortex lattice, leading to a rectifi-
cation of the pinned vortex and an increase of the angle
between two vortex pieces entering the inclusion. As a
consequence, the critical angle θc at which the depinning
instability develops is reached at larger forces. At larger
fields, B & 0.1Hc2, the pin-breaking force gradually di-
minishes, reaching only a fraction of its maximal value
near 0.5Hc2. We attribute this effect to the influence of
an unpinned vortex approaching a defect that still traps a
flux line. Nevertheless, for small inclusion in a wide field
range, the general scenario follows simple expectations.

For a larger inclusion, a > 2ξ, the field dependence
of fp is strongly influenced by the possibility of a (sta-
ble) double-occupancy of the defect. Above a certain
field B2(a), the critical state changes abruptly from a
single-occupied to a double-occupied defect.59 Prior to
that transition, the pin-breaking force rapidly decreases
with field. In this range, the critical state corresponds to
trapping of the second vortex which immediately expels
the pinned vortex, in agreement with the above consid-
eration, see Eq. (7). Above the transition, B > B2(a),
the double-occupied state is stable and the pin-breaking
force fp measures its criticality. Due to different nature
of the critical state above and below B2, fp(B) features a
kink at the transition. Moreover, the degeneracy between
the two occupation states at the transition point leads to
the pronounced minimum of fp(B). Above the kink, the
pin-breaking force rapidly increases with B due to fur-
ther stabilization of the double-occupied state. The tran-
sition field B2(a) follows the empirical law B2(a) ∝ a−2,
i.e., a4(B2)/a = const., see the inset in Fig. 6. At even
higher fields, the competition with other unpinned vor-
tices becomes relevant and the pin-breaking force fp(B)
starts decreasing again. The peak effect repeats itself
when new vortices are accommodated in the defect, as
observed here for large inclusions a ≥ 5ξ, where triple-
occupancy occurs above B3. Whereas at low fields, only
the central vortex row (impacting the defect) is involved
in the pinning-depinning process, the regime of triple-
occupancy typically involves vortices from neighboring
vortex rows.

2. Quasi-static pinning force profile

In order to extract the defect’s pinning characteristics
beyond the pin-breaking force fp such as the full force
profile fpin(x), we proceed with dynamic simulations at
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FIG. 7. Pinning states and boundaries between them for an
isolated inclusion of size a = 2ξ (top), 4ξ (center), and 6ξ
(bottom), as obtained from the quasistatic simulations. As
the flux lattice slowly moves, a vortex may get trapped by
or depin from the inclusion. In the simplest scenario real-
ized for 2ξ and 4ξ, the defect captures only one defect at the
time (green/orange). For higher fields/larger defects, trap-
ping of a free vortex and freeing of the pinned one can occur
simultaneously (purple). For 4ξ and 6ξ at even higher fields,
the freeing/trapping process occurs in reversed chronological
order (red/blue) and results in a double-occupancy of the de-
fect. For a = 6ξ phase boundaries involving three or more
vortices (including those from neighboring vortex rows) lead
to a rich phase pattern at very high fields. The critical state
is marked by a five-pointed star (black or white) and shows
a first-order transition at B2(a) (dashed line). This transi-
tion coincides with the kink in fp(B), see Figs. 1 and 6. The
inset sketches depict the vortex-defect configuration for each
region; the colors of the transition lines correspond to those
in the main figure.

currents slightly larger than the critical current. As the
vortex lattice slowly moves, we observe different occupa-
tion states of the defect which are shown in Fig. 7 for
three inclusion sizes, see also animations in Supplemen-

tary Materials56.

Small defects (a = 2ξ) follow the simplest scheme
where the defect is either occupied by one vortex, or
empty. Periodically (i.e., as the vortex lattice moves by
one lattice period a4), one vortex undergoes a depinning
transition 1→0, while the next vortex gets trapped upon
approaching the defect, 0 → 1. Above a certain field,
∼ 0.44Hc2, these two transitions become indistinguish-
able, i.e., one pinned vortex is instantaneously replaced
by the next one, 1→ 1. At this point the defect’s unoc-
cupied state vanishes.

For larger defects, a > 2ξ, the behavior is much richer.
For a = 4ξ the conventional scheme 1→ 0/0→ 1 is re-
alized only for small fields, < 0.052Hc2, and the regime
1→ 1 with simultaneous trapping and depinning occu-
pies an extended field range 0.052 < B/Hc2 < 0.11.
At higher fields an intermediate double-occupied state
develops, when the second vortex snaps into the defect
before the first one leaves, 1→ 2. This dynamic double-
occupied phase appears before the double-occupancy be-
comes the critical state, i.e., already when B < B2. In
this intermediate range the system is characterized by
two critical forces: (i) to trap the second vortex to the
single-occupied pin, 1→ 2, and (ii) to release one vor-
tex from the double-occupied pin, 2 → 1. Both these
forces are plotted in Fig. 6. In the wide range of fields
0.052 < B/Hc2 < B2/Hc2 ≈ 0.22 the maximum pinning
force is determined by the trapping instability of an un-
pinned vortex by the already occupied defect, rather than
by the release of the pinned vortex. This causes the
field-dependence and rapid decrease of fp(B) within this
range, see Fig. 6. For B > B2 the critical state switches
to that of a double-occupied defect and fp(B) starts to
increase. At very high fields, B > 0.4Hc2 the system is
on the verge of triple-occupancy, causing fp to decrease
again (with increasing field). Above the field 0.44Hc2

trapping of the third vortex is accompanied by the si-
multaneous release of the first one, 2→ 2, marking the
disappearance of the single-occupied state.

For the largest inclusion studied here (a = 6ξ), the
intermediate double-occupied state is observed starting
from the lowest field, and the transition to the double-
occupation criticality occurs in the same way as for
smaller inclusion but at a lower field B2 = 0.1Hc2. With
further field increase, the intermediate triple occupied
state appears above 0.17Hc2 when the inclusion already
having two vortices grabs the third one within some range
of x, 2→3. Such state is also observed for a smaller de-
fect with a = 5ξ. The change of criticality at a somewhat
higher field B3 ≈ 0.22Hc2 occurs in a rather complicated
way. In fact, the intervortex distance in this field range is
already comparable with the inclusion size, causing the
critical state to involve trapping of vortices from lateral
vortex rows.

In the dynamic regime, we can infer the pinning force
profile and extract quantitative defect properties by an-
alyzing the time dependence of the electric field. The
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FIG. 8. Pinning force profiles (right) extracted from the volt-
age evolution (left) for a single defect of size a = 4ξ at differ-
ent fields B/Hc2 = 0.071, 0.190, 0.295. The horizontal axes
on the right panels range over one lattice period [0, a4(B)].
The small mismatch at x = 0 [where fpin = 0] is caused by
dynamic effects. The dashed lines indicate the expected elas-
tic response extracted from the static simulations at small
forces described in Appendix C. At low fields, the defect is
occupied by one vortex (light gray). In an intermediate field
range the defect is doubly occupied in an extended region
(gray). The extremal force maxx[−fpin(x)] agrees with the
pin-breaking force fp obtained from static simulations. Fur-
thermore, the secondary extremum [near x = 4.5ξ (x = ξ)
for B/Hc2 = 0.19 (B/Hc2 = 0.295)] defines a ‘critical force’
fmeta
p for the metastable configuration, see Fig. 6.

lattice motion is governed by the force-balance equation

fpin = −Nv(fL − ηv̄) (9)

where fpin is the total pinning force acting on the vortex
lattice, fL = (Φ0Lz/c)j the Lorentz force acting on each
vortex along its entire length, and ηv̄ the viscous force of
a vortex moving with an average velocity v̄. The electric
field E recorded in the simulations is related to v̄ via

ηv̄ =
Φ0E

cρff
Lz, (10)

where ρff denotes the flux-flow resistivity, and η =
Φ0BLz/ρffc

2 is the Bardeen-Stephen viscosity of a vortex
of length Lz. Simulating a pinning-free system, we find
that the flux-flow resistivity within the used magnetic-
field range, B < 0.5Hc2, is described by ρff/ρn =
1.689(B/Hc2) − 0.518(B/Hc2)2, consistent with earlier

simulations at lower fields48. Combining Eqs. (9) and
(10), we can monitor fpin = (Φ0/c)(j −E/ρff)NvLz as a
function of time. In addition, we can extract the vortex-
lattice coordinate x(t) from order-parameter snapshots.
In the absence of this detailed information about indi-
vidual vortex positions, one may compute the displace-
ment of the vortex lattice’s center of mass coordinate,

x̄(t) =
∫ t
0
dt′v̄(t′), using the time dependence of the elec-

tric field. Note that the position x (or x̄) is only de-
fined modulo a4. Below, we define x as the (asymp-
totic, z → ±Lz/2) position of the vortex closest to de-
pinning. For very strong defects, x may therefore exceed
one lattice period, see Fig. 7. The combination of the
time-dependent quantities fpin and x parametrizes the
position-dependent pinning force fpin(x). This procedure
relies on the assumption that the velocity is sufficiently
small to give the lattice enough time to adjust to its static
configuration with the fixed coordinate x(t). Generally,
such quasistatic approximation improves with increasing
system size.

Figure 8 shows the bare simulation data E(t) (left)
and the extracted pinning-force profiles fpin(x) (right) for
defects of size a=4ξ and at fields B/Hc2 = 0.071, 0.190,
and 0.295. The first field (upper row) corresponds to
1→1 scenario and the sharp peak in the E(t) dependence
marks the simultaneous trapping of arriving vortex and
release of the pinned one. The double-peak structure
of E(t) for the two other fields is a consequence of the
stable double occupied state for 1→ 2/2→ 1 scenario.
The second field is in the range B < B2, i.e., the double
occupation is a metastable state, and the event 1 → 2
gives the maximum pinning force. The third field exceeds
B2, where the double occupation is a ground state and
the maximum pinning force is due to the event 2→ 1.
The absolute value of the pinning force is characterized
by two maxima corresponding to the transitions 1→ 2
and 2→ 1. The smaller value corresponds to the pin-
breaking force from the metastable state, fmeta

p (B), e.g.,
the 2→ 1 transition for B = 0.190Hc2. This quantity is
highlighted in Fig. 8, and the metastable force branches
are shown as open symbols in Fig. 6.

The full pinning force fpin(x) is the central microscopic
ingredient for strong-pinning theory and only its accurate
knowledge allows for quantitative predictions. Based on
the obtained results for fpin(x), we can numerically eval-
uate the average60 〈fpin〉. In particular, at high mag-
netic fields, when all defects are occupied, the critical
currant is proportional the ratio 〈fpin〉/B, Eq. (8). Fig-
ure 9 shows the field dependence of this ratio for three
defect sizes 4ξ, 5ξ, and 6ξ. Despite some smearing due
to the force averaging and despite the overall 1/B-decay,
this quantity still has a nonmonotonic field dependence.
The dip and maximum, however, are much less pro-
nounced in comparison to the pin-breaking force. This
non-monotonic behavior means that the critical-current
in a superconductor with small density of identical strong
defects should display a peak effect. The appearance of a
maximum in jc(B) at B ∼ Φ0/a

2 distinguishes this phe-
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FIG. 9. Field dependence of the parameter 〈fpin〉/B for in-
clusion sizes a = 4ξ, 5ξ, and 6ξ. This quantity mimics the
behavior of the critical current jc for a system with a low den-
sity np of defects, see Eq. (8). Despite the averaging, the novel
peak effect—caused by multiple occupancy of large defects—
remains visible for a realistic system. Arrows indicate the
transition from single- to double- (B2) and from double- to
triple-occupancy (B3). Notice the logarithmic scale.

nomenon from the ‘classical’ peak effect29 due to soft-
ening of the line tension near Hc2 = Φ0/2πξ

2. Such a
multiple-occupation peak in jc(B) has been indeed ob-
served in large-scale bulk simulations of the system con-
taining a small density of randomly-located defects.49

IV. CONCLUSIONS

In this article, we have studied the basic —yet not
satisfactorily addressed before—problem of vortex pin-
ning properties of a single inclusion using time-dependent
Ginzburg-Landau simulations. For an isolated vortex,
the pin-breaking force scales logarithmically with the de-
fect’s size and decreases with increasing anisotropy. The
critical state is characterized by the angle θ = θc enclos-
ing the pinned vortex segments, rather than the distance
d between these segments.

We find that, contrary to common expectations, the
pin-breaking force for a vortex lattice has strong and non-
monotonic dependence on the field strength. We identify
the competition between a single-occupied vs. multiple-
occupied defect as the central cause for this field de-
pendence. The transitions between different occupation
states are manifested as pronounced cusplike dips in the
pin-breaking force and it has shallow maximum in be-
tween the neighboring transitions. Proceeding with qua-
sistatic simulations j/jc − 1 � 1, we have established a
route to characterize the microscopic pinning force pro-
file fpin(x) as a function of the vortex lattice’s center-
of-mass coordinate x. Combining the simulations with
results from strong-pinning theory, we have bridged the
gap between the microscopic properties of a single in-
clusion and macroscopic observables [critical current jc

and linear ac (Campbell) penetration length] of bulk su-
perconductors. This missing link closes the loop where
theory, simulations, and experiments can be compared
on a quantitative level.
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Appendix A: Evaluation of the pin-breaking force

We first consider a spheroidal inclusion with sizes
ãx, ãz � ξ̃ in isotropic materials (here we mark all pa-
rameters for the isotropic case with ’tilde’). In the critical
state the vortex segments entering the inclusion have the
critical angle θ̃, as illustrated in Fig. 4(a). This angle
may depend only on the aspect ratio ãz/ãx. The pinning
force has to be compensated by the line-tension force,
giving the relation

f̃p ≈ 2ε̃1 sin(θ̃/2), (A1)

where ε̃1 ≈ ε̃0 ln(R̃/ξ̃) is the line tension and R̃ is a length
scale of the order of the inclusion size, which may also
depend on the aspect ratio. Therefore, we can represent
the pin-breaking force in the isotropic case as

f̃p(ãx, ãz) = G1

( ãz
ãx

)
ε̃0 ln

[
G2

( ãz
ãx

) ãx
ξ̃

]
. (A2)

This is a very general expression, which only assumes a
large inclusion size.

Let us consider now a spheroidal inclusion with sizes
ax = ay, and az in a material with a finite anisotropy
factor γ. The anisotropic case can be reduced to
isotropic one using a scaling trick. The source of
anisotropy is the kinetic energy term in the GL free en-
ergy

∑
k=x,y,zξ

2
k(∇k− iAk)2ψ with ξx = ξy ≡ ξ and ξz =

ξ/γ. This energy can be made isotropic by the trans-
formation z̃ = γ2/3z, and r̃⊥γ

−1/3r⊥ with r⊥ = (x, y).
In these new coordinates the inclusion’s dimensions read
ãx = γ−1/3ax and ãz = γ2/3az and the pin-breaking
force is given by the isotropic result, Eq. (A2). More-
over, since the pin-breaking force scales as energy/x and
the line-energy parameter scales as energy/z, we immedi-

ately obtain the relations fp = γ−1/3f̃ and ε̃0 = γ−2/3ε0.
Finally, using the relation ãz/ãx = γaz/ax for the de-
fect’s aspect ratio, we arrive at Eq. (1) of the main text.
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Appendix B: Numerical routine

The time-dependent Ginzburg-Landau (TDGL) theory
provides a simple, yet sufficiently accurate framework for
describing the slow dynamics of a superconductor near
the depinning transition. The temporal evolution of the
order parameter ψ is thereby governed by the TDGL
equation

u(∂t + iµ)ψ = ε(r)ψ − |ψ|2ψ (B1)

+
∑

k=x,y,z

ξ̃ 2
k (∇k − iAk)2ψ + ζ(r, t),

written here in its dimensionless form. Time and distance
are measured in units of t0 = 4πλ2/ρnc

2 and the in-plane
coherence length ξ respectively, with λ the in-plane pen-
etration depth, ρn the normal-state resistivity, and c the
light velocity. The reduced relaxation rate u controls the
system’s evolution in time. The scalar (µ) and vector
(Ak) potentials enter in a gauge-invariant form. Thermal
effects are accounted for by the δ-correlated Langevin
force ζ(r, t). However, here we are interested in low-
temperature properties weakly affected by thermal fluc-
tuations and only use a small noise amplitude to improve
equilibration such that the associated thermal energy is
much smaller than the energy scales of the pinning prob-
lem under consideration. A uniaxial mass anisotropy γ
is introduced by rescaling the (dimensionless) coherence

lengths ξ̃k to ξ̃x = ξ̃y = γξ̃z = 1. Finally, the function
ε(r) allows to control the local critical temperature, and
hence is suitable for modeling pinscapes. In the infinite-λ
approximation, the vector potential takes the simple form
A = [0, (B/Hc2)x, 0], with B the magnetic field strength
along z (crystallographic c axis), Hc2 = Φ0/(2πξ

2) the
upper critical field. A uniform electrical current j (mea-
sured in units of j0 = cΦ0/8π

2λ2ξ) applied along the
y direction, will act with Lorentz force Φ0j/c (per unit
length along x) on the flux line. In these units, the de-

pairing current reads jdp = (2/3
√

3)j0 ≈ 0.385j0. The
motion of flux lines is associated with a finite electric field
E = −∂tAy −∇yµ (generated along y) and measured in
units of E0 = ξHc2/ct0.

In order to solve the TDGL equation numerically for
relatively large three-dimensional systems, e.g., 100ξ in
all three dimensions, we use a parallel iterative solver,
implemented for graphics processing units (GPU). Im-
plementation details and benchmark analyses of this rou-
tine are published elsewhere.50 Note, that the discrete-
ness of the numerical mesh (typically hz = ξ/2.56), nat-
urally models a layered superconductor when the out-
of-plane coherence length ξz = ξ/γ drops far below hz.
The numerical artifact of discretizing the in-plane direc-
tions hx = hy = ξ/2.56 produces no measurable effect,
suggesting a proper continuum limit hx,y � ξ. All simu-
lations are performed with periodic boundary conditions
along x and y, and open boundaries along z.

Appendix C: Linear elasticity
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FIG. 10. The dependences of the effective linear spring con-
stant C̄ = fL/u on defect size and magnetic field for an
isotropic (γ = 1, top) and an anisotropic (γ = 5, bottom)
superconductor. The elasticity is obtained from numerical
simulations by evaluating the vortex displacement u when the
system is driven by a fixed (subcritical) force fL ∝ j, ideally
with j � jc. The results obtained for two current values (full
and outline symbols) [these two current values differ by a fac-
tor 2 for γ = 1, and a factor 3 for γ = 5] confirm the linearity
of the response. In each case, C̄0(B) may be extracted from
fitting the data to Eq. (C4). For the anisotropic case, gray
dots indicate simulations for a disc-shaped defect of lateral
size ax = ay = 2ξ and a vertical extent of one mesh size, i.e.,
az = hz = ξ/2.56. Although not spherical, this is the closest
one may get to a defect acting as a ‘point-defect.’

We shall derive in this appendix a generalized expres-
sion of the spring constant for a finite-sized defect, and
study the linear response numerically. If a pinning center
acts on the flux line with a distributed force, the spring
constant may be modeled by

C̄−1(az) ≈
∫ ∞

−∞
dz Gxx(0, z)w(z), (C1)

where the elastic Green’s function is probed along a finite
height ≈ az along the z-axis; the characteristic function
w(z) is symmetric [w(z) = w(−z)], decays over the length
az, and is normalized

∫
dzw(z) = 1. We make use of the

convolution theorem to write61

C̄−1(az) =

∫ ∞

−∞

dkz
2π

Ĝxx(0, kz)ŵ(kz). (C2)
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Here the hat denotes the Fourier transform over z defined
through f̂(kz) ≡

∫
dzf(z)eikzz. Whereas the specific

shape of w(z) determines the final numerical result, the
qualitative behavior is obtained by choosing the simple
form w(z) = e−|z|/az . To evaluate the above expression,
we follow an integration procedure described in Ref. [58],
which we briefly sketch here: The weighted integration
of the momentum-space elastic Green’s function29,62,63

Ĝαβ(k, kz) = (C3)

kαkβ/k
2

c11(k, kz)k2 + c44(k, kz)k2z
+

δαβ − kαkβ/k2
c66k2 + c44(k, kz)k2z

involves the compression (c11), tilt (c44), and shear (c66)
moduli. We neglect the first term on the right-hand side
(since c66 � c11) and use c44(k, kz) = c44(0, 0)/[1 +
λ2(k2+k2z)]. By further assuming k2λ2 � 1 and k2 � k2z
the integration range over kz can be extended to infinity
and the planar integration is limited to a circular Bril-
louin zone k2 ≤ 4π/a4. Within these approximations,
we find

C̄(az) = C̄0
χaz/`h

ln(1 + χaz/`h)
, (C4)

with χ a numerical of order unity. Analytical evaluation
suggests χ ≈ √π ≈ 1.77.

We investigate the size-dependent elastic response by
studying the linear regime with our TDGL simulations.
More specifically, we determine the maximal deformation
u of the pinned vortex subject to a small Lorentz force
fL, see Fig. 5. This deformation is evaluated as u ≡
x(0)−x(Lz/2) with x(z) being the vortex position at the
height z relative to the defect’s center. Substituting the
quantity u into Eq. (2) allows us to numerically evaluate
the effective spring constant C̄, see Fig. 10.

Simulations of an isotropic system show that the lin-
ear response of the vortex lattice to a small Lorentz
force has noticeable dependence on the defect size, see
Fig. 10(top). Using Eq. (C4), we extract the point-size
spring constant C̄0 (black symbols) and the numerical
constant χ as fit parameters. For the anisotropic sys-
tem with γ = 5 the extracted spring constant C̄(az)
shows a much stronger relative defect-size dependence,
see Fig. 10(bottom). This suggests that even the small-
est defect (a = 2ξ) may not be regarded as a pointlike
object. Extracting C̄0 from fitting the numerical data
with Eq. (C4), further supports this observation. The
dependences of C̄0(B) for γ = 1 and γ = 5, agree well
with the expected behavior. The solid curves in Fig. 10
show 1.15C̄0(B), see Eq. (3), very close to the theoreti-
cal prediction. For both anisotropies, χ lies in the range
2 - 2.5, close to the analytically-evaluated value.

For large defects a ≥ 4ξ the field dependence of C̄
shows a pronounced downturn above the size-dependent
magnetic field. The origin of this downturn is the proxim-
ity to the defect’s double-occupancy [see Section III B 1].
An additional softening is expected when approaching

Hc2. Accounting for all field dependences of the elas-
tic constants,64 it has been shown58 that C̄0 acquires an
additional form factor (1−B/Hc2)3/2.

Appendix D: Campbell length

The ac penetration depth of a low-amplitude, low-
frequency field oscillation is another experimentally ac-
cessible quantity that allows to quantify vortex pinning.
The pinned state responds to an external ac perturbation
hace

−iωt with an exponentially damped density modu-
lation hace

−iωte−X/λC . Here, X measures macroscopic
(X � a4) distances away from the sample surface and
the (Campbell) length λC directly relates to the stiffness
of the pinned vortex state; and hence on its microscopic
origin.
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FIG. 11. At high fields, the quantity
√
B3/2/∆fpin mimics

the behavior of the Campbell length λC for a system with a
low density np of defects, see Eq. (D1). Indeed, the proper
average 〈∂fpin/∂x〉 measures58 the sum of the discontinuities
(denoted by ∆fpin) of the pinscape fpin(x), see Fig. 8(right).
The field dependence λC(B), shown here for 4ξ, is almost

linear. Another field dependence [λC(B) ∝ B1/2] is expected
at low fields, where both the transverse length 2x− (instead
of a4) and the force jump ∆fpin are weakly field-dependent.

Within the strong-pinning formalism, the Campbell
length in the critical state has been shown to take
the form57,58,65 λ−2C ≈ [4πnp(2x−)/BΦ0]〈∂fpin/∂x〉.
Whereas a single-valued force (weak pinning, κ < 1)
yields 〈∂fpin/∂x〉 = 0 due to symmetry, a finite av-
erage may only arise from discontinuities of the pin-
ning force fpin(x), i.e., under strong pinning conditions
κ > 1. The above expression then simplifies to λ−2C ≈
[4πnp(2x−)/BΦ0]∆fpin, where ∆fpin measures the sum
of the force discontinuities in the occupation of fpin(x).

Our quasi-static simulations, see Section III B 2, probe
the pinning profile as occupied in the critical [or Bean,
or zero-field-cooled (zfc)] vortex state and hence allow
to evaluate the corresponding Campbell length. The
numerical evaluation of the force jumps suggest that
∆fpin ∝ B−1/2 at high fields. In the regime when the in-
clusion always occupied the transverse trapping distance
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2x− has to be replaced by a4 and formula for λC becomes

λ−2C ≈ 4πnpa4

BΦ0
∆fpin. (D1)

As a result the (zfc) Campbell length features an almost
linear field dependence, see Fig. 11. At the onset of

double-occupancy, B2 ≈ 0.22Hc2, the single discontinu-
ity in the force profile splits into two separate ones. Yet,
the Campbell length (measuring the overall jump ∆fpin)
is remarkably insensitive to this transition. The satura-
tion of the force discontinuity ∆fpin at low fields point
to the expected58 regime where the intervortex distance
a4 is larger than the transverse trapping length 2x−, and
the (zfc) Campbell length grows as λC ∝ B1/2.
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