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Nonreciprocal charge transport phenomena are studied theoretically for two-dimensional noncentrosymmet-
ric superconductors under an external magnetic field B. Rashba superconductors, surface superconductivity on
the surface of three-dimensional topological insulators (TIs) and transition metal dichalcogenides (TMD) such
as MoS2 are representative systems, and the current-voltage I-V characteristics, i.e., V = V (I), for each of
them is analyzed. V (I) can be expanded with respect to the current I as V (I) =

∑
j=1,∞

aj(B, T )I
j , and

the (B, T )-dependence of aj depends on the mechanism of the charge transport. Our analysis is based on the
time-dependent Ginzburg-Landau (TDGL) theory, which contains up to third order terms in the momentum of
the order parameter. Above the mean-field superconducting transition temperature T0, the fluctuation of the
superconducting order parameter gives the additional conductivity, i.e., paraconductivity. With the extension of
paraconductivity to the nonlinear response, we obtain the nonreciprocal charge transport. On the other hand,
below T0, the vortices determine the Kosterlitz-Thouless transition and also the resistivity. The nonreciprocal
resistivity is analyzed from the dynamics of vortices in this temperature region. Based on these results, we
propose the experiments to identify the mechanism of the nonreciprocal transport with the realistic estimates for
the order of magnitude of the coefficients aj(B, T ) for each case.

I. INTRODUCTION

The nonreciprocal charge transport in noncentrosymmetric
systems is a fundamental and important issue. It is deeply
related to the broken symmetry of spatial inversion P and
the time-reversal T . For the linear response, the microscopic
time-reversal symmetry leads to the Onsager’s reciprocal the-
orem [1, 2] given by

KAB(q, ω,B) = ǫAǫBKBA(−q, ω,−B), (1)

where KAB(q, ω,B) describes the linear response of the
physical observable A to the field coupled to the observable
B with the wavevector q and frequency ω under the magnetic
field B (which breaks the time-reversal symmetry). ǫA = ±1
(ǫB ) specifies the even (1) or odd (−1) nature of the observ-
able A (B) with respect to T . On the other hand, the spatial
inversion symmetry gives

KAB(q, ω,B) = ηAηBKAB(−q, ω,B), (2)

with ηA (ηB) being the analogous quantity to ǫA = ±1 (ǫB)
for P . When both of T and P are broken, the Onsager recip-
rocal theorem allows the directional linear response of the di-
agonal response. For example, the dielectric function for light
can have the form εµµ(q, ω,B) = ε0 + αBq which describes
the directional dichroism of unpolarized light.

Rikken extended this consideration to the nonlinear re-
sponse by heuristic argument, i.e., replacing the wavevector
q by the current I , leading to the expression of the resistivity
[3, 4]

R = R0(1 + γBI). (3)

The coefficient γ, which is called γ-value in the following,
is usually a rather small value of the order of ∼ 10−2 to
10−1T−1A−1 [5–8]. This is because the nonreciprocal trans-
port requires both the magnetic energyµBB and the spin-orbit

interaction λ, which are small compared with the energy de-
nominator, i.e., kinetic energy of the electrons (typically the
Fermi energy EF). To enhance the nonreciprocal transport,
there are two ways. One is to reduce the energy denomina-
tor and the other is to enlarge the spin-orbit interaction. This
is realized in BiTeBr with the giant bulk Rashba splitting by
reducing the electron density [9]. Furthermore, in the super-
conductors, the Fermi energy is replaced by the energy gap in
the energy denominator, which leads to the huge enhancement
of γ as demonstrated in MoS2 [10]. The theoretical analysis,
however, is limited to the paraconductivity above the mean
field transition temperature T0, and that below T0 still remains
an important unresolved issue although the experiment shows
the further increasing value of γ there [10].

In the present paper, we give a comprehensive and uni-
fied treatment of the nonreciprocal charge transport in two-
dimensional noncentrosymmetric superconductors (2DNS).
There are several possible mechanisms for it, and accordingly
we generalize Eq.(3) to the current (I)-voltage (V ) character-
istics as

V (I) =

∞
∑

j=1

aj(B, T )I
j . (4)

We take (i) the Rashba superconductors, and surface super-
conductivity on the surface of three-dimensional topological
insulators (TIs), and (ii) the transition metal dichalcogenides
(TMD) such as MoS2, as the two representative examples of
2DNS.

In 2D superconductors, there are two characteristic temper-
atures. One is the mean field transition temperature T0, below
which the amplitude of the order parameter develops, and the
other is the Kosterlitz-Thouless (KT) transition temperature
TKT, below which the vortices and anti-vortices are bound
and the resistivity becomes zero. The behavior of the resis-
tivity R(T ) as a function of the temperature is well described
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by

R(T ) ∼= 2.7Rn(ξc/ξ+(T ))
2, (5)

withRn being the normal state resistivity and ξ+(T ) is the di-
verging coherence length ξ+(T ) = ξcb

−1/2 sinh[(bτc/τ)
1/2]

where the reduced temperatures are introduced by τ = (T −
TKT)/TKT and τc = (T0 − TKT)/TKT [11]. The parameter
ξc is a coherence length obtained by the GL theory and b is
an order of unity constant. With the external magnetic field
B, the situation depends on its direction. With the in-planeB,
only the Zeeman effect is relevant, and KT transition survives
with the reduced transition temperature TKT(B). This is the
case for (i) to obtain the nonreciprocal transport. On the other
hand, with the out-of-plane magnetic field considered in the
case (ii), the vortices are introduced even below TKT, and the
system remains resistive down to low temperatures. The ex-
periment for MoS2 [10] employs this configuration, and con-
tinue to define γ in Eq. (3), although the B-dependence of
a2(B, T ) is different for different mechanisms as shown be-
low.

The obtained results for nonreciprocal charge transport are
summarized in Table I, which will be discussed in greater de-
tail in the rest of this paper. Our plan is as follows. In section
II, we study the paraconductivity above the mean field transi-
tion temperature T0 in terms of the Ginzburg-Landau theory
derived for several cases of interest. In section III we present
the analysis of the charge transport below T0, where the vortex
motion is responsible for the voltage under the current flow.
There are three mechanisms for the nonreciprocal response,
i.e., (i) the change in the KT transition temperature due to the
current, (ii) the modified dissipation for the vortex motion due
to the current, and (iii) the Ratchet potential for the vortex.
Sections IV and V are devoted to the discussion and conclu-
sions, respectively. The detailed derivation of GL free energy
is given in Appendix A. Appendices B and C describe the ef-
fects of impurity and Landau levels, respectively, for TMD.

II. GINZBURG-LANDAU THEORY AND

PARACONDUCTIVITY IN NONCENTROSYMMETRIC

SUPERCONDUCTORS

We discuss the nonreciprocal current in the temperature
regime slightly above the mean field critical temperature (T &
T0). In this regime, the charge current is mainly carried by the
thermal fluctuation of the superconducting order parameter.
Such excess conductivity is called paraconductivity [12, 13].
The paraconductivity consists of the Aslamazov-Larkin (AL)
contribution [14] and the Maki-Thompson (MT) contribution
[15, 16]. Although fully quantum treatment is necessary for
the MT term, the AL term can be discussed by the Ginzburg-
Landau (GL) theory [12, 13, 17].

The nonreciprocity of the paraconductivity has been stud-
ied in two-dimensional TMD [10] and Rashba systems [18].
It is expected that the MT term is smaller than the AL term
under a magnetic field due to pair breaking effect [19] by ex-
ternal field, and the explicit forms of the γ-values in Eq.(3)
have been calculated based on the GL theory. Two different

origins of the nonreciprocal current have been discussed in
these materials, i.e., the trigonal warping of the band struc-
ture in the TMD [10], and the parity mixing of the singlet
and triplet order parameters [20, 21] in the superconducting
Rashba systems. In both of the systems, the nonreciprocity is
markedly enhanced in the superconducting fluctuation regime
because of the scale difference between the Fermi energy and
the superconducting gap.

In this section, we discuss the nonreciprocal paraconduc-
tivity in five models, the Rashba superconductors with and
without parity mixing, the surface state of topological insula-
tor with the parabolic dispersion and the hexagonal warping,
and the two-dimensional TMD [10]. We will also compare
these results with the normal contribution, to demonstrate the
enhancement of nonreciprocal signal in the superconducting
fluctuation regime. While some of the results in the following
are not entirely new as they have been published previously
[9, 10, 18], here we have briefly provided them again in order
to make this article self-contained and complete.

In the following of this section, we derive an expression for
the γ-value in the region where the paraconductivity domi-
nates over the normal conductivity near the mean-field tem-
perature T0. With the paraconductivities defined by j =
σ1E + σ2E

2 where j is a current density and E is an electric
field, the γ-value in Eq. (3) is given by γS = σ2/Bσ

2
1W with

the sample width W . Since the temperature dependences are
σ1(T ) ∝ (T−T0)−1 and σ2(T ) ∝ (T−T0)−2 as shown later,
γS is T -independent. The deviation from the T → T0 limit
can be included by the replacement σ1(T ) −→ σ1(T ) + σn
where σn is a normal conductivity. Then the temperature
dependence for γS(T ) ∝ σ2(T )/[σ1(T ) + σn]

2 enters as

γS(T ) = γS

[

1 +
1

c0

σn
e2/h

T − T0
T0

]−2

, (6)

where c0 is a constant and h is a Planck constant. This for-
mula is relevant for the wider temperature range. The detailed
functional form of γS in the right-hand side of Eq. (6) can be
found in the rest of this section.

A. Rashba superconductor

1. Parity mixing

In the following of this paper, we use the unit system
~ = kB = µB = 1 unless otherwise specified explicitly. In
Ref. 18, the nonreciprocal current due to the parity mixing of
the superconducting order parameter has been studied in the
Rashba superconductors. The normal state Hamiltonian is

H =
k2

2m
+ α (kxσy − kyσx)−B · σ, (7)

with m, k, α, B and σ being the electron mass, electron
wavenumber, Rashba parameter, magnetic field, and the Pauli
matrix for real spins, respectively. Here we consider the in-
plane magnetic field, since the out-plane field does not pro-
duce nonreciprocal charge transport. The band dispersion
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Rashba SC  (          ) TI surface + SC  (          ) TMD  (          )

Symmetry Hexagonal Trigonal

N
o
rm

al
P

ar
ac

o
n
d
u
ct

iv
it

y

No KT transition

Viscous vortex flow

Ratchet mechanism

Parity mixing (EF>0)

q-cubic term (EF<0)

KT transition

[Sec. II A] [Sec. II B 1] [Sec. II C]

[Sec. III A]

[Sec. III C]

[Sec. II B 2]

[Sec. III A,B]

(EF>0)

(EF<0)

TABLE I. Summary of nonreciprocal charge transport in two-dimensional noncentrosymmetric superconductors at low magnetic field B.
The parameters are electron charge e and band mass m, Fermi energy EF, Fermi velocity vF, Rashba parameter α (we also define EFR =
2EF +mα2), triplet or singlet pair mixing parameter rt,s, cutoff energy Ec, hexagonal or trigonal warping parameter λ, spin-orbit splitting
∆SO, mean-field superconducting transition temperature T0, and Kosterlitz-Thouless transition temperature TKT. The unit system ~ = kB =
µB = 1 is used. The sample width W is omitted from the expressions. The temperature dependence for the paraconductivity contributions at
T > T0 enters through the formula in Eq. (6). See each section for more details.

without magnetic field is schematically illustrated in Fig. 1(a).
If the Rashba splittingmα2 is larger than T0 or the supercon-

ducting gap, only the pairing in each spin-split band is rel-
evant. Then, if both even parity and odd parity interactions
exist, the parity of the superconducting order parameters is
mixed.

To make the discussion simple, we fix the form of the inter-
action Hamiltonian in the band basis as [18]

Hint = −
∑

kk′λλ′

tkλt
∗
k′λ′ ĝλλ′ψ†

kλψ
†
−kλψ−k′λ′ψk′λ′ , (8)

where ψ†
kλ and ψkλ are the creation and annihilation oper-

ators with the band index λ = ±, and tkλ = λieiφk with
φk = arg(kx + iky). We have assumed that the spin-splitting
due to the Rashba interaction is much larger than the super-
conducting mean-field temperature (mα2 ≫ T0), and hence,
the inter-band pairings are neglected.

We have also assumed the interactions in the spin-basis
which makes the matrix ĝ independent on k. The even-parity

channel is the standard BCS type on-site interaction

−V g
∑

kk′

c†k↑c
†
−k↓c−k′↓ck′↑, (9)

where c†kσ and ckσ are the creation and annihilation operators
of the electron with momentum k and spin σ. The odd-parity
channel is

−
∑

kk′

V u
ij (k,k

′) (iσiσ2)αβ (iσjσ2)γδ c
†
kαc

†
−kβc−k′γck′δ,

(10)
with V u

ij (k,k
′) = V uγ̂i (k) γ̂j (k

′) and γ̂ (k) =
1
k (−ky, kx). Then, the matrix ĝ in Eq. (8) is

ĝ =

(

g1 g2
g2 g1

)

, (11)

with g1 = (V g + V u) /4 (> 0) and g2 = (V g − V u) /4.
In the following, we focus on two limiting cases. (1)

|V u| ≪ |V g| (or equivalently, g2 ≈ g1) case. The singlet
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FIG. 1. Schematic illustrations for the dispersion relations in (a) Rashba system [Eq. (7)], (b) TI surface [Eq. (39)] and (c) TMD [Eq. (57)].
Here we consider the normal states without magnetic field.

pairing is dominant and the triplet mixing is proportional to
the parameter rt =

g1−g2
g1

, which we treat perturbatively. (2)
|V u| ≫ |V g| (or equivalently, g2 ≈ −g1) case. In this case,
the triplet pairing is dominant and the singlet mixing parame-
ter is given by rs =

g1+g2
g1

.
In order to treat the parity mixing, the two-component GL

theory has been employed. We assume that the Fermi energy
EF is on the conduction band (EF > 0) since the nonrecipro-
cal paraconductivity vanishes for EF < 0 [18] in sharp con-
trast to that in the normal state [9]. The derivation of the GL
free energy is shown in Ref. 18, and the result is

F =

∫

d2q

(2π)2

∑

λλ′

∆∗
λ

[(

ĝ−1
)

λλ′
+ δλλ′Nλ (S1 − Lλq)

]

∆λ′ ,

(12)
with the parameters

Nλ =
m

2π

(

1− λ

√
mα2

√
EFR

)

, (13)

Lλq = Kλq
2 − λRλ (Byqx − Bxqy) , (14)

K− = K+ =
S3EFR

8m
, (15)

R− = R+ =
S3

√
EFR

2
√
m

, (16)

S1 = log
2eγEEc

πT
, (17)

S3 =
7ζ (3)

4 (πT )
2 . (18)

We have defined EFR = 2EF + mα2, and γE is the Euler’s
constant, and Ec is the cutoff energy.

Then, the paraconductivity can be calculated as [10, 17, 18]

j = −T
∑

q

C
∂f (q + 2eA)

∂A

∣

∣

∣

∣

A=0

×
∫ 0

−∞

du exp

[

−C
∫ 0

u

dtf (q − 2eEt)

]

, (19)

with C = 32T0

πν and the density of states ν at the Fermi level.
The function f is the eigenvalue of the matrix in Eq. (12) with

a higher critical temperature. In the case of a single compo-
nent GL free energy, f is defined as F =

∫

d2q

(2π)2
f |∆|2. The

paraconductivity is shown to be

jx = σ1Ex + σ2E
2
x, (20)

σ1 =
e2

16ǫ
, (21)

σ2 =
πe3Byrt,s
128ǫ2

× N−N+ (K−N− −K+N+) (K−R+ +K+R−)

S1 (T0)T0 (N− +N+) (K−N− +K+N+)
2 , (22)

in the lowest order of rt,s, and ǫ = T−T0

T0
is the reduced

temperature. It should be noted that the sign of the non-
reciprocal current depends on the sign of rt,s, i.e., sign of
V u in the case of singlet dominant case and V g in the case
of triplet dominant case. The γ-value (see Eq. (3)) is ob-
tained byWγS = σ2/

(

Bσ2
1

)

withW being the sample width
[9, 10, 18]. The explicit form is

WγS =
πrt,sS3EFα

eS1T0EFR
. (23)

For normal state, on the other hand, it can be shown
that the nonreciprocal current exists in EF < 0 within the
Boltzmann theory, where the γ-value is given by WγN ∼
α/e(mα2EFR)

3/2 [9]. In the case of EF > 0, the normal
contribution is zero and there is only the paraconductivity con-
tribution for the superconducting fluctuation regime. If we
assume that the Rashba splitting is comparable to the Fermi
energy in both cases, the ratio is γS(EF > 0)/γN(EF < 0) ∼
rt,s|EF|3/

(

S1T
3
0

)

.
We emphasize that the above nonreciprocity originates

from the parity mixing [rt,s in Eq. (23)]. In the next sub-
section, we will show another mechanism, which relies on the
cubic term with respect to the momentum of the supercon-
ducting order parameter.

2. q-cubic term

Now we consider the nonreciprocal paraconductivity in the
Rashba superconductor without parity mixing. In contrast to
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the previous subsection, we consider the case only for the s-
wave pairing. Although the expansion up to the second order
of the momentum of the order parameter does not create finite
nonreciprocal current, we have finite nonreciprocal current by
considering the expansion up to the third order. The GL free
energy for the s-wave order parameter can be obtained from
the two-component GL free energy written with the band ba-
sis. If we diagonalize the two-component GL free energy in
the band basis, the free energy for the s-wave order parameter
is found to be a sum of the diagonal components.

We first define the three Fermi wavenumbers and the den-
sity of states which correspond to (1) inner branch of the upper
band, (2) inner branch of the lower band, and (3) outer branch:

kF1 = −mα+
√

mEFR, (24)

kF2 = mα−
√

mEFR, (25)

kF3 = mα+
√

mEFR, (26)

ν1 =
m

2π

(

1− α
√

m/EFR

)

, (27)

ν2 =
m

2π

(

−1 + α
√

m/EFR

)

, (28)

ν3 =
m

2π

(

1 + α
√

m/EFR

)

. (29)

The three wave vectors are graphically shown in Fig. 1(a).
Then, we can derive the contribution from each branch sepa-
rately, whose example is shown in Appendix A. To write the
GL free energy in a simple form, we define the following func-
tions,

fA =
EFR

8m
q2 +

3By

32m
√
mEFR

(

5 +
3mα

−mα+
√
mEFR

)

qxq
2,

(30)

fB =
EFR

8m
q2 +

3By

32m
√
mEFR

(

−5 +
3mα

mα+
√
mEFR

)

qxq
2,

(31)

where we have assumedBx = 0 because it does not affect the
conductivity along the x direction. In the case of EF > 0, the
free energy is then

F =

∫

d2q

(2π)
2

[

1

g
− (ν1 + ν3)S1 + S3 (ν1fA + ν3fB)

]

|∆q|2,
(32)

with g being the amplitude of the attractive interaction. Al-
though the q-linear term in general appears, it can be absorbed
by a constant shift in q-space and does not explicitly appear in
the final results. The paraconductivity obtained from Eq. (19)
is given by

jx =
e2

16ǫ
Ex +

3πe3αBy

512E2
FRT0ǫ

2
E2

x, (33)

Correspondingly, the γ-value is

WγS =
3πα

2eE2
FRT0

. (34)

We also consider the case ofEF < 0. The free energy is given
by

F =

∫

d2q

(2π)
2

[

1

g
− (ν2 + ν3)S1 + S3 (ν2fA + ν3fB)

]

|∆q|2.

(35)
Accordingly, we obtain

jx =
e2

16ǫ
Ex +

15πe3By

1024mαEFRT0ǫ2
E2

x, (36)

and the γ-value is

WγS =
15π

4emαEFRT0
. (37)

Thus, we have shown that the simple Rashba model Eq. (7)
has the nonreciprocal current if we consider the GL free en-
ergy up toO(q3). This mechanism is different from the previ-
ous subsection, where the singlet and triplet parity mixing is
essential for the nonreciprocal current [18]. We note that the
results for EF > 0 and EF < 0 do not connect continuously
at EF = 0 since we have assumed that the Fermi energy is
much larger than the superconducting transition temperature
(|EF| ≫ T0).

Let us compare the nonreciprocal paraconductivities with
and without parity mixing. The ratio between the γ-value
from the parity mixing mechanism Eq. (23) (denoted as γpmS ),
and the γ-value from the cubic term Eq. (37) (denoted as γcS)
is

γpmS
γcS

∼ rt,sEFEFR

S1T 2
0

. (38)

If the even parity interaction corresponds to the on-site in-
teraction and the odd parity interaction corresponds to the
nearest-neighbor interaction, their amplitudes are roughly es-
timated as e2/a0 and e2/awith a0 and a being the Bohr radius
and the lattice constant, respectively. Therefore, rt,s ∼ 0.1 is
reasonable value for the singlet dominant case, and Eq. (38)
takes a large value. Hence, the nonreciprocity from the par-
ity mixing is dominant. However, in the case of EF < 0, the
nonreciprocal paraconductivity is from the cubic term mecha-
nism because the parity mixing does not create nonreciprocity
in that regime [18].

B. Surface state of topological insulator

1. Parabolic dispersion

We consider the nonreciprocal paraconductivity in the su-
perconducting surface state of a topological insulator. The
simplest Hamiltonian for the surface state is

H = vF (kxσy − kyσx)−B · σ, (39)

with vF (> 0) being the Fermi velocity and the magnetic field
is applied along the in-plane direction. The dispersion rela-
tion is shown in Fig. 1(b). Since the in-plane magnetic field
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simply shifts the momentum and does not affect the transport,
additional terms are necessary for the nonreciprocal current.

In this subsection, we include the term proportional to
k2, whose Hamiltonian form is equivalent to Eq. (7), with
α replaced with the Fermi velocity vF. However, the first
(parabolic) term here is much smaller than the second (k-
linear) term. Therefore, we will consider the asymptotic form
for large m. Furthermore, we take into account only the inner

branch of the Fermi surfaces. The eigenenergies are

ξk =
k2

2m
− EF ±

√

(vFkx −By)
2
+ (vFky)

2
, (40)

with the Fermi energy EF included. We first assume that the
Fermi energy is on the conduction band (plus sign in Eq. (40)
and EF > 0). We calculate the GL free energy and the de-
tailed derivation is shown in Appendix A. The result is

F =

∫

d2q

(2π)
2

[

1

g
− ν1S1 (T ) + ν1S3 (T )

(

(kF1 +mvF)
2

8m2
q2 +

3 (5kF1 + 3mvF)

32mkF1 (kF1 +mvF)
Byqxq

2

)]

|∆q|2 . (41)

We can also show that the free energy in the case where EF is
located on the valence band (EF < 0) is obtained by replacing
vF with −vF, By with −By , ν1 with ν2, and kF1 with kF2. It
is noted that the cubic term with respect to the wavenumber
vanishes for m → ∞, which is consistent with the fact that
the in-plane magnetic field simply shifts the momentum of
the Cooper pairs without the parabolic term.

The paraconductivity up to O
(

E2
xBy

)

can be obtained by
applying Eq. (19) as

jx =
e2

32ǫ
Ex−

3πe3m
(

5
√
mEFR − 2mvF

)

By

4096 (mEFR)
3/2 (√

mEFR −mvF
)

T0ǫ2
E2

x.

(42)
The temperature dependence of the conductivity is the same as
those of the transition metal dichalcogenides and the Rashba
superconductors [10, 18]. We can also show that the case for
EF < 0 has the same form, and the sign of the nonreciprocal
current compared to the EF > 0 case is reversed.

The corresponding γ-value is

WγS = − 3πm
(

5
√
mEFR − 2mvF

)

4e (mEFR)
3/2 (√

mEFR −mvF
)

T0
, (43)

and for m→ ∞

WγS → − 9π

4emvFEFT0
, (44)

which is a leading contribution in the limit of a small parabolic
term.

Now, we compare the γ-value with that of the normal state.
The normal state conductivity is calculated by the Boltzmann
equation with the relaxation time approximation [9]:

jx = −τe2Ex

∫

d2k

(2π)
2 vk∂kx

fk − τ2e3E2
x

∫

d2k

(2π)
2 vk∂

2
kx
fk,

= τe2Ex

∫

d2k

(2π)
2 v

2
kδ (ξk)− τ2e3E2

x

∫

d2k

(2π)
2 ∂kx

vkvkδ (ξk) ,

(45)

where ξk is the eigenenergy, vk = ∂ξk
∂kx

is the group velocity,
and τ is the relaxation time. The Fermi distribution function

is also defined by fk = 1/(eβξk + 1). With use of this, we
obtain the electronic current

jx =
e2τ

(

EFR −
√

mv2FEFR

)

4π
Ex−sgn (EF)

3e3τ2By

16π
√
mEFR

E2
x,

(46)
The γ-value is

WγN = −sgn (EF)
3π

e
√
mEFR

(

EFR −
√

mv2FEFR

)2 ,

(47)
and for m→ ∞

WγN → −sgn (EF)
3π

emvFE2
F

. (48)

Therefore, the ratio is

γS
γN

→ 3 |EF|
4T0

, (49)

which does not depend on m and vF. The enhancement
of the nonreciprocity by the factor of EF/T0 is expected in
the superconducting fluctuation regime, although the power
of enhancement is different from the TMD [10], in which
γS/γN ∼ (EF/T0)

3. It should be noted that the direction of
the nonreciprocal current is reversed between the conduction
and valence bands in both of the paraconductivity and normal
conductivity.

2. Hexagonal warping

The surface band of topological insulators such as Bi2Te3
or Bi2Se3 is hexagonally distorted because of the crystal sym-
metry [22]. We consider the effect of the hexagonal warping
on the nonreciprocal paraconductivity. The Hamiltonian is

H = vF (kxσy − kyσx) +

√
λ

2

(

k3+ + k3−
)

σz −Byσy,

(50)
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with k± = kx± iky and λ describes the strength of the hexag-
onal warping. The corresponding GL free energy can be ob-

tained in a similar manner to the previous subsection. The free
energy up to O(q3Byλ) is

F =

∫

d2q

(2π)
2

[

1

g
− νS1 (T ) + νS3 (T )

((

v2F
8

+
5λk4F
16

)

q2 +
37k2Fλ

8vF
Byqxq

2

)]

|∆q|2 , (51)

with vFkF = |EF| and the density of states ν at the Fermi
level. The paraconductivity is obtained as

jx =
e2

32ǫ
Ex − 37πe3E2

FλBy

1024v5FT0ǫ
2
E2

x. (52)

Consequently, the γ-value is

WγS = −37πE2
Fλ

ev5FT0
. (53)

We also calculate the normal state current based on
Eq. (45). We express k in the polar coordinate (k, θ), and
solve ξk = 0 up to O(Byλ) with fixed θ. Then, the integrals
over k and θ can be carried out. The result is

jx =
πτe2|EF|

(

1 + E4
Fλ/v

6
F

)

4π2
Ex − 9τ2e3|EF|3λBy

2πv5F
E2

x.

(54)
The γ-value is

WγN = −72π|EF|λ
ev5F

. (55)

Therefore, the ratio of the γ-value of the paraconductivity and
normal conductivity is

γS
γN

=
37|EF|
72T0

, (56)

which again does not depend on vF and λ. The order of mag-
nitude of the enhancement factor is the same as that for the
parabolic dispersion case. We emphasize that the direction of
the nonreciprocal current does not change between the con-
duction and valence bands in both of the paraconductivity and
normal conductivity, which is clearly different from the non-
reciprocal current originates from the parabolic term in the
previous subsection.

C. Transition metal dichalcogenides

The nonreciprocal paraconductivity in two-dimensional
TMD has been investigated both theoretically and experimen-
tally [10]. Here we summarize these results. The normal state
Hamiltonian around the K and K ′ valleys is

Hkστ =
k2

2m
+τzλkx

(

k2x − 3k3y
)

−∆Zσz−∆SOσzτz, (57)

with k, m, λ, ∆Z = Bz , and ∆SO being the electron
wavenumber, mass, amplitude for the trigonal warping, Zee-
man splitting, and spin-orbit splitting, respectively. The x-
axis is taken along a ‘zigzag’ chain in the honeycomb lattice,
and the y-axis is along ‘armchair’ direction. The out-of-plane
magnetic field is necessary for the nonreciprocal current. The
symbols σz and τz represents the Pauli matrices for the spin
(↑, ↓) and valley degrees of freedom (K,K ′), respectively, and
take the values ±1. The dispersion relation is schematically
shown in Fig. 1(c). In contrast to the previous Rashba system
and TI surface, the nonreciprocal response is present even for
the out-plane magnetic field due to the trigonal warping pa-
rameter λ. While this study is designed for MoS2, a similar
behavior is also expected for the other TMDs which have trig-
onal distortion.

The GL free energy for the superconducting state can be
derived based on Eq. (57). The free energy up to O

(

∆Zλq
3
)

is

F =

∫

d2q

(2π)2
Ψ∗

q

[

a+
q2

4m
+ ΛBz

(

q3x − 3qxq
2
y

)

]

Ψq,

(58)
with Λ = 93ζ(5)

14ζ(3) ·
∆SOλ
(πT0)

2 . The effect of nonmagnetic impurities
can also be considered, whose derivation is summarized in
Appendix B. By applying Eq. (19) for Eq. (58), the current
up to the second order of electric field is obtained as

j =
e2

16ǫ
E − πe3mΛB

64T0ǫ2
F (E) , (59)

with F (E) =
(

E2
x − E2

y ,−2ExEy

)

, which is consistent
with the crystal symmetry of the transition metal dichalco-
genides. The γ-value is

WγS =
4πmΛ

eT0
. (60)

On the other hand, the γ-value for the normal state can be
obtained by the Boltzmann equation [9], whose typical value
is calculated as WγN ∼ m∆SOλ/(eE

3
F) [10]. The ratio be-

tween the superconducting fluctuation and normal regimes is
found to be γS/γN ∼ (EF/T0)

3, which is quite large. While
the focus of this paper is on the region at small magnetic fields,
we can also consider the high magnetic field region by includ-
ing the Landau level, which is discussed in Appendix C.
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III. VORTEX IN NONCENTROSYMMETRIC

SUPERCONDUCTORS

When the superconducting gap function is sufficiently de-
veloped below T0, the phase of the order parameter forms the
vortices whose dynamics governs electronic transport proper-
ties. In this section, we begin with the phenomenological dis-
cussion for the nonreciprocity entering through the renormal-
ization of the superfluid density, which captures the essence of
the nonreciprocal vortex dynamics. In Sec. III C, we also con-
sider the the ratchet potential effect for the vortices, which is
necessarily present for noncentrosymmetric superconductors
with trigonal symmetry and disorder effects.

A. Renormalization of superfluid density

1. Modified KT transition point for a system with in-plane

magnetic field

Let us first consider the system with the in-plane magnetic
field. In this case, the vortices and antivortices are generated
thermally above the KT transition temperature. We take a
Rashba (EF < 0) or TI-based system with in-plane magnetic
field, whose free energy density is in general given by

f = 1
2ρsv

2
s + Λ′Byρsvsxv

2
s , (61)

which is phenomenologically introduced by utilizing the re-
placement q → m∗vs in the GL theory. Here ρs = m∗ns and
vs are superfluid mass density and velocity, respectively. Let
us relate the phenomenological parametersm∗ andΛ′ to those
in the original electronic Hamiltonians discussed in Sec. II.
For Rashba superconductor, the specific forms of the parame-
ters are given from Eq. (32) as

m∗ ∼ m, Λ′ ∼ −
√
m

|EF|3/2
, (62)

where we have assumed that the energy scales for the Fermi
energy and Rashba energy splitting are similar: |EF| ∼ mα2.
The expressions for the TI surface with parabolic dispersion
are obtained from Eq. (41) as

m∗ ∼ |EF|
v2F

, Λ′ ∼ sgnEF

mv3F
. (63)

We have taken m → ∞ in the final expressions. When
we consider the contribution from the hexagonal warping in
Eq. (51) for the TI surface, the parameters are

m∗ ∼ |EF|
v2F

, Λ′ ∼ λ|EF|3
v7F

, (64)

where we have expanded the expressions with respect to the
warping parameter λ.

We use a mean-field approach for analysis, in which
the terms higher than second-order are approximated into
quadratic one. Under the externally induced current, the

superfluid acquires the uniform velocity component vunif .
Hence we can replace one of vs by vunif in the third-order
term and obtain the free energy density

f ≃ 1
2

∑

µν

ρ̃s,µνvsµvsν , (65)

ρ̃s = ρs

(

1 + 6Λ′Byvunif,x 2Λ′Byvunif,y
2Λ′Byvunif,y 1 + 2Λ′Byvunif,x

)

. (66)

Thus the uniform current renormalizes the superfluid density
due to the presence of the v-cubic term. If we choose vunif =
vs0x̂, the free energy has the following form

f ≃ 1
2ρs(1 + 4Λ′Byvs0)(v

2
sx + v2sy)

+ ρsΛ
′Byvs0(v

2
sx − v2sy). (67)

The first term here renormalizes the superfluid density isotrop-
ically:

ñs = ns(1 + 4Λ′Byvs0). (68)

The second term in Eq. (67) is the anisotropic renormalization,
which will be discussed in detail in the next subsections. In
the following, we follow the procedure given in Ref. 11 to
calculate transport coefficients.

Let us consider the force between the thermally generated
vortex and antivortex. This can be interpreted as the Magnus
force acting on one vortex which is located in a nearly uniform
current made by the other vortex. At KT transition point, this
force is balanced by an entropic force proportional to tempera-
ture, which leads to the force balance relation for two vortices
separated by the sufficiently large distance r [11, 23]:

e∗ñs
1

m∗r
× Φ0 =

4T̃KT

r
, (69)

where Φ0 = 2π/|e∗| is the magnetic flux quantum and
e∗ = 2e. Thus, the important consequence of the isotrop-
ically renormalized superfluid density is the modification of
the KT transition temperature T̃KT through ñs in Eq. (68),
which has different values depending on the direction of the
uniform current.

Through the change in TKT, the correlation length ξ+,
which is exponentially diverging near TKT, and the density of
unpaired vortices nv are also affected by vunif . These physical
quantities are given near TKT by [11, 24]

ξ+ = b−1/2ξc exp





√

b
T0 − T̃KT

T − T̃KT



 , (70)

nv = (2πC1ξ
2
+)

−1, (71)

where b, C1 are order of unity constants, and ξc is the GL co-
herence length evaluated at T = TKT. The mean-field transi-
tion temperature is written as T0. The value of nv goes to zero
at T̃KT with only bounded vortices left. Since the correlation
length is dependent of the KT transition temperature, this in-
dicates that the number of vortices is different depending on
the direction of the uniform current.
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Now we consider the electric field caused by the vortex
dynamics [11]. With a uniform current, the thermally gen-
erated vortices feel a Magnus force and move with the ve-
locity ±vL perpendicular to vunif . To convert a hydrody-
namic effect to electric one, we use the Josephson relation
∆V = (1/e∗)d∆θ/dt where ∆V and ∆θ are voltage drop
and phase difference between the two ends of the sample, re-
spectively. The vortices with the number nvLxvL (Lx is the
sample width along x-direction) cross the sample edges per
unit time, leading to the phase slip d∆θ/dt = 2πnvLxvL.
The electric field Ex = ∆V/Lx is then given by

Ex =
(2π)2nv

|e∗|2η junif,x, (72)

where we have used the force balance relation junif,xΦ0 =
ηvL between Magnus force and friction force. The uniform
electric current has been defined by junif = −∂f/∂A =
e∗

m∗
∂f/∂vunif = e∗nsvunif + O(v2

unif), whose higher-order
terms do not modify the conclusion for the γ-value. The fric-
tion coefficient is given by η = η0(1+d0Λ

′Byvs0) with d0 be-
ing a constant and η0 ≃ πσn/(e

∗)2ξ2c . This modification en-
ters due to the anisotropic renormalization of superfluid den-
sity. The derivation is given in Secs. III A 2 and III B in detail,
and here we just employ the final results. Substituting these
expressions, we obtain the resistivity

ρ =
2(1− d0Λ

′Byvs0)

C1σn

(

ξc
ξ+

)2

. (73)

Thus, there are two kinds of the sources for nonreciprocal re-
sponse: one is from the modified KT transition temperature
and the other from the modified friction coefficient. By ex-
trapolating the above expression to T → T0, the exponential
temperature dependence in the correlation length is not effec-
tive. In this case, with the transport coefficients defined in
Ex = ρ1junif,x+ρ2j

2
unif,x, we obtain the explicit expressions

ρ1 =
2b

C1σn
, (74)

ρ2(T ) = − d0Λ
′By

e∗ns(T )
ρ1. (75)

We then find that the γ-value, which is given by γvS =
−ρ2/ρ1ByW , is proportional to (T0 − T )−1, where we have
used the temperature dependence of the superfluid density as
ns(T ) ∝ T0 − T .

We now switch our discussion to the lower temperatures
near the KT transition. We write the KT transition temperature
as T̃KT = TKT + δTKT with the unrenormalized transition
temperature TKT, and expand the expression with respect to
δTKT. We assume T0 − TKT ≫ δTKT and then the transport
coefficients are given for the temperature range T − TKT ≫
δTKT by

ρ1(T ) =
2b

C1σn
exp

(

−2

√

b
T0 − TKT

T − TKT

)

, (76)

ρ2(T ) = −2πΛ′By

√

b(T0 − TKT)

m∗e∗(T − TKT)3/2
ρ1(T ), (77)

where we have kept the leading order contribution remain-
ing for T → TKT. While both ρ1 and ρ2 exponentially
goes to zero toward TKT, the γ-value is proportional to
(T −TKT)

−3/2. Thus a large nonreciprocal signal is expected
near the KT transition point.

Below TKT, the linear response vanishes due to bounded
vortices, and instead the third-order term characterizes the
current-voltage relation. The nonreciprocal response should
then be reflected in the fourth-order term. Hence the I-V re-
lation has the form V = a3I

3 + a4I
4 with a4 = a′4B near

TKT. The higher-order terms become more relevant at lower
temperatures.

2. Extended Bardeen-Stephen approach for a system with

out-plane magnetic field

While the vortices in a system with in-plane magnetic field
are created by the thermal fluctuation, the out-plane magnetic
field creates the vortices having the same vorticity, which is
qualitatively different situation from the in-plane case. We
here extend the Bardeen-Stephen theory [25, 26] for flux-
flow conductivity to non-linear response regime. We take the
MoS2-based system where the magnetic field is applied along
out-plane direction. The nonreciprocity for this system is con-
sidered as an effective renormalization of the superfluid den-
sity. To see this, we begin with the free energy density for a
superfluid

f = 1
2ρsv

2
s + Λ′Bzρsvsx(v

2
sx − 3v2sy). (78)

By comparing this expression with Eq. (58), we find the re-
lations m∗ = 2m and Λ′ ∼ m2Λ. We choose the uniform
current flowing along x-direction: vunif = vs0x̂. The free
energy then becomes

f = 1
2 (ρ̃s,xxv

2
sx + ρ̃s,yyv

2
sy), (79)

ρ̃s,xx = ρs(1 + 6Λ′Bzvs0), (80)

ρ̃s,yy = ρs(1 − 6Λ′Bzvs0), (81)

within the ‘mean-field’ approximation explained above. Here
only the anisotropic renormalization occurs.

Using the velocity potential, the superfluid velocity can be
written as vs = 1

m∗
∇θ. Let us first consider the isolated su-

perconducting vortex induced by the out-plane external mag-
netic field. The vortex velocity for isotropic system is given
by θ = φ = tan−1(y/x) with the polar coordinate r = (r, φ),
which satisfies the equation ∇

2θ = 0 obtained from a varia-
tional principle. We can make Eq. (79) isotropic by the scaling
x′ = x

√

ρs/ρ̃s,xx and y′ = y
√

ρs/ρ̃s,yy. In this case, the ve-
locity potential is given by θ = tan−1(y′/x′). Keeping the
first-order contribution with respect to Λ′, we get

θ(φ) = φ+ 3Λ′Bzvs0 sin 2φ. (82)

In order to calculate the spatial distribution of electric field,
we employ the London equation outside the normal core ac-
counting for zero resistivity: E = Λ∂tjs where Λ−1 =
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ns(e
∗)2/m∗ [25, 26]. For a moving vortex with the veloc-

ity vL, the spatial coordinate is replaced as r → r − vLt and
we can replace the time-derivative as ∂t → −vL ·∇. With a
uniform current along x-direction, the “Lorentz” force acting
on the vortex is along y-direction, so we choose vL = vLŷ.
(Since the magnetic penetration depth is very long for atomi-
cally thin two-dimensional superconductors, the force should
originate from fluid-mechanical Magnus force [27], although
the main conclusion in the following is not altered.) Substi-
tuting js = e∗nsvs into the London equation, we can calcu-
late the electric field in the superconducting region, where r is
larger than the coherence length ξ, as

E(r > ξ) =
vL
e∗r2

cosφ(1 + 6Λ′Bzvs0 cos 2φ)er

+
vL
e∗r2

sinφ[1 + 6Λ′Bzvs0(2 + 3 cos 2φ)]eφ.

(83)

For the inside of the normal core (r < ξ), the electric field
E = −∇ϕ is determined from the Poisson equation ∇

2ϕ =
0 due to a charge neutrality. We assume that the boundary be-
tween superconducting and normal regions is circular at r = ξ
and is connected discontinuously. With this geometry only the
eφ component of E matters for the boundary condition. We
expand the scalar potential as ϕ =

∑

m Cm(reiφ)m and the
boundary condition gives

ϕ(r < ξ) = − vL
e∗ξ2

(1 + 3Λ′Bzvs0)r cosφ

− 3vLΛ
′Bzvs0
e∗ξ4

r3 cos 3φ. (84)

The energy dissipation rate is then calculated as

W (r < ξ) = σnE
2 =

σn
(e∗)2ξ4

(1 + 6Λ′Bzvs0)v
2
L, (85)

where σn is a normal conductivity. We note that this expres-
sion does not depend on the spatial coordinate r in the leading
order. Equation (85) is identified as the energy dissipation rate
per unit volume in the form ηv2L/πξ

2 originating from the fric-
tion force for the vortex flow. We thus arrive at an important
conclusion that the effect of the cubic term in free energy is
reflected in the change of the friction coefficient η.

The “Lorentz” force is balanced by the friction force as
(junif × Φ0)y = ηvL where η = η0(1 + 6Λ′Bzvs0) with
η0 = πσn/(e

∗)2ξ2 and we have defined Φ0 = Φ0ẑ. We
use the expressions for the uniform current junif = e∗nsvunif

and the "Faraday’s law” E0 = B × vL for the uniform
electric field generated from the flux flow. (Since the mag-
netic field B is not time-dependent in the system with infi-
nite magnetic penetration depth, this “Faraday’s law” does not
derive from an electromagnetic origin but from the Joseph-
son relation as in the previous subsection.) We then obtain
E0x = ρ1junif,x + ρ2j

2
unif,x where

ρ1 =
BzΦ0

η0
, (86)

ρ2 = −6Λ′B2
zΦ0

e∗nsη0
. (87)

The γ-value from the vortex dynamics is given by

γvS = − ρ2
ρ1BzW

=
6Λ′

e∗nsW
, (88)

which is not dependent on the normal conductivity. Rewriting
the coefficient Λ′ in terms of the quantities in Sec. II C, we
can estimate the ratio between γvS from vortex motion and γfS
from superconducting fluctuation as

γvS
γfS

∼ mT0
ns

. (89)

Using the relations 2ns/ne ≃ (T0 − T )/T0 and the normal
electron density ne = k2F/2π, we finally obtain

γvS
γfS

∼ T 2
0

EF(T0 − T )

T→0−−−−→ T0
EF

. (90)

It is characteristic that the γ-value from vortex dynamics is
enhanced near the transition temperature and has a smaller
value with the factor T0/EF compared to γfS at low temper-
atures. The same conclusion will be obtained from the time-
dependent Ginzburg-Landau (TDGL) approach as described
in Sec. III B in detail, and hence the above approach can be
justified.

B. TDGL approach

1. Formulation

The vortex dynamics induced by the out-plane magnetic
field can be described by the TDGL theory, which takes ac-
count of a purely dissipative dynamics. This approach is
successfully applied to the flux-flow conductivities [28, 29].
While this theory is less intuitive than the above extended
Bardeen-Stephen theory, the TDGL approach gives a foun-
dation for its interpretation. Here we formulate the theory by
including the cubic term in q responsible for a nonreciprocal
vortex dynamics. We begin with the TDGL equation and free
energy

Γ (∂t + 2ieϕ)∆ = − δF

δ∆∗
, (91)

Fs =

∫

d2r∆∗

[

α+
β

2
|∆|2 + γP 2 +K(P 3

x − 3PxP 2
y )

]

∆

+
1

2µ0

∫

d2rB2, (92)

where P = −i∇− 2eA. The gap parameter is related to the

wave function by Ψ =
√

7ζ(3)ne

2π2T 2

0

∆ with the electron number

ne. There are also the relations K ∝ ΛBz and α ∝ (T0 − T ).
Note that the coefficient γ in Eq. (92) is different from the γ-
value for nonreciprocal transport which is denote as γS. The
total GL free energy is given by F = Fs + Fn with Fn being
a normal part. We have defined the symmetrization by

ABC =
1

3!
(ABC +BCA+ CAB +ACB +BAC + CBA),

(93)
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to make the free energy real. The supercurrent density is given
by δF/δA = 0 as

jsx = 2eγ(∆∗Px∆+ P †
x∆

∗∆) + 2eK
(

∆∗P 2
x∆+ P †

x∆
∗Px∆

+P †2
x ∆∗∆−∆∗P 2

y∆− P †
y∆

∗Py∆− P †2
y ∆∗∆

)

, (94)

jsy = 2eγ(∆∗Py∆+ P †
y∆

∗∆)− 2eK (∆∗PxPy∆+∆∗PyPx∆

+P †
x∆

∗Py∆+ P †
y∆

∗Px∆+ P †
xP

†
y∆

∗∆+ P †
yP

†
x∆

∗∆
)

.

(95)

The total current is given by j = jn + js with the normal
current jn = σnE. We can also show the relations

δF

δ∆∗
=
[

α+ β|∆|2 + γP 2 +K(P 3
x − 3PxP 2

y )
]

∆, (96)

and

i

(

∆
δF

δ∆
−∆∗ δF

δ∆∗

)

= − 1

2e
∇ · js. (97)

The above expressions can be used for arbitrary strength of
the magnetic field.

In the following, we concentrate on the two-dimensional
superconductor where the magnetic penetration depth is typi-
cally longer than the sample size [30]. In this case, the mag-
netic effects can be neglected and only the electric and fluid
mechanical effects are considered in the GL analysis. Such
condition can be set by choosing A = 0.

With a slightly shifted center as r → r + d, we have the
relation

δF =

∫

d2r

[

δF

δ∆
(d ·∇)∆ + c.c.

]

, (98)

which defines a friction force acting on superconductor. This
force is balanced by an external force to result in a station-
ary motion of the vortex. The force balance equation for an
isolated single vortex is given by

junif ×Φ0 = −Γ

∫

d2r [(∂t − 2ieϕ)∆∗
∇∆+ c.c.] .

(99)

The transport current from an external source is written as
junif . The term on the left-hand side is the external force
acting on the fluxoide, which is in general composed of the
sum of Lorentz and Magnus forces [31]. In the current situa-
tion, only the Magnus force contributes [27] since the London
magnetic penetration depth is taken as infinity.

We also need the equation for the scalar potential, for which
the equation of continuity ∇ ·j = 0 is used. The explicit form
is given by
(σn
2e

∇
2 − 4eΓ|∆|2

)

ϕ = iΓ(∆∂t∆
∗ −∆∗∂t∆), (100)

where we have used E = −∇ϕ.
For a moving vortex, the spatial coordinate can be written

in the laboratory frame by the replacement r → r−vLtwith a
boost velocity vL for the vortex. Correspondingly, we replace

the time-derivative as ∂t → −vL ·∇ and rewrite the equations
with dimensionless quantities as

v(v̂L · ∇̃− i
2 ϕ̃)ψ =

[

−1 + |ψ|2 − ∇̃
2 + ik(∂̃3x − 3∂̃x∂̃

2
y)
]

ψ,

(101)
(

1

u
∇̃

2 − |ψ|2
)

ϕ̃ = −iv̂L · (ψ∇̃ψ∗ − ψ∗
∇̃ψ), (102)

v =
ΓvL
|α|ξ , k =

K

|α|ξ3 , ψ =
∆

|∆∞| , ϕ̃ =
ϕ

vL/4eξ
, (103)

where |∆∞| =
√

|α|/β is the gap function for a uniform
bulk and ξ =

√

γ/|α| is the coherence length. We have also
defined the unit vector v̂L = vL/vL and the dimensionless
derivative ∇̃ = ξ∇. In the equation for the scalar potential,
we have introduced the temperature independent parameter
u = ξ2/ℓ2E , where the length ℓE is the electric-field pene-
tration depth given by

ℓE =

√

σn
8e2Γ|∆∞|2 . (104)

For an ordinary metal, the parameter u is an order of unity
constant [29].

When we use the relation Γ = πν~/8kBT0 with the density
of states ν = m/2π~2 for a two-dimensional electron gas,
where we have restored ~ and kB, the parameter can be written
as

u =
π

3
· e

2/h

σn
· EF

kBT0
, (105)

where h/e2 = 25813 [Ω] is the von Klitzing constant. For
usual BCS superconductors, the ratio between e2/h and the
normal conductivity σn is comparable to kBT0/EF. For ex-
ample, in the monolayer MoS2 [10], we have 1/σn = 140 [Ω],
T0 = 8.8 [K], EF = 150 [meV], and obtain u ≃ 1.2.

The energy dissipation is also derived from the time-
derivative of free energy

∂tFs =

∫

d2r
[

−2Γ |(∂t + 2ieϕ)∆|2 + ϕ∇ · js
]

. (106)

Using the electromagnetic energy conservation law ∂tFn =
−
∫

d2r j ·E derived from the Maxwell equation, we obtain
the equation of continuity for the energy density:

∂tF +

∫

d2r∇ · jF = −
∫

d2rw, (107)

jF = −ϕjs, (108)

w = 2Γ |(∂t + 2ieϕ)∆|2 + σnE
2, (109)

where jF (r, t) is an energy current density and w(r, t) is a
dissipation rate. Thus we have two kinds of the dissipation
terms originating from Γ and σn.

2. Perturbative analysis

Let us now analyze the differential equation perturbatively
with respect to K and vL. We expand the physical quantity A
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in general as

A = A0 + kAk + vAv + kvAkv +O(k2, v2). (110)

For O(1), we obtain

0 =
(

−1 + |ψ0|2 − ∇̃
2
)

ψ0, (111)
(

1

u
∇̃

2 − |ψ0|2
)

ϕ̃0 = −2Im v̂L · ψ0∇̃ψ∗
0 , (112)

and for O(K)

0 = −ψk + 2ψk|ψ0|2 + ψ2
0ψ

∗
k − ∇̃

2ψk + i(∂̃3x − 3∂̃x∂̃
2
y)ψ0,

(113)
1

u
∇̃

2ϕ̃k − |ψ0|2ϕ̃k − 2Re (ψ0ψ
∗
k)ϕ̃0

= 2Im v̂L · (ψ0∇̃ψ∗
k + ψk∇̃ψ∗

0). (114)

For O(vL), the equations are

(v̂L · ∇̃− i
2 ϕ̃0)ψ0 = −ψv + 2ψv|ψ0|2 + ψ2

0ψ
∗
v − ∇̃

2ψv,

(115)
1

u
∇̃

2ϕ̃v − |ψ0|2ϕ̃v − 2Re (ψ0ψ
∗
v)ϕ̃0

= 2Im v̂L · (ψ0∇̃ψ∗
v + ψv∇̃ψ∗

0). (116)

Finally for O(KvL)

v̂L · ∇̃ψk − i
2 (ϕ̃0ψk + ϕ̃kψ0) = −ψkv + ψ2

0ψ
∗
kv

+ 2ψkv|ψ0|2 + 2ψkψ0ψ
∗
v + 2ψvψ0ψ

∗
k + 2ψkψvψ

∗
0

− ∇̃
2ψkv + i(∂̃3x − 3∂̃x∂̃

2
y)ψv, (117)

and

1

u
∇̃

2ϕ̃kv − |ψ0|2ϕ̃kv

− 2Re (ψ0ψ
∗
kvϕ̃0 + ψ0ψ

∗
kϕ̃v + ψ0ψ

∗
vϕ̃k + ψkψ

∗
vϕ̃0)

= 2Im v̂L · (ψ0∇̃ψ∗
kv + ψkv∇̃ψ∗

0 + ψk∇̃ψ∗
v + ψv∇̃ψ∗

k).
(118)

The force balance relation becomes

junif ×Φ0

ΓvL|∆∞|2 =

[

f1 + kvf2

(

v̂Ly v̂Lx
v̂Lx −v̂Ly

)]

v̂L +O(k2, v2),

(119)

where f1 and f2 are linear and nonlinear coefficients in
the force-velocity relation. The coefficient f1 is a sum of
the contributions from u-independent Tinkham mechanism
(time-dependence of amplitude of the gap) and u-dependent
Bardeen-Stephen mechanism [25, 29]. Here the transverse
friction force appears in addition to the longitudinal one. This
form can be derived by a symmetry consideration, and have
also been checked numerically.

The energy dissipation part can also be expanded with re-
spect to k and v. In the dimensionless form, we can write it
as

w̃ =
w

σnϕ2
0/ξ

2
= 4u

∣

∣

∣

(

v̂L · ∇̃+ i
2 ϕ̃
)

ψ
∣

∣

∣

2

+
∣

∣

∣∇̃ϕ̃
∣

∣

∣

2

. (120)

The O(vLK) component for w̃, or equivalently O(v3LK) for
w, is responsible for the dissipation from nonreciprocal vortex
dynamics.

Let us look at the spatial dependence of the above phys-
ical quantities. We use the two-dimensional polar coordi-
nate r = (r, φ) and the zeroth-order solution can be writ-
ten as ψ0(r) = f(r)eiφ for an isolated vortex. From the
differential equation for ψ0, we find the asymptotic behav-
ior f ∝ r for r → 0 and f → 1 for r → ∞ [29].
Among functional forms that satisfy these limiting behaviors,
we choose f(r) = tanh(ar/ξ) and the constant is determined

as a =
√

3
8 by using the differential equation at small r.

Then the physical quantities such as ψ0,k,v,kv , ϕ̃0,k,v,kv and
w̃0,k,v,kv are numerically calculated by solving the linear dif-
ferential equations derived above.

Figures 2(a1–4) shows the spatial dependences of the am-
plitudes of gap functions. The originally circular shape in
Fig. 2(a1) is modified by K and vL, and six-fold and two-
fold patterns appear in Figs. 2(a2) and (a3), respectively. The
more complex pattern is seen in the higher-order contribu-
tion ψkv [Fig. 2(a4)]. The scalar potentials are also shown
in Figs. 2(b1–4). The dipolar field is generated in ϕ0 which
causes the electric field inside the normal core. We note that
the dimensionless ϕ̃0 is O(1) but the scalar potential ϕ0 is
O(vL) contribution. Then ϕv shown in Fig. 2(b3) is anO(v2L)
contribution, having the quadrupolar distribution. The situa-
tion is further modified in the presence of the cubic term as
in Figs. 2(b2) and (b4). We show in Figs. 2(c1–4) the en-
ergy dissipation rate as a function of spatial coordinates. The
dissipation occurs in the region with r . ℓE as shown in
Fig. 2(c1) (note that W0 is an O(v2L) contribution). This also
applies at higher orders shown in Figs. 2(c2–4), where the
spatial anisotropy is introduced.

We are also interested in the parameter u = ξ2/ℓ2E depen-
dence of the physical quantities. Figure 3 shows the force
coefficients f1 and f2 as a function of u. For the larger u,
meaning shorter electric-field penetration length, the value of
f1 becomes smaller. This is because the region where the dis-
sipation occurs shrinks to make a weaker friction force. The
value of f2 at sufficiently large u also becomes small due to
the same reason as f1. On the other hand, f2 at small u de-
creases in contrast with f1. While the reason for the behavior
is not easily understood in an intuitive way, in any case we
have here confirmed that the coefficients of f1 and f2 are or-
der of unity in the experimentally relevant regime with u ∼ 1.

3. Flux-flow conductivity

Using the relation E0 = B×vL for an electric field gener-
ated by the motion of the magnetic flux, which is derived from
the Josephson relation, we obtain the electrical conductivity as

junif =
Γ|∆∞|2
Φ0Bz

[

f1 +
f2ΓK

|α|2ξ4Bz

(

E0x −E0y

−E0y −E0x

)]

E0

(121)

= σ1vE0 + σ2vF (E0), (122)
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FIG. 2. Spatial dependences of the amplitude of wave functions, scalar potential, and energy dissipation rate: (a1) |ψ0|, (a2) |ψk|, (a3) |ψv|,
(a4) |ψkv|; (b1) ϕ̃0, (b2) ϕ̃k, (b3) ϕ̃v , (b4) ϕ̃kv; (c1) w̃0, (c2) w̃k, (c3) w̃v , (c4) w̃kv . We have chosen vL = vLx̂ and used u = 1 (i.e. ℓE = ξ).
The system size is L× L with L = 40ξ and the number of mesh is NL ×NL with NL = 300.
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FIG. 3. Parameter u dependence of the friction force coefficients
defined in Eq. (119). The system size and number of spatial mesh
are same as Fig. 2.

where the vector F is same as that in Eq. (59). To express the
flux-flow conductivity in terms of normal conductivity, we use
the electric field penetration depth ℓE and the upper critical
field given by Bc2 = Φ0/2πξ

2. Then the conductivities are
written as

σ1v =
uf1(u)

4π
σn
Bc2

Bz
, (123)

σ2v =
uf2(u)

4π
σn
Bc2ΓK

γ2B2
z

. (124)

The γ-value from nonreciprocal vortex dynamics is given by

γvS =
σ2v

σ2
1vBzW

=
4πf2(u)

uf1(u)2
· ΓK

γ2σnBc2BzW
. (125)

This expression does not depend on Bz since K is propor-
tional to Bz due to the Zeeman effect. We note that the pa-
rameters σn, γ and K are in general dependent on the purity
of the sample (see Appendix B).

Let us compare this result with the γ-value (γfS) from su-
perconducting fluctuation for T & T0 given by Eq. (60) [10].
Noting u ∼ 1, the ratio is estimated by

γvS
γfS

∼ T 2
0

EF(T0 − T )
. (126)

Thus we obtain the same conclusion as the extended Bardeen-
Stephen approach in Sec. III A 2.

C. Ratchet motion of vortex

As discussed above, for T < T0 and in the presence of
the finite out of plane magnetic field, the motion of quantum
vortices penetrating the superconductor gives a dominant con-
tribution to the voltage drop. Here we consider another effect
for vortex dynamics. In the superconductor without inversion
center, vortices driven by the external charge current feel an
asymmetric pinning potential acting on them (ratchet effect).
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This effect has been proposed to control the vortices in super-
conductors [32–34]. New perspective here is that the vortex
ratchet effect naturally appears as a consequence of disorders
in noncentrosymmetric system, which is distinct from the pre-
viously discussed artificially developed inversion-broken en-
vironment. In this section, we analyze the classical motion
of vortices under the asymmetric periodic potential and dis-
cuss the nonreciprocal transport there. The relevant param-
eters such as potential height and its spatial periodicity are
estimated from pinning properties such as a magnitude of the
critical current density where the vortices are depinned. The
relation to the recent experimental results [10, 35] will also be
discussed in Sec. IV C 2.

The classical equation of motion of the vortices in the dif-
fusive limit is modeled as

η
dx

dt
= −∂U

∂x
+ F −

√

2ηTξ(t), (127)

with U being the pinning potential, which we here assume
to be periodic for simplicity; U(x + L) = U(x), and F is
the uniform force. The last term is the Langevin force with
zero mean and unit dispersion (Gaussian white noise). η is
the viscous friction coefficient, and T is the temperature. By
solving the corresponding Fokker-Planck equation

∂p

∂t
=

1

η

∂

∂x

[(

∂U

∂x
− F

)

p+ T
∂p

∂x

]

, (128)

for the distribution function p(x, t), we obtain the steady ve-
locity of the vortex after long time expressed as [36]

vL =
L

βη

1− e−βFL

∫ L

0
dy I0(y)e−βFy

, (129)

where we have introduced

I0(y) =

∫ x0+L

x0

dx eβ[U(x)−U(x−y)], (130)

with β = 1/T being the inverse temperature. We can choose
x0 arbitrarily due to the periodicity of the potential. Potential
is called symmetric when there exists certain choice of x0 ∈
[0, L) such that U(x) = U(x0 − x) is satisfied. Here, we
can choose x0 = 0 by shifting the x coordinate. By using the
evenness and the periodicity of the potential, we can easily
prove vL(−F ) = −vL(F ) which show the absence of the
nonreciprocal transport.

For asymmetric potentials, the situation is different. The
velocity vL is expanded with respect to the force F as

vL = q1F + q2F
2 +O

(

F 3
)

, (131)

where the coefficients are

q1 =
L

βη

βL
∫ L

0
dy I0(y)

, (132)

q2 =
L

βη

β2L
∫ L

0
dy
(

y − L
2

)

I0(y)
[

∫ L

0
dy I0(y)

]2 , (133)

where q2, which is a hallmark of the nonreciprocal transport,
survives only for asymmetric potentials as discussed above.

Hereafter, we adopt the fully asymmetric periodic potential
for simplicity

U(x) = U0 saw
( x

L

)

= U0
x

L
(mod L), (134)

by using so-called sawtooth function. U0(> 0) is the height
of the pinning potential. In this potential, the steady velocity
is calculated as

vL =
1

βηL

β2(U0 − FL)2

βFL− βU0 − sinh(βU0) + (cosh(βU0)− 1) coth
(

βFL
2

) = q1F + q2F
2 +O

(

F 3
)

, (135)

with the response coefficients

q1 =
1

2η

β2U2
0

cosh(βU0)− 1
=



















1

η
− β2U2

0

12η
(βU0 → 0)

β2U2
0

η
e−βU0 (βU0 → ∞)

, (136)

and

q2 =
Lβ

4η

β3U3
0 + β2U2

0 sinh(βU0) + 4βU0 − 4βU0 cosh(βU0)

(cosh(βU0)− 1)2
=



















L

η

β4U3
0

360
(βU0 → 0)

L

η

β3U2
0

2
e−βU0 (βU0 → ∞).

. (137)
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Since the voltage drop originating from the motion of vortices
is V = BzLxvL and the force acting on vortices is F = φ0

W I ,
we can calculate the coefficients in current-voltage relation
[Eq.(4)] as a1(Bz , T ) = φ0

Lx

W Bzq1(T ) and a2(Bz, T ) =

φ20
Lx

W 2Bzq2(T ), both of which are proportional to Bz . The
nonreciprocal γ′ parameter defined as R = R0(1 + γ′I) with
V = RI is expressed as

γ′ =
q2
q1

φ0
W

=
φ0L

W

U2
0β

2 + βU0 sinh(βU0)− 4 cosh(βU0) + 4

4U0 sinh
2
(

βU0

2

)

=















φ0L

W

β4U3
0

360
(βU0 → 0)

φ0L

W

β

2
(βU0 → ∞)

, (138)

which monotonically decreases as raising temperature. Note
that the exponential temperature dependence vanishes for the
γ-value.

In this calculation, we have neglected the vortex-vortex in-
teraction. This assumption is justified for small magnetic field
where the vortices are dilute enough. We also note that the
ratchet effect is active for trigonal symmetry, but is not rel-
evant for the systems with C∞ and hexagonal symmetries
where no ratchet potential is present. In the latter cases, the
effect from asymmetric spin-orbit coupling plays the central
role.

IV. DISCUSSION

Here we discuss expected nonreciprocal charge transport
signals in 2DNS. Table I summarizes the nonreciprocal I-
V characteristics in Rashba superconductors, TI surface and
TMD for both above and below transition temperature. The
magnetic fields are applied parallel to the two-dimensional
plane for Rashba and TI based systems, and applied perpen-
dicular to the layer for TMD. While the other configurations
can in principle be possible, the information of this paper
gives a firm basis to explore the further properties. Below
we discuss each system separately.

A. Rashba superconductors

Here we consider the γ-value for Rashba superconductors.
With electron or hole doping, the Fermi energy can be tuned
and the behavior is dependent on the sign of EF. Let us begin
with the EF < 0 case. In this case, the normal contribution to
γ-value becomes finite as shown in Ref. 9 (see also Table I).
The typical values for BiTeBr have been estimated [9] by us-
ing the effective mass m = 0.15me, the Rashba parameter
α = 2.00 eV Å, and the g-factor g = 60. In the normal state
with EF = −0.01 eV, the amplitude of the magnetochiral
anisotropy is estimated as WγN ≃ 2× 10−5 T−1A−1m.

The system crossovers into the paraconductivity region
with approaching to the mean-field transition temperature T0
from above. Here, as discussed in Sec. II A, the parity mixing
contribution becomes irrelevant and the cubic term in GL free
energy instead becomes dominant. The paraconductivity is
then given by Eq. (37). The ratio between normal and super-
conducting states is given by γS/γN ∼ EF/T0, and thus the
nonreciprocal signal is strongly enhanced by the appearance
of a small energy scale T0 for superconductors.

The fluctuation contribution above T0 further crossovers to
vortex contribution at lower temperatures than T0. Below T0,
the pair amplitude sufficiently develops and the free vortices,
which are generated thermally above KT transition tempera-
ture in the present system, start to play an important role for
transport phenomena. For EF < 0 case, the cubic term effec-
tively renormalizes superfluid density under the transport cur-
rent as discussed in Sec. III A. As a result, the friction force
and KT transition temperature are modified and have different
values depending on the direction of source currents. The for-
mer causes the characteristic temperature dependence in the
γ-value as γS ∝ (T0 − T )−1 near T0 (> TKT). Note that this
expression smoothly connects to the fluctuation contribution
for T > T0, and does not show divergence in reality. On the
other hand, the modification of the KT transition temperature
shows the divergent γ-value as γS ∝ (T − TKT)

−3/2 near
the KT transition point. For T < TKT, vortex and antivortex
are bound, and the linear transport coefficient finally vanishes.
The third-order term with a3 then becomes the relevant one in
the current-voltage relation. The nonreciprocity is reflected in
the higher order term with a4 in this case. More detailed in-
vestigation of these higher-order contributions remains to be
clarified in the future.

Now, we switch our focus to theEF > 0 case. Although the
normal state contribution to γ-value is absent in this situation
[9], the paraconductivity is finite. There are two contributions
to paraconductivity: one from parity mixing and the other
from q-cubic term in the GL theory. Here, as the ratio is cal-
culated in Eq. (38), the parity-mixing contribution in Eq.(23)
is much larger than the other. The γ-value in this case has
been estimated in Ref. [18] for BiTeBr with superconducting
proximity effects. On the othe hand, the LaAlO3/SrTiO3 in-
terface [37–40] is also a typical two-dimensional Rashba su-
perconductor. Its carrier density is given by n ∼ 1013cm−2,
spin-orbit field is BSO = m2α2

|e| ∼ 1T, the Debye temper-
ature is TD ∼ 400K, and the mean-field transition tempera-
ture is T0 ∼ 100mK. If we assume rt = 0.1 and the typ-
ical sample width W = 10−6m, the γ-value is estimated as
γS ∼ 8 × 104T−1A−1, which is much larger than the previ-
ous studies [3, 5–8].

At lower temperature below T0, the vortex contribution
dominates over the paraconductivities. For EF > 0 case, the
two-component gap parameter needs to be considered for vor-
tex dynamics. While detailed studies remain unexplored, the
vortex contribution should be present and is expected to cause
a singular behavior around the KT transition point as in the
EF < 0 case.
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B. TI surface

We here discuss the surface of topological insulators plus
superconducting proximity effect. The Hamiltonian has the
k-linear term, but the nonreciprocal charge transport is ab-
sent with this term only since magnetic field just shifts the
wavevector. We have thus considered the two more terms
to generate the nonreciprocity: parabolic term and hexago-
nal warping term. Let us first consider the paraconductiv-
ity contribution from parabolic term based on Eq. (43). The
functional forms of the γ-values are listed in Table I, and the
ratio between normal and superconducting states is given by
γS/γN ∼ EF/T0. Hence, the nonreciprocal transport signal
is enhanced in superconducting state. To estimate the typical
value, we use the expression in Eq. (43) with ~, kB, and µB re-
covered. If we assume vF = 2.84 eVÅ and 1

2m = 41.1 eVÅ2

in Bi2Te3 [41], and EF = 0.1 eV, T0 = 10 K, and W = 100
µm as typical values, we obtain γS ≈ 0.33 A−1T−1. On
the other hand, the contribution from the hexagonal warping
is given in Eq. (53), which is also estimated here. Assuming
the same parameters above and

√
λ = 250 eVÅ3 in Bi2Te3

[22, 41], we obtain γS ≈ 0.11 A−1T−1. Therefore, the am-
plitude is comparable to that by the parabolic term.

At lower temperatures, the vortex contribution becomes
dominant as in the Rashba superconductors. Since the mag-
netic field is applied along the two-dimensional plane and
there is the cubic term in GL free energy, the behavior is es-
sentially same as the Rashba superconductors with EF < 0.
Namely, the thermally generated vortex in the TKT < T . T0
region creates the characteristic magnetochiral anisotropy in
the forms γS ∝ (T0 − T )−1 for T → T0 and γS ∝ (T −
TKT)

−3/2 for T → TKT. We note that the above transport co-
efficients are written in the form V = a1I(1 + γBI), i.e. the
magnetic field B enters only with γ-value. As shown below,
however, the situation can qualitatively change if the magnetic
field is applied perpendicular to the plane.

C. TMD

1. Paraconductivity and intrinsic vortex-flow contribution

We estimate the physical quantities of the clean MoS2. Let
us begin with the normal contribution well above T0. This
system has a valley degrees of freedom, whose contribution
to the normal γ-value per valley is listed in Table I. With the
situation in MoS2, however, the γ-value for each valley has
different sign and vanishes if we sum up both the contributions
[10]. Near T0, the paraconductivity contribution is developed
as given in Eq. (60). Using 2mλ/~2 = −0.49 and ∆SO ≃ 7.5
meV, and T0 = 8.8 K for monolayer MoS2, the γ-value from
the superconducting fluctuation reaches γS ≃ 250T−1A−1

for the sample width W ≃ 3µm, as shown in Ref. 10.
Below T0, here again the vortex contribution becomes rel-

evant for the γ-value, but the situation is different from the
Rashba and TI based systems with KT transition. Namely,
the vortices with the same vorticity are induced by the out-of-
plane magnetic field and the KT transition is washed away for

B 6= 0. As a result, the number of vortices are determined
by the external field B, and the ordinary resistivity a1(B) is
proportional to B. We reflect this situation by denoting I-V
characteristic as V = a′1BI + a2(B)I2. As for the coef-
ficient a2(B), there are two types of contributions. One is
from the q-cubic term in the GL free energy and a2 is pro-
portional to B2. The other is from the ratchet potential for
vortices, and a2 ∝ B is satisfied. Thus the B dependence of
a2 clearly distinguishes the underlying mechanism to gener-
ate nonreciprocal charge transport. Since the latter effect is
discussed in detail in the next subsection, we here focus on
the cubic-term contribution. The I-V relation is then written
as V = a′1BI(1 + γSBI).

As discussed in Sec. III A, the q-cubic term in GL free en-
ergy effectively renormalizes the superfluid density. We have
applied the generalized Bardeen-Stephen approach to this sys-
tem: the force balance between driving (Magnus) force and
viscous force acting on the vortex is considered. The non-
reciprocity enters in the friction force through the anisotrop-
ically renormalized superfluid density. We have then found
that the γ-value from vortex dynamics is given by γvS =

γfS × T 2

0

EF(T−T0)
with γfS being the superconducting fluctua-

tion contribution, which has a large value near the mean-field
transition temperature T0. Here the temperature dependence
enters through the unrenormalized superfluid density which
behaves as ns ∝ (T0 − T ). Such behavior has further been
justified by the TDGL approach as demonstrated in Sec. III B.
If the results are extrapolated to zero temperature, we get
γvS/γ

f
S = T0/EF. Since the magnitude of the paraconduc-

tivity contribution is roughly given by γfS ∼ 102T−1A−1 as
discussed above, the order of magnitude for the vortex contri-
bution is γvS ∼ 1T−1A−1 in the low-temperature limit. This is
much smaller than the observed values at low T in the mono-
layer MoS2 [10], and hence we need another mechanism to
account for the experimental results.

2. Ratchet effect of vortex flow

We now consider the nonreciprocal transport from ratchet
effect of vortex dynamics based on Eq. (138). Phenomenolog-
ical parameters such as periodicity L of the pinning potential,
friction coefficient η, and potential height U0 are estimated
for MoS2 using experimental data. The parameter L is deter-
mined from the mean distance of pinning centers. This can be
estimated from pinning-depinning transition point in the mag-
netoresistance measurement, that is about Bz ≃ 0.2T [35].
At this transition point, all the pinning centers are assumed to
be filled with vortices. The total flux is BzLxW = NvΦ0

and then the vortex number density is nv = Nv/(LxW ) =
Bz/Φ0. Thus the mean distance between vortices is

L ∼ 1√
nv

=

√

Φ0

Bz
∼ 10−7m. (139)

The parameter η is estimated by the normal state resistivity.
In the absence of the pinning potentials, (i.e. U0 = 0), the



17

-0.01

 0

 0.01

 0.02

 0.03

 0.04

-3e-05 -2e-05 -1e-05  0  1e-05  2e-05  3e-05

V (
V)
 

I (A) 

T=10K
T=2K

FIG. 4. I-V characteristic curve for the monolayer MoS2 at T =
10K and T = 2K.

I-V characteristic becomes vL = F/η or

V = BzvLLx = Bz
F

η
Lx = Bz

Φ0

η

Lx

W
I = RI, (140)

in the ohmic region. The resistivity R = Bz
Φ0

η
Lx

W should be
same as the normal state resistivity Rn when Bz = Bc2 ≃
0.1 T. Thus, the parameter η is estimated as

η =
Φ0Bc2

Rn

Lx

W
=

Φ0Bc2

Rn
∼ 10−18 kg/s, (141)

with Rn,sheet ≃ 300 Ω [42].
The parameter U0, the height of the pinning potential of

the superconducting vortex, is estimated by the plateau of
R-B curve in weak B region. The plateau disappears for
jsheet > jc ≃ 3A/m [35], where jc is the critical current
density for vortex depinning. Depinning transition occurs
when the pinning potential is well tilted by the external force,
namely;

U0 ∼ FL = jsheetΦ0L ≃ 4 meV. (142)

Another estimation of U0 is from the thermodynamic upper
critical field. The vortex energy per unit volume isB2

c2/(2µ0).
When the vortex has the overlap with normal core in the pin-
ning center, the energy reduces. By using Bc2 ≃ 0.1 T [42],
we obtain

U0 ∼ B2
c2

2µ0
πξ2cz ≃ 5 meV, (143)

with ξ ≃ 8nm and cz ≃ 1nm being the in-plane coher-
ence length (normal core radius) and the lattice constant in
the thickness direction, respectively. These two estimations
are very consistent. We note U0 ≃ 5 meV ≃ 58 K is much
larger than the transition temperature therefore low tempera-
ture limit, βU0 ≫ 1, is the realistic situations in MoS2.

Calculated I-V characteristic curve is shown in Fig. 4,
which displays a strong rectification behavior even at a mea-
surable temperature. For larger current such that U0 < FL,

the expansion with respect to F or equivalent to I is no longer
valid. In this regime, the I-V characteristics are strongly non-
linear and hence the higher harmonics becomes relevant. At
the critical current where U0 = FcL, the potential becomes a
multi-step function and therefore the velocity begins to grow
rapidly.

The temperature dependence of γ-value at low T is given
by γ′S ∝ 1/T for the ratchet mechanism according to
Eq. (138) in the U0 ≫ T limit. With the original expres-
sion in Eq. (138), the estimated γ-values for the sample size
LxWcz = 3µm×3µm×1nm are given by γ′S ≃ 8×105A−1

at T = 10K and γ′S ≃ 1×106A−1 at T = 2K. Although these
magnitudes are much larger than the ones in the experimen-
tal observation [10], we can obtain the more close values by
controlling the spatial asymmetry in the sawtooth potential.
Namely, by tuning the potential from the asymmetric case
in Eq. (134) to symmetric case continuously, the γ-value is
monotonically decreased down to zero.

At sufficiently low temperatures, on the other hand, the
quantum nature of the vortices plays an important role. In
this case the wave character of vortices appears, which will
modify the above physical picture. This point remains to be
explored in the future.

V. SUMMARY AND CONCLUSIONS

We have theoretically investigated the nonreciprocal charge
transports in the two-dimensional superconductors without
inversion symmetry. We have taken the concrete examples
such as the Rashba superconductors and topological insu-
lator surface with in-plane magnetic fields, and the mono-
layer transition metal dichalcogenide (MoS2) with out-plane
magnetic field. The nonreciprocal properties of supercon-
ductors are reflected in the I-V characteristics with the form
V = a1I + a2I

2 + a3I
3 + a4I

4, and the even-order terms
represent the nonreciprocal responses. These coefficients are
clarified in the temperature range both above and below the
mean-field transition temperature. Table I summarizes our ob-
tained results.

The nonreciprocal transport signals in the normal regions
well above the mean-field transition temperature T0 crossover
into superconducting fluctuation contribution (paraconductiv-
ity). We have newly investigated the topological insulator
based systems which have cubic term in the GL free energy,
in addition to the previously investigated Rashba supercon-
ductors and transition metal dichalcogenide. The γ-values for
all the systems are much enhanced compared to the normal
state, which is attributed to the appearance of the small en-
ergy scale T0 (≪ EF). The ratio of γ-values between normal
and superconducting fluctuation region is in general written
as (EF/T0)

m with m ≥ 1 being an integer depending on the
system.

Below T0, the amplitude of the superconducting order pa-
rameters is developed and only the phase degrees of free-
dom are left. Then the vortex dynamics plays an important
role for T . T0. There are two different kinds of vortex
behaviors. First, for systems with in-plane magnetic fields,
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the vortices are thermally generated and are bound below
the Kosterlitz-Thouless transition temperature TKT. Due to
the inversion symmetry breaking in the system, the friction
force and the number of vortices for TKT < T < T0 are
different depending on the direction of external uniform cur-
rent, to produce the nonreciprocal charge transport. These ef-
fects have effectively been described by the renormalization
of the superfluid density. The γ-value, which is defined by
V = a1I(1 + γBI) as in the fluctuation regime, is identified
to have the temperature-dependent forms γ ∝ (T0 − T )−1

near T0 and γ ∝ (T − TKT)
−3/2 near TKT, which originate

from the modified friction coefficient and the modified KT
transition temperature, respectively. Accordingly, we expect
the two-peak structure of the temperature dependence of the
γ-value in this case.

For the system with out-plane magnetic field, the number
of vortices with a same vorticity is determined by the strength
of the external field B and the Kosterlitz-Thouless transition
does not exist. The nonreciprocal signal γ is now character-
ized by the I-V relation with the form V = a′1BI(1 + γBI).
The renormalization of superfluid density works also for this
system, and we have derived the modified friction force for
moving vortices and the corresponding γ-value has the form
γ ∝ (T0 − T )−1. This phenomenological approach is fur-
ther justified by the time-dependent Ginzburg-Landau theory.
On the other hand, we have also investigated the other effect
with ratchet potential for vortices. Here the magnetic field
plays a role only for creating the vortex, and then the γ-value
is characterized by the relation V = a′1BI(1 + γ′SI). We
have considered one dimensional motion driven by the exter-
nal transport current in the sawtooth potential, and have found
that the resultant signal γ′ can have a comparable value with

the experiments in MoS2.
We have thus systematically clarified the characteristic

transport properties for two-dimensional noncentrosymmetric
superconductors. The knowledge of this paper is useful for
the further exploration of nonreciprocal phenomena in super-
conductors both theoretically and experimentally.
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Appendix A: Derivation of the Ginzburg-Landau free energy

Following Ref. 20, we derive the GL free energy for the
model in Eq. (7). Especially, we focus on the case where the
Fermi energy is on the conduction band. The free energy is
given by

F =

∫

d2q

(2π)
2

[

1

g
− T

∑

ωn

∫

d2k

(2π)
2G (k, iωn)G (−k + q,−iωn)

]

|∆q|2 , (A1)

with G (k, iωn) = (iωn − ξk)
−1 being the Matsubara

Green’s function [ωn = (2n + 1)πT ]. The product of the
Green functions is simplified as

∫

d2k

(2π)
2G (k, iωn)G (−k + q,−iωn)

= −
∫

d2k

(2π)
2

1

iωn − ξ0k − Ω1 (k)

1

iωn + ξ0k +Ω2 (k, q)
,

(A2)

where

ξ0k =
k2

2m
+ α|k| − EF, (A3)

Ω1 (k) = ξk − ξ0k, (A4)

Ω2 (k, q) = ξ−k+q − ξ0k. (A5)

We first integrate by ξ0k

−
∫

d2k

(2π)
2

1

iωn − ξ0k − Ω1 (k)

1

iωn + ξ0k +Ω2 (k, q)

≈ −ν1
〈∫

dξ
1

iωn − ξ − Ω1 (k)

1

iωn + ξ +Ω2 (k, q)

〉

k

= πν1

〈

1

|ωn|+ isgn (ωn)Ω (k, q)

〉

k

, (A6)

where 〈· · · 〉k is the momentum average over the Fermi sur-
face. We have defined Ω (k, q) = 1

2 (Ω1 (k)− Ω2 (k, q)).
When we consider the surface state of topological insulator,
which we describe here for simplicity, we only take the in-
ner one of the two Fermi surfaces. The Fermi wavenum-
ber is kF1 = −mα +

√
mEFR, and the density of states is

ν1 = m
2π

(

1− α
√

m/EFR

)

. Therefore, the second term in
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Eq. (A1) is

− πTν1
∑

ωn

〈

1

|ωn|+ isgn (ωn)Ω (k, q)

〉

k

≈ −πTν1
∑

ωn

〈

1

|ωn|
− Ω (k, q)

2

|ωn|3
+

Ω(k, q)
4

|ωn|5

〉

k

= −ν1
[

S1 (T )− S3 (T )
〈

Ω (k, q)
2
〉

+ S5 (T )
〈

Ω (k, q)
4
〉]

,

(A7)

with Sk (T ) = πT
∑

n |ωn|−k. The functions S1(T ) and
S3(T ) are given in Eqs. (17,18), and S5(T ) is calculated as

S5 (T ) =
31ζ (5)

16 (πT )
4 , (A8)

Then, we calculate
〈

Ω (k, q)
2
〉

and
〈

Ω (k, q)
4
〉

up to

O
(

Byq
4
)

. If we shift the momentum as q → q +
2Bym
|k|+mα x̂,

we find

〈

Ω (k, q)
2
〉

=
(kF1 +mα)

2

8m2
q2

+
3 (5kF1 + 3mα)

32mkF1 (kF1 +mα)
Byqxq

2 +O
(

q4
)

,

(A9)
〈

Ω (k, q)
4
〉

= O
(

q4
)

. (A10)

This result is reasonable because the third order term in the
momentum vanishes for m → ∞. The case of the valence
band (EF < 0) can be obtained in a similar manner, and
we can show that the free energy is obtained by replacing
α with −α, By with −By , kF1 = −mα +

√
mEFR with

kF2 = mα−
√
mEFR and ν1 = m

2π

(

1− α
√

m/EFR

)

with

ν2 = m
2π

(

−1 + α
√

m/EFR

)

. We can also derive the GL

free energy for the model with the hexagonal warping [Eq.
(50)] in the same way.

Appendix B: Impurity effect in TMD

The effect of superconducting fluctuation is more promi-
nent for dirty samples according to the Ginzburg-Levanyuk
criterion [13]

|ǫ| .
[

kFξ0
(kFξ)D

]
2

4−D

, (B1)

where D is the dimension of the system, ǫ = (T − T0)/T0
and ξ0 ∼ vF/T0. ξ is the coherence length for either clean or
dirty samples. Here we consider the impurity effect on the GL
equation with q-cubic term originating from trigonal warping
for MoS2. To deal with the impurities, we take quasi-classical
Green function method [29]. We introduce the normal and
anomalous quasiclassical Green functions by g(k̂, iωn; r) and

f(k̂, iωn; r), respectively, where k̂ is the unit vector in the
direction of k on the warped Fermi surface. The gap equation
is given by

∆(r) = πiνV gT
∑

n

〈f(k̂, iωn; r)〉k, (B2)

where the bracket means the average with respect to k. V g

and ν are the attractive interaction parameter and density of
states at the Fermi level, respectively. To derive the GL theory,
we expand the right-hand side of Eq. (B2). The terms with-
out spatial derivatives are not affected by impurities, which
is known as the Anderson theorem. Hence we only keep the
linear term in ∆ and consider spatial derivatives. With this
condition we can use g(k̂, iωn; r) = sgnωn, since it does not
have the linear term of ∆. The anomalous Green function is
described by the Eilenberger equation:

ivF(k̂) ·∇f + 2iωnf − 2∆g +
i

τ
(〈g〉kf − 〈f〉kg) = 0,

(B3)

where vF is the Fermi velocity and τ is the relaxation time.
The self energy from impurities has been included by the self-
consistent Born approximation. The Zeeman energy can be
accounted for by the simple replacement iωn → iωn + Bz ,
and we do not write this explicitly for the moment. Now we
perform the gradient expansion as f = f0+f1+f2+f3+· · · .
The zeroth and first-order terms can be explicitly written as

〈f0〉k = f0 =
∆sgnωn

iωn
, (B4)

〈f1〉k = − i〈vF〉k ·∇f0
2iωn

, (B5)

where ω̃n = ωn + 1
2τ sgnωn. We conclude 〈f1〉k = 0 since

〈vF〉k = 0 is satisfied. The higher-order terms can also be
derived as

〈f2〉k =
〈(ivF ·∇)2f0〉k

4iωniω̃n
, (B6)

〈f3〉k = −〈(ivF ·∇)3f0〉k
4iωn(iω̃n)2

. (B7)

〈f3〉k can be finite if the system has a trigonal warping. To be
compatible with the results in TMD, there are the relations

〈(ivF ·∇)2〉k = C2∇
2, (B8)

〈(ivF ·∇)3〉k = iC3∂x(∂
2
x − 3∂2y). (B9)

The real constants C2 and C3 are determined to be consistent
with the expressions in the clean limit which has already been
obtained in Ref. 10.

We now replace iωn by iωn + Bz to include the Zeeman
energy, and take the lowest order contribution of the external
magnetic field Bz . We substitute these expressions into the
gap equation. The coefficient γ(τ) of q-square term andK(τ)
of q-cubic term in the GL free energy (92), which are now
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dependent on the mean-free time τ , are given by

γ(τ)/γ(∞) =
∑

n

1

|ωn|2(|ωn|+ 1
2τ )

/

∑

n

1

|ωn|3
, (B10)

K(τ)/K(∞) =

1

2

∑

n

1

|ωn|2(|ωn|+ 1
2τ )

2

(

1

|ωn|
+

1

|ωn|+ 1
2τ

)

/

∑

n

1

|ωn|5
.

(B11)

These results can be used at any purity of samples and go to
unity for the clean limit. The q-square coefficient here is not
a new result which can be seen in e.g. Ref. [43], but the q-
cubic coefficient is first derived. Particularly for the γ-value,
the ratio between dirty (τT0 ≪ 1) and clean (τT0 ≫ 1) limits
is given using Eq. (60) by

γfS,dirty
γfS,clean

∼ τT0, (B12)

for superconducting fluctuation contribution. For vortex flow
contribution, on the other hand, the transport coefficients are
dependent on σn (≃ nee

2τ/m) and cannot be written in a
simple way, but can be in general estimated from the above
information.

Appendix C: Effect of Landau level for paraconductivity in

TMD

1. Formulation

We here extend the calculation for the paraconductivity in
the low-field limit to the case in the presence of quartic term
and magnetic field. The paraconductivity from superconduct-
ing fluctuations can be evaluated at arbitrary strength of the
magnetic field by considering the Landau levels. Let us begin
with the GL free energy

F =

∫

d2rΨ∗

[

a+
P 2

2m∗
+ ΛBz(P

3
x − 3PxP 2

y )

]

Ψ, (C1)

where P = −i∇ − e∗A with e∗ = 2e and m∗ = 2m.
The quartic term with |Ψ|4 can be effectively included in the
square term by using the self-consistent harmonic approxima-
tion and is dropped here. We will explain this point later. The
spatially averaged supercurrent is given in the simple form

Jsx = −|e∗|
∫

d2r

Ω
Ψ∗

[

1

m∗
Px + 3ΛBz(P

2
x − P 2

y )

]

Ψ,

(C2)

where Ω =
∫

d2r1 is a two-dimensional system volume. The
y-component can be constructed by symmetry and we do not
consider here. We choose the vector potential as Ax = −Ext
andAy = −Eyt+Bzx. Now we expand the complex function

Ψ as

Ψ(r, t) =
∑

kn

ckn(t)e
−ikyei|e|Ext[x−x0k(t/2)]hn(x− x0k(t)),

(C3)

x0k(t) =
k + |e∗|Eyt

|e∗|Bz
, (C4)

where hn(x) is an eigenfunction of the one-dimensional har-
monic oscillator with the quantum number n. We can show
the following relations

PxΨ = −i
√

m∗ω

2
(b− b†)Ψ, (C5)

P 2

2m
Ψ = ω(b†b+ 1

2 )Ψ, (C6)

(P 3
x − 3PxP 2

y )Ψ = 4i

(

m∗ω

2

)3/2

(b3 − b†3)Ψ, (C7)

(P 2
x − P 2

y )Ψ = −m∗ω(b2 + b†2)Ψ, (C8)

with ω = |e∗|Bz/m
∗ being a cyclotron frequency. We have

used the relations

∂xhn(x) =

√

m∗ω

2
(b − b†)hn(x), (C9)

xhn(x) =

√

1

2m∗ω
(b+ b†)hn(x), (C10)

The operators b and b† act only on hn as

bhn =
√
nhn−1, (C11)

b†hn =
√
n+ 1hn+1. (C12)

Let us consider the TDGL equation in the presence of thermal
fluctuations:

−Γ∂tΨ =
δF

δΨ∗
− f, (C13)

We note that Γ here is different from the one in Eq. (91) by a
constant factor. Equation (C13) can be rewritten in terms of
ckn(t) as

−Γ∂tcn = [a+ ω(n+ 1
2 )]cn − f ′

n

+ 4iΛBz

(

m∗ω

2

)3/2
[

√

n+3P3cn+3 −
√

nP3cn−3

]

+
i|e|Γ√
2m∗ω

[√
n+ 1Ecn+1 +

√
nE∗cn−1

]

,

(C14)

where we have defined the complex electric field E = Ex +
iEy and have omitted k. The symbol nPm = n!/(n −m)! is
the permutation. This equation can be solved perturbatively.
We expand the solution as

cn(t) =
∞
∑

p,q=0

cpqn (t), (C15)
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where cpqn is a contribution of O(EpΛq), and each term satis-
fies the following recursive equation:

cpqn (t) =
i

Γ

∫ t

−∞

dt′
[

β(
√

n+3P3c
p,q−1
n+3 −

√
nP3c

p,q−1
n−3 )

+α(
√
n+ 1Ecp−1,q

n+1 +
√
nE∗cp−1,q

n−1 )
]

e(t
′−t)An . (C16)

Here we have defined

α = − |e|Γ√
2m∗ω

, β = −4ΛBz

(

m∗ω

2

)3/2

, (C17)

An =
a+ ω(n+ 1

2 )

Γ
, (C18)

to make the notation simple.
We rewrite the current along x-direction as

Jsx =
|e∗|2Bz

π

Ec/ω
∑

n=0

[
√

ω

2m∗

√
n+ 1 Im 〈c∗n+1cn〉

+3ΛBzm
∗ω
√

n+2P2 Re 〈c∗n+2cn〉
]

, (C19)

where we have used the relation for the number of degeneracy:

∑

k

1 =
Ω

2πℓ2B
(C20)

with ℓB =
√

1/|e∗|Bz being the magnetic length. The cutoff
energy is given by Ec ∼ T0.

2. Evaluation of current

We first consider the zeroth-order component:

〈c00∗n (t1)c
00
n (t2)〉 =

T/Γ

An
e−|t1−t2|An . (C21)

To evaluate the current we need only the equal-time compo-
nent of the forms 〈c∗n+1cn〉 and 〈c∗n+2cn〉. The O(E1) com-
ponents are calculated from Eqs. (C16) and (C21) as

〈c10∗n+1c
00
n 〉 = − iαET

Γ2

√
n+ 1

1

An(An +An+1)
, (C22)

〈c10∗n−1c
00
n 〉 = − iαE

∗T

Γ2

√
n

1

An(An +An−1)
. (C23)

The O(E2) components are calculated as

〈c10∗n+2c
10
n 〉 = α2E2T

Γ3

√

n+2P2 H1(n+ 1, n+ 2, n), (C24)

〈c00∗n+2c
20
n 〉 = −α2E2T

Γ3

√

n+2P2 H2(n+ 2, n, n+ 1),

(C25)

〈c00∗n−2c
20
n 〉 = −α2(E∗)2T

Γ3

√
nP2 H2(n− 2, n, n− 1),

(C26)

where

H1(i, j, k) =
1

Ai(Aj +Ak)

[

1

Ai +Ak
+

1

Ai +Aj

]

,

(C27)

H2(i, j, k) =
1

Ai(Ai +Ak)(Ai +Aj)
. (C28)

The O(E2Λ1) components are also calculated as

〈c11∗n+1c
10
n 〉 =− (C21)∗

[

n+1P3√
n+ 1

F1(n− 1, n+ 1, n, n− 2) +
n+2P3√
n+ 1

F1(n− 1, n+ 1, n, n+ 2)

]

, (C29)

〈c11∗n−1c
10
n 〉 =− C21

[

n+2P3√
n
F1(n+ 1, n− 1, n, n+ 2) +

n+1P3√
n
F1(n+ 1, n− 1, n, n− 2)

]

, (C30)

〈c20∗n+1c
01
n 〉 =(C21)∗

n+3P3√
n+ 1

F1(n+ 3, n+ 1, n, n+ 2), (C31)

〈c20∗n−1c
01
n 〉 =C21 nP3√

n
F1(n− 3, n− 1, n, n− 2), (C32)

〈c21∗n+1c
00
n 〉 =(C21)∗

[

n+1P3√
n+ 1

F2(n, n+ 1, n− 2, n− 1) +
n+3P3√
n+ 1

F2(n, n+ 1, n+ 2, n+ 3) +
n+2P3√
n+ 1

F2(n, n+ 1, n+ 2, n− 1)

]

,

(C33)

〈c21∗n−1c
00
n 〉 =C21

[

n+2P3√
n
F2(n, n− 1, n+ 2, n+ 1)

nP3√
n
F2(n, n− 1, n− 2, n− 3)

n+1P3√
n
F2(n, n− 1, n− 2, n+ 1)

]

,

(C34)
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where we have defined the complex constant by C21 = iα2βE2T/Γ4 and the functions F1,2 by

F1(i, j, k, l) =
1

Ai(Aj +Ak)

[

1

(Ai +Al)(Ak +Al)
+

1

(Ai +Ak)(Ak +Al)
+

1

(Ai +Al)(Ai +Aj)

]

, (C35)

F2(i, j, k, l) =
1

Ai(Ai +Al)(Ai +Ak)(Ai +Aj)
. (C36)

The quantities other than the listed above can be evaluated using a complex conjugation relations. Substituting the above
expressions into the current, we obtain the linear and nonlinear paraconductivities. We define the transport coefficients by
Jsx = σ1Ex + σ2(E

2
x − E2

y) +O(E3) and each coefficient is given by

σ1 =
|e∗|2ωT
2πΓ

∑

n

n+ 1

An +An+1

(

1

An
− 1

An+1

)

, (C37)

σ2 = −|e∗|3m∗ΛBzωT

2πΓ2

∑

n

[ωX(n) + 3ΓY (n)], (C38)

where

X(n) = n+1P3F1(n− 1, n+ 1, n, n− 2) + n+2P3F1(n− 1, n+ 1, n, n+ 2)

+ n+3P3F1(n+ 2, n, n+ 1, n+ 3) + n+2P3F1(n+ 2, n, n+ 1, n− 1)

− n+3P3F1(n+ 3, n+ 1, n, n+ 2)− n+1P3F1(n− 2, n, n+ 1, n− 1)

− n+1P3F2(n, n+ 1, n− 2, n− 1)− n+3P3F2(n, n+ 1, n+ 2, n+ 3)− n+2P3F2(n, n+ 1, n+ 2, n− 1)

− n+3P3F2(n+ 1, n, n+ 3, n+ 2)− n+1P3F2(n+ 1, n, n− 1, n− 2)− n+2P3F2(n+ 1, n, n− 1, n+ 2), (C39)

Y (n) = n+2P2[H2(n+ 2, n, n+ 1) +H2(n, n+ 2, n+ 1)−H1(n+ 1, n+ 2, n)]. (C40)

One can check that the function in the n-summation behaves
as O(n−2) or faster at large n , so we do not need the cut-
off for convergence. The ordinary paraconductivity σ1 here
reproduces the results derived in the previous work [44].

3. Effect of quartic term

Here we consider the quartic term in GL free energy

F4 =
b

2

∫

d2r |Ψ|4. (C41)

We use the self-consistent harmonic approximation [45]:

|Ψ|4 = Ψ∗Ψ∗ΨΨ ≃ 2〈|Ψ|2〉|Ψ|2. (C42)

Hence the coefficient a is replaced by a′ = a + b〈|Ψ|2〉. We
have the self-consistent equation to determine a′:

〈|Ψ|2〉 = 1

Ω

∑

kn

〈|ckn|2〉 =
m∗T

2π

Ec/ω
∑

n=0

1

n+ 1
2 + a+b〈|Ψ|2〉

ω

.

(C43)

Note that here we need the cutoff energy Ec ∼ T0 for con-
vergence, and have neglected the P -cubic term which is ir-
relevant in the leading-order contribution for the equilibrium
case. With this consideration, the finite transition temperature
in mean-field theory is washed away in the two-dimensional
system reflecting the Mermin-Wagner theorem.

Figure 5 shows the exemplary results for the magnetic field
dependence of γS(Bz) = σ2/σ

2
1BzW which is normalized

by the value at Bz = 0. Above the mean-field transition tem-
perature T0, the γ-value decreases with increasing Bz , and it
becomes nearly half at high fields. On the contrary, below T0,
the γ-value is small at lowBz and increases by applying mag-
netic field. Although γS(Bz)/γS(0) goes to 1 at zero field, the
corresponding Bz-range is so narrow that such regime (i.e.
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FIG. 5. Magnetic field Bz dependence of the γ-value from paracon-
ductivity. The unit for the magnetic field is B0 = m∗T0/|e

∗|. The
parameters are chosen as a(T ) = 0.02(T − T0), bm∗ = 0.005, and
Ec = 4T0. Note that the normal conductivity is neglected.
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a′ ≫ ω) cannot be seen practically. This is because the value
of a′ for T < T0 remains positive but is so tiny, and therefore
the behavior is very sensitive to the small value of Bz . We

note that in actual systems the component of normal conduc-
tivity is also finite and modifies the γ-value down to zero at
high magnetic fields.
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