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We study the Kitaev model in a [001] magnetic field employing the mean field theory in the
Majorana fermion representation. The mean field Hamiltonian of the system has the Bogoliubov
de-Gennes (BdG) form of a 2D superconductor. We discover a robust gapless regime in intermediate
magnetic field for both gapless and gapped anti-ferromagnetic Kitaev model with Jx = Jy before
the system is polarized in high magnetic field. A topological phase transition connecting two gapless
phases with a nodal line phase takes place at a critical magnetic field hc1 in this regime. While the
nodal line phase at hc1 disappears when the mirror symmetry Jx = Jy is broken, the nodal point
gapless phase can exist at intermediate fields even without the mirror symmetry. We reveal that
the phase evolution of the system in the magnetic field is driven by the competition between the
magnetic field and the particle-hole asymmetry of the normal state of the BdG Hamiltonian, which
results in the robust intermediate gapless phase for the anti-ferromagnetic case. For ferromagnetic
case, there is no intermediate phase transition before polarization. The above phase diagrams are
confirmed by dynamical mean field theory results.

I. INTRODUCTION

The Kitaev spin liquid (KSL) has attracted great in-
terest since its proposal by Kitaev over a decade ago as it
provides a minimum and exactly solvable model to study
quantum spin liquid [1]. As a spin system, the behavior of
the KSL in magnetic field is of fundamental interest. The
early study of Kitaev reveals that the KSL exhibits in-
triguing behaviors even in a perturbative weak magnetic
fields, e.g., a weak magnetic field in the [111] direction
can open up a gap in the spectrum of a gapless KSL and
result in non-Abelian anyonic excitations [1], whereas a
weak magnetic field in the [001] direction can close the
flux gap of a gapless KSL and turn the gapless KSL to a
critical spin liquid [2].

However, the study of Kitaev model in the magnetic
field beyond perturbation theory is very limited until re-
cently. Motivated by recent experimental search of KSL
in real materials [3–7], which were often conducted in a
uniform magnetic field to suppress the magnetic order
in real materials at low temperature, several theoretical
groups studied the Kitaev model in uniform magnetic
field, [111] direction or tilted, employing the exact di-
agonalization (ED) and density matrix renormalization
group (DMRG) method [8–10]. All these works reveal
intriguing behaviors of anti-ferromagnetic (AFM) Kitaev
model in a uniform magnetic field beyond perturbation
regime, e.g., the gapless AFM Kitaev model exhibits a
phase transition from gapped phase in weak magnetic
field to a mysterious gapless phase in an intermediate
magnetic field before the system reaches the trivial po-
larized state at higher magnetic field. The origin and
properties of this intermediate gapless phase remain a
puzzle [8–10].

In this work, we study the phase evolution of the KSL
ground state with a [001] magnetic field based on the

mean field theory (MF/MFT) in the Majorana represen-
tation supplemented by the dynamical mean field the-
ory (DMFT) studies which includes the quantum fluctu-
ations in time. This approach is naturally connected to
the exact solution of the Kitaev model at zero magnetic
field and keeps the generic fractionalized Majorana exci-
tations of the KSL compared to the MFT in the widely
used slave fermion representation [11].

The mean field Hamiltonian of the KSL in the [001]
magnetic field has the BdG form of a 2D superconduc-
tor [12]. We discovered a robust gapless regime in inter-
mediate magnetic field for both gapless and gapped AFM
KSL with Jx = Jy before the system is polarized in high
magnetic field from the mean field theory. A topological
phase transition connecting two gapless phases with the
emergence of a nodal line takes place in the intermediate
field regime at a critical magnetic field hc1 . While the
nodal lines at the critical field is protected by the mirror
symmetry with Jx = Jy and disappear at Jx 6= Jy with
a gap opening near the critical field, the nodal points at
E = 0 appear due to the intrinsic particle-hole (p-h) sym-
metry of the BdG Hamiltonian (but not guaranteed by
the symmetry) and can exist in intermediate fields even
when the mirror symmetry is broken. The above phase
diagrams are confirmed by DMFT results. We found
that the driving force for the evolution of the phase in
the magnetic field is the competition between the mag-
netic field and the p-h asymmetry of the normal state
of the mean field BdG Hamiltonian, which also results
in the robust intermediate gapless phase for AFM KSL
before polarizaiton.
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FIG. 1: (a)Kitaev honeycomb lattice. The dashed oval repre-
sents a unit cell. q1 and q2 are unit vectors in the reciprocal
lattice. (b) The occupation number of the f fermion nf0 as a
function of Jz/|Jx| at the Kitaev ground state for Jx = Jy.

II. MODEL AND HAMILTONIAN

We study the KSL in a uniform magnetic field in the
[001] direction with the Hamiltonian

H = −
∑
〈ij〉α,α

Jασ̂
α
i σ̂

α
j − h

∑
i

σzi . (1)

The first term describes the pure Kitaev model on a hon-
eycomb lattice in Fig. 1(a) [1], where α = x, y, z and 〈ij〉α
denotes two sites sharing an α bond. The second term
describes the couplings of the half spin on each site with
the magnetic field.

At h = 0, the pure Kitaev model is solved by rep-
resenting the half spin on each site with four Majorana
fermions ĉi, b̂

x
i , b̂

y
i , b̂

z
i as σαi = icib

α
i [1]. This represen-

tation expands the Hilbert space of spin to twice of the
physical one and a constraint is usually applied to nar-
row down the states obtained in this representation to
the physical space. The pure Kitaev Hamiltonian then
reads HK = i

∑
〈ij〉α,α Jαu〈ij〉αcicj , where the bond op-

erator u〈ij〉α ≡ ibαi b
α
j is conserved with u〈ij〉α = ±1.

The ground state corresponds to the gauge invariant flux
W ≡

∏
π u〈ij〉α defined on each hexagon π to be 1 [1]

and the Hamiltonian reduces to the BdG form of a spin-
less p-wave superconductor when expressed in terms of
complex fermions defined as χ〈ij〉α = i(bαi + ibαj )/2 and
fr = (cr,A + icr,B)/2 [16, 19],

H0 = −
∑

r,α=x,y

Jα(f†r fr+nα + frfr+nα + h.c.)

−
∑
r

Jz(2f
†
r fr − 1)

=
∑
q

[
ξ0
q(f†qfq −

1

2
) + ∆qf

†
qf
†
−q + ∆∗qfqf−q

]
,

(2)

where r represents the unit cell defined in Fig. 1(a) and

we choose the gauge u〈ij〉α = 2χ†〈ij〉αχ〈ij〉α − 1 = −1,

i.e, nχ〈ij〉α = 0 for all the bonds in the ground state.

ξ0
q = −Re Sq and ∆q = iIm Sq is the pairing func-

tion. The Hamiltonian Eq.(2) can be diagonalized by

the Bogoliubov transformation aq = uqfq − vqf†−q with

uq = cos θq, vq = i sin θq, and tan 2θq =
Im Sq

Re Sq
[16]. The

spectrum is ε0(q) = ±|Sq| with Sq = Jz +Jxe
iq1 +Jye

iq2

and does not depend on the sign of Jα, where q1, q2 are
the components of q in q1 and q2 directions in Fig. 1(a).

The Hamiltonian H0 breaks the p-h symmetry of the
Kitaev model spontaneously as manifested by the lo-
cal potential scattering of fr fermions on the z bonds.
The normal state of the BdG Hamiltonian H0 is then
p-h asymmetric and the occupation nf0 ≡ 〈f†r fr〉0 =
1
N

∑
q |uq|2 = 1

2 + 1
N

∑
q

ReSq

2|Sq| deviates from half filling

in general as shown in Fig. 1(b) [17].

When the magnetic field is applied, the gauge equiva-
lence of the ground state between the FM coupling Jz > 0
and AFM coupling Jz < 0 is broken, as well as the time
reversal symmetry (TRS). The AFM KSL in a uniform
magnetic field is then equivalent to a FM KSL in a stag-
gered magnetic field on the two sublattices by a gauge
transformation Jz → −Jz, bzr,B → −bzr,B on all the z
bonds. However, the cases with Jα > 0 and Jα < 0 for
α = x, y are still gauge equivalent. For the reason, we
only need to consider one of the cases. We assume all the
Jα < 0 for the AFM case and all the Jα > 0 for the FM
case in the following.

The [001] magnetic field breaks the integrability of the
Hamiltonian since u〈ij〉z is no longer conserved, though,
for the x and y bonds, u〈ij〉α are still conserved and we
set it to −1. Under this convention, the dimension of the
remaining Hilbert space of states is the same as the phys-
ical space and there is no extra gauge constraint needed.
We then separate the interaction on the z bonds in the
Kitaev model HK and write the full Hamiltonian includ-
ing the magnetic field as [18]

H = H0 + 2Jz
∑
r

χ†rχr(2f
†
r fr − 1)

−2h
∑
r

(f†rχr + χ†rfr), (3)

where the sum is over all the z bonds. The hybridization
of χr with fr induced by the magnetic field flips the sign
of ur and excites fluxes in the system which become mo-
bile in the lattice. It was shown by perturbation theory
that the dynamics of the flux in the above system effec-
tively closes the flux gap and results in a power law spin
correlation with distance for gapless KSL [2] instead of
short-range spin correlation in pure KSL [16, 19].

However, the understanding of the KSL in the mag-
netic field beyond perturbation theory is so far very lim-
ited. In the following, we present an investigation of the
KSL in [001] magnetic field beyond perturbation based
on the self-consistent MFT. The MFT is justified partly
due to the p-h symmetry breaking of the normal state of
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H0 so that nf0 deviates from half filling which suppresses
the fluctuations of χ fermions in the interaction.

We decompose the interaction HV ≡
2Jz

∑
r χ
†
rχr(2f

†
r fr − 1) in Eq.(3) to the Hartree

and Fock term by the standard MFT procedure

HHart
V = 4Jz

∑
r

nχf
†
r fr + 4Jz

∑
r

(nf −
1

2
)χ†rχr, (4)

HFock
V = −Jz

∑
r

mf†rχr − Jz
∑
r

m∗χ†rfr, (5)

where nχ ≡ 〈χ†rχr〉 and nf ≡ 〈f†r fr〉 are the mean
fields representing the average number of the χr and fr
fermion, and m ≡ 4〈χ†rfr〉 is the average magnetization
on the r-th z bond. The fr and χr fermions then gain a
chemical potential from the Hartree term. The Fock term
results in an effective magnetic field heff = h + 1

2Jzm,
which is enhanced by the FM couplings and decreased
by the AFM couplings.

We assume the mean fields are uniform in space [20].
The full MF Hamiltonian in the momentum space can
then be written as the following 4×4 matrix in the basis
ψq = (fq, χq, f

†
−q, χ

†
−q)T ,

HMF
q =


ξq −heff ∆q 0
−h∗eff ξχ 0 0
∆∗q 0 −ξq h∗eff

0 0 heff −ξχ

 , (6)

where ξq = −Re Sq + 2Jznχ and ξχ = 2Jz(nf − 1/2) are
the normal state spectrum of f and χ fermions respec-
tively. We note that ξχ > 0 for both AFM and FM KSL,
which results in a finite energy cost for flux excitation
and suppresses the fluctuations of χ fermions.

The above Hamiltonian can be written as HMF
q =

H̃Nτz +∆̃τy, where H̃N is the upper diagonal 2×2 block

describing the normal state, ∆̃ is the upper off-diagonal
2 × 2 matrix describing the pairing and τz and τy act
on the Nambu space. Though the p-h symmetry of the
normal state H̃N is broken, the BdG Hamiltonian has
an intrinsic p-h symmetry CHMF

q C−1 = −HMF
q under

C = τyK (K is the complex conjugate operator) due to
the p-h redundancy of the Nambu space which results in
a p-h symmetric spectrum [12].

III. RESULTS FROM THE MEAN FIELD
THEORY

III.1. Mirror symmetric case Jx = Jy

The MF Hamiltonian Eq.(6) is solved self-consistently.
The [001] magnetic field breaks the C3 rotational sym-
metry of the lattice, however, the mirror symmetry with
respect to the qx and qy axis crossing the Γ point in
Brilliouin zone (BZ) is preserved for Jx = Jy. We study
this mirror symmetric case at first.

1. AFM case

(a)Gapless AFM case. We first study the gapless AFM
case with mirror symmetry. For the typical isotropic
case Jx = Jy = Jz < 0, the evolution of the four bands
from the MF Hamiltonian with magnetic field is shown
in Fig. 2(a)-(d). It reveals that the two Weyl points (in
some references called Dirac points) K and K ′ at E = 0
and h = 0 persist and move along the KΓ1 and K ′Γ2

direction all the way to Q and Q′ indicated by the red
lines in Fig. 2(e) as h increases from 0 to hc2 , except that
at some critical magnetic field h = hc1 < hc2 , the Weyl
points moving to P = (π/2, 3π/2) and P ′ = (3π/2, π/2)
in the qx direction turn to two nodal lines crossing PP ′ in
the qy direction (blue dashed lines in Fig. 2(e)) as shown
in Fig. 2(b). At Q and Q′, the two Weyl points disap-
pear simutaneously and a gap opens at Γ point as shown
in the Fig. 2(d). The band structure then indicates two
phase transitions at hc1 and hc2 respectively.

The plots of the mean field parameters as a function
of h in Fig. 3(a) also reveal phase transitions at hc1 and
hc2 . The magnetization jumps discontinuously at hc2
which indicates a first order phase transition to partial-
polarized state. The occupation of both f and χ fermions
increases with h and jumps to 1/2 at the transition point
hc2 . The high magnetic field then tends to restore the p-h
symmetry of the normal state H̃N because the maximum
magnetization requires half filling of both nf and nχ. We
will show below that this tendency drives the evolution
of the phase and phase transition with the increase of the
magnetic field.

The mean field parameters at hc1 only show small kinks
(resulting in a peak in magnetic susceptibility) as shown
in Fig. 3(a), indicating a continuous phase transition at
hc1 . We will focus on this phase transition in the follow-
ing.

From the mean field Hamiltonian Eq.(6), the zero en-
ergy solution appears when both the pairing function ∆q

and the determinant of H̃N is zero, i.e., H̃N has a zero
eigenenergy, {

∆q ∝ Im Sq = 0,
ξqξχ − |heff |2 = 0.

(7)

The intrinsic p-h symmetry of the BdG Hamiltonian
guarantees that any zero energy point is at least two fold
degenerate.

In the case Jx = Jy, Eq.(7) has the following solutions{
q1 = −q2

cos q1 = cos q2 = γ1
, and

{
q1 = q2 ± π
cos q1 = cos q2 = γ1

,

(8)

where γ1 = (nχ− 1
2 )Jz/Jx + |heff |2

4JxJz( 1
2−nf )

. The first solu-

tion requires |γ1| ≤ 1 and gives the locations of two Weyl
points at q∗1 = −q∗2 , q∗1 = ± arccos γ1. We can see that
the Weyl points move along the qx direction in the BZ as
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FIG. 2: (a)-(d): Mean field band structure for isotropic AFM KSL with (a) 0 < h < hc1 , (b)h = hc1 , (c)hc1 < h < hc2 and
(d)h > hc2 . (e)Evolution of Weyl points and nodal lines with the increase of magnetic field h in the BZ for isotropic AFM (red
and blue lines) and FM case (green lines).
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FIG. 3: (a) and (b): The mean field parameters, spin-
correlation function on the z bonds and the parameters γ1
and γ2 as a function of h obtained from the MFT for isotropic
AFM KSL. (c)The evolution of the low energy density of state
of the matter fermion quasiparticles with the magnetic field
obtained from the DMFT. The horizontal dashed lines locate
the zero point of the density of states for each curve. The
vertical axis labels the magnetic field h/|Jx| for the corre-
sponding curve. The unit of energy E is |Jx|.

shown in Fig.2(e). Whereas the second solution exists if
and only if γ1 = 0 and Jx = Jy. In this case, the solution
becomes two nodal lines at q1 = q2± π. This takes place
at the critical magnetic field h = hc1 .

For AFM KSL, both nf and nχ increases monotoni-
cally with h from less than 1/2 at h = 0 until at h = hc2 ,
both jumps to 1/2. The effective magnetic field heff also
increases with h for h < hc2 as shown in Fig. 3(a). For
the reason, γ1 increases monotonically with h for gapless
KSL from −1 ≤ γ1 = −Jz/2Jx < 0 at h = 0 until at
h = hc2 , γ1 jumps from less than 1 (γ1 = 1 corresponds

to the Γ1 and Γ2 point) to − |heff |2
4JzJx(nf−1/2) → +∞. The

Weyl point solution at E = 0 for gapless AFM KSL with
Jx = Jy are then expected to exist all the way from h = 0
to h = hc2 except that at h = hc1 , γ1 = 0, and the Weyl
points turn to two nodal lines.

The variation of γ1 with h for Jx = Jy = Jz < 0
in Fig. 3(b) and the corresponding band structure in
Fig. 2(a)-(d) confirmed the above analysis. We can see
that the driving force for the phase evolution of the AFM

KSL with the magnetic field is the competition between
the magnetic field and the p-h asymmetry of the normal
state so that nf and nχ both tends to increase to half
filling as h increases.

To have a better understanding of the topological prop-
erties of the Weyl points at E = 0 and the phase tran-
sition at h = hc1 , we obtain an effective 2 × 2 Hamil-
tonian near the Weyl points for the two bands touch-
ing at the Weyl points by projecting the MF Hamil-
tonian Eq.(6) with the projecting operator containing
only the two degenerate states at each Weyl point, i.e.,
H2×2 = P †HMF

q P with P = |Ψ01〉〈Ψ01| + |Ψ02〉〈Ψ02|,
where |ψ01〉 and |ψ02〉 are the two degenerate eigenstates
at each Weyl point. This is justified because near the
Weyl points at E = 0, the mixing from the highest and
lowest band to the eigenstates is small and does not af-
fect the topological properties of the Weyl points. As
shown in the appendix, the effective 2 × 2 Hamiltonian
for the Jx = Jy case after expanding to linear order of
δq ≡ q− q∗ near the Weyl points q∗ at E = 0 is

H2×2 = − 2Jx|heff |2

|heff |2 + ξ2
q∗

[
0 ṽxδqx − iṽyδqy

ṽxδqx + iṽyδqy 0

]
,

(9)
where qx = (q2 − q1)/2, qy = (q2 + q1)/2, ṽx = sin q∗1 =

±
√

1− γ2
1 , ṽy = cos q∗1 = γ1. The basis composed of the

two degenerate states for H2×2 are properly chosen as
shown in the Appendix. The dispersion near the Weyl

point is then E±q = ± 2J|heff |2
|heff |2+ξ2

q∗

√
ṽ2
xδq

2
x + ṽ2

yδq
2
y. The

upper and lower band has chirality ±1 respectively.

The eigenvectors of the effective Hamiltonian near
each Weyl point are two pseudospin vectors |ψ̃〉± =
1√
2
(1,±eiθ̃q)T , where θ̃q is the angle between q̃ =

(ṽxδqx, ṽyδqy) and the qx axis, and rotates a full circle
when δq rotates a circle around the Weyl point, corre-
sponding to a winding number +1 or −1 of the eigenvec-
tors [21]. For a given Weyl point, ṽy = γ1 changes sign at
h = hc1 as shown in Fig. 3(b) whereas ṽx does not, so the
winding number also changes sign resulting in a topolog-
ical phase transition at hc1 . Since ṽx has opposite signs
at the two Weyl points whereas ṽy is the same at the
two points, the two Weyl points have opposite winding
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FIG. 4: Band structure for the isotropic FM case from the
MFT. (a) 0 < h < hFM

c . (b)h > hFM
c .

number.

There are two other pairs of Weyl points at finite en-
ergy εq∗ 6= 0 at h < hc2 as shown in Fig. 2(a)-(d). The
Weyl points at εq∗ 6= 0 satisfy:

{
Im Sq = 0,
ξq + ξχ = 0.

(10)

These Weyl points require the pairing function ∆q =

0 and at the same time, the two eigenenergies of H̃N

are opposite to each other. Due to the p-h symmetry
of the bands, these solutions form Weyl points at the
corresponding ±EN .

In the case Jx = Jy, the solution of Eq.(10) has the
same form of Eq. (8) except that γ1 is replace by γ2 =
(nχ+nf −1)Jz/Jx. Similar analysis to the above applies
to the Weyl points at ±EN only with γ1 replaced by γ2 =
(nχ + nf − 1)Jz/Jx. Since γ2 = (nχ + nf − 1)Jz/Jx ≤ 0
at h ≤ hc2 , i.e., it does not change sign at h < hc2 , the
topological characters of these Weyl points do not change
at h < hc2 .

(b) Gapped AFM case. For the gapped AFM case with
Jx = Jy, γ1 = −Jz/2Jx < −1 at h = 0 so the spectrum
is gapped. As h increases, γ1 increases from the above
analysis until at the trivial polarized phase γ1 → +∞.
There then must exist an intermediate range of h where
−1 ≤ γ1 ≤ 1 and the gapped KSL becomes gapless from
the mean field Hamiltonian. This is confirmed by the
band structure of the case Jz = 2.5Jx = 2.5Jy < 0
shown in the appendix. There also exists an interme-
diate magnetic field hc1 where γ1 = 0 and a topological
phase transition takes place between two gapless phases.

From the above analysis, we see that for the AFM KSL
with Jx = Jy, either gapless or gapped, since γ1 < 0 at
h = 0 and γ1 → +∞ at h → hc2 , there must exist a
gapless regime at intermediate magnetic field and a topo-
logical phase transition corresponding to γ1 = 0 before
the system reaches the polarized state at high magnetic
field.
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FIG. 5: (a) and (b): The mean field parameters, spin-
correlation function on the z bonds and the parameters γ1 and
γ2 as a function of h obtained from the MFT for isotropic FM
case. (c)The evolution of the low energy density of state of
the matter fermion quasiparticles with the magnetic field ob-
tained from the DMFT for the isotropic FM case. The labels
of the curves are the same as for the AFM case in Fig.3(c).

2. FM case

For the FM case with Jx = Jy, nf > 1/2, nχ < 1/2
and γ1 = −Jz/2Jx < 0 at h = 0. As h increases
from zero, γ1 decreases for both gapless and gapped
KSL until at some critical magnetic field h = hFM

c ,

γ1 → − |heff |2
4JzJx(nf−1/2) → −∞. For the reason, there is

no intermediate phase transition from the MFT before
reaching the trivial polarized phase at h = hFM

c for FM
KSL. This is confirmed by the band structure of the typ-
ical FM case Jx = Jy = Jz > 0 shown in Fig.4. The
corresponding mean field parameters and γ1 are shown
in Fig.5(a) and (b). At h = hFM

c , the system experience a
first order phase transition to the gapped polarized state
at h = hFM

c for the gapless KSL. Whereas for gapped
FM KSL, the transition to the gapped polarized phase is
continuous.

The critical magnetic field hFM
c to reach polarized

phase for the FM KSL is much lower than its counterpart
hc2 for the AFM KSL. This is because the FM Kitaev
coupling enhances the effective magnetic field whereas
the AFM coupling decreases heff .

3. Comparison with the DMFT results

To check the reliability of the above results from the
MFT, we carried out the DMFT, which includes the
quantum fluctuations in time, for the Hamiltonian Eq.(3)
in different cases.

The evolution of the low energy density of states (DOS)
of the matter fermion quasiparticles as a function of the
magnetic field for the corresponding AFM case and FM
case is shown in Fig. 3(c) and Fig. 5(c) respectively. For
the isotropic AFM case, the DMFT result in Fig. 3(c)
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FIG. 6: (a)-(d): Mean field band structure for the mirror asymmetric AFM case Jx = Jz, Jy = 0.95Jx. (a) 0 < h < h′c1 ,
(b)h′c1 < h < h′′c1 , (c)h′′c1 < h < hc2 and (d)h > hc2 .
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FIG. 7: (a): The mean field parameters and the spin-
correlation function on the z bonds obtained from the MFT
for the mirror asymmetric AFM case Jx = Jz, Jy = 0.95Jx.
(b)The magnetic susceptibility as a function of h for the corre-
sponding case. (c)The parameters γ1 and γ2, and cosq1 and
cosq2 corresponding to the Weyl point solutions as a func-
tion of h. The solid lines are for zero energy Weyl points in
Eq. (11) and the dashed lines are for Weyl points at E 6= 0.
(d)The evolution of the low energy density of state of the mat-
ter fermion quasiparticles with the magnetic field obtained
from the DMFT for the same case. The labels of the curves
are the same as for the AFM case in Fig.3(c).

reveals that the low energy DOS of the matter fermion
quasiparticles changes from linearly vanishing with en-
ergy at low magnetic field to a finite value at some in-
termediate magnetic field and then to linearly vanishing
again with the increase of h. Finally at high magnetic
field, the low energy DOS vanishes within an energy gap
at E = 0. This is qualitatively consistent with the phase
evolution of the isotropic AFM case in the magnetic field
obtained from the MFT in the previous subsection, i.e.,
from a gapless phase to a nodal line phase and then to
a gapless phase again with the increase of the magnetic
field and finally a gap opens at E = 0 at high magnetic
field. The main difference between the MFT and dy-
namical MFT is that the critical magnetic field for the
intermediate phase transition is lower from the dynami-
cal MFT and the finite DOS at E = 0 seems to exist in

a range of intermediate magnetic field instead of only at
the critical field hc1 .

The phase evolution obtained from the DMFT for
the FM case in Fig. 5(c) and the gapped AFM case in
Fig. 9(c) in the appendix also agrees qualitatively with
the MFT results for the corresponding case.

III.2. Mirror asymmetric case Jx 6= Jy

In the case Jx 6= Jy, the mirror symmetry in the qx
and qy direction is broken. The zero energy nodal line
solution for the AFM case at γ1 = 0 from the MFT dis-
appears. But the Weyl point solution at E = 0 can still
exist for the mean field Hamiltonian. Let γ̃1 ≡ 2Jxγ1,
the zero energy solution from Eq. (7) then becomes:cos q1 =

γ̃2
1−J

2
y+J2

x

2Jxγ̃1
, sin q1 = ±

√
1− cos2 q1,

cos q2 =
γ̃2
1+J2

y−J
2
x

2Jy γ̃1
, sin q2 = ∓

√
1− cos2 q2.

(11)

The Weyl point exists when both | cos q1| ≤ 1 and
| cos q2| ≤ 1. At γ1 → 0, γ̃1 → 0 as well, both cos q1

and cos q2 then goes to infinity. The zero energy solution
at γ1 = 0 for the mirror symmetric AFM case disappear
in the case Jx 6= Jy and a gap opens at E = 0 near
the neighborhood of hc1 (γ1 = 0 at h = hc1). Fig. 6
shows the band structure from the MFT for a typical
AFM gapless mirror asymmetric KSL in the magnetic
field with Jx = Jz < 0, Jy = 0.95Jx. The corresponding
mean field parameters and the zero energy solutions are
shown in Fig. 7(a)-(c). From both figures, we see that a
gap opens at h′c1 < h < h′′c1 , where h′c1 < hc1 < h′′c1 . The
range h′′c1 − h

′
c1 ∼ |Jx − Jy|. For not very large |Jx − Jy|

compared to |Jx|, there still exists an intermediate gap-
less regime at h′′c1 < h < hc2 as shown in Fig. 6(c) and
Fig. 7(c). This results in two successive phase transitions
at h′c1 and h′c2 as shown in Fig. 7(a) and (b).

We also checked the DMFT results for the case Jx =
Jz < 0, Jy = 0.95Jx. As shown in Fig. 7(d), the low
energy DOS of the matter fermion quasiparticles near
E = 0 indicates a gapped phase at intermediate mag-
netic field around h/|Jx| ∼ 0.63−0.65 and gapless phases
at around 0 < h/|Jx| ≤ 0.63 and 0.65 ≤ h/|Jx| ≤ 0.75.
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At h/|Jx| > 0.76, the system reaches the gapped polar-
ized state. This is qualitatively consistent with the phase
evolution from the MFT shown in Fig. 6 and Fig. 7(c).

The two gapless regime at 0 < h < h′c1 and h′′c1 <
h < hc2 has opposite winding number around the Weyl
points as shown in the appendix. The gapped phase at
h′c1 < h < h′′c1 due to the mirror symmetry breaking is
trivial with total Chern number zero for the filled bands
E < 0. This is in contrast to the gapped phase resulting
from a small tilting of the magnetic field from the [001]
direction, which is topologically nontrivial with a Chern
number C = ±1 [1] and results in gapless edge modes and
quantum thermal Hall effect [22, 23].

IV. DISCUSSIONS AND CONCLUSIONS

The mean field state in the fractionalized majorana
representation is by construction a quantum spin liquid
state before reaching the trivial polarized phase at high
magnetic field. Due to the pairing term of the matter
fermions, the spin liquid phase of the mean field Hamil-
tonian in this work is different from the U(1) spin liquid
phase obtained from the mean field Hamiltonian of the
K − Γ model in the magnetic field in Ref.[11] where the
number of spinons is conserved. The spin liquid phase
from the MFT here is more likely a Z2 spin liquid due
to the pairing of the matter fermions, which, however,
is also different from the Z2 spin liquid phase of a pure
Kitaev model, where a well defined finite flux gap exists
while in the [001] magnetic field the flux gap is closed.
The nature of the states in the magnetic field in this work
deserves further study in future work.

The gapless phase with Dirac points also persists in
the K − Γ model with the magnetic field in selected di-
rections as studied in Ref.[11]. There the Dirac cones are
protected by the C3v lattice symmetry or the emergent
sublattice-spin rotation symmetry due to the spin-orbit
coupling, while in our case, the Weyl points appear due
to the intrinsic p-h symmetry of the BdG Hamiltonian
which guarantees that any zero energy point is two fold
degenerate. The appearance of the zero energy solution
is however accidental.

We note that the phase transition at hc1 for AFM KSL
with Jx = Jy is not simply equivalent to a sign change of
the effective Kitaev coupling Jz in pure Kitaev model as
suggested in [25]. In fact, the spin correlation function
on the z bond changes sign for the AFM KSL at some h
between hc1 and hc2 instead of hc1 as shown in Fig.3(a).
Besides, the normal state of the pure Kitaev BdG Hamil-
tonian at Jz = 0 is p-h symmetric with nf = nχ = 1/2,
whereas this p-h symmetry of the normal state with finite
Jz is restored at h = hc2 instead of hc1 .

The gapless phase was also discovered for the AFM
Kitaev model in an intermediate magnetic field in the
[111] or tilted directions in recent numerical works apply-

ing the DMRG or exact diagonalization method [8–10].
For the Kitaev model in an arbitrarily directed magnetic
field, the bond operator u〈ij〉α gains a dynamics on all
the bonds and the gauge convention u〈ij〉x,y = −1 used
in this work does not apply. A widely used constraint
in this case is the local constraint Dj ≡ bxj b

y
j b
z
j c = 1

introduced in Ref [1]. The comparison of the mean field
results in the [111] and tilted magnetic field with previous
numerical works will be left for a future study.

In conclusion, we studied the phase evolution of the
Kitaev model in [001] magnetic field based on MFT and
DMFT. In the mirror symmetric case Jx = Jy, we discov-
ered a robust gapless phase at intermediate magnetic field
and a topological phase transition between two gapless
phases connected by a nodal line phase for both gapless
and gapped AFM KSL before reaching the trivial polar-
ized state at high magnetic field. Whereas for FM KSL,
there is no intermediate phase transition before polariza-
tion. While the nodal line phase is protected by mirror
symmetry and disappears at Jx 6= Jy, the intermediate
gapless phase can still exist even without mirror symme-
try. We discovered that the phase evolution is driven by
the competition between the magnetic field and the p-h
asymmetry of the normal state of the mean field BdG
Hamiltonian, which also results in the robust interme-
diate gapless phase. The phase evolution of the system
from the MFT is qualitatively consistent with the results
from the DMFT.
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Dong, Zhao-Long Gu and Kai Li for helpful discus-
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APPENDIX

I. EFFECTIVE 2× 2 HAMILTONIAN NEAR THE
WEYL POINTS

We obtain an effective 2 × 2 Hamiltonian near the
Weyl points for the two bands touching at the Weyl
points by projecting the mean field Hamiltonian with the
projecting operator containing only the two degenerate
states at the Weyl points, i.e., H2×2 = P †HMF

q P with
P = |Ψ01〉〈Ψ01| + |Ψ02〉〈Ψ02|, where |ψ01〉 and |ψ02〉 are
the two degenerate eigenstates at each Weyl point.
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At Weyl points q∗, the MF Hamiltonian has a block
diagonal form since ∆q∗ = 0:

Hq∗ =


ξq∗ −heff 0 0
−h∗eff ξχ 0 0

0 0 −ξq∗ h∗eff

0 0 heff −ξχ

 . (12)

The two eigenstates corresponding to eigenenergy E =
0 are:

|Ψ01〉 =
1√

|heff |2 + ξ2
q∗

[
heff ξq∗ 0 0

]T
,

|Ψ02〉 =
1√

|heff |2 + ξ2
q∗

[
0 0 heff ξq∗

]T
.

(13)

The projection operator is then:

P = |Ψ01〉〈Ψ01|+ |Ψ02〉〈Ψ02|

=
1√

|heff |2 + ξ2
q∗

[
heff ξq∗ 0 0
0 0 heff ξq∗ ,

]T
,

(14)

and the effective Hamiltonian is:

H2×2 = P †HMF
q P

=
|heff |2

|heff |2 + ξ2
q∗

[
ξq − ξq∗ i Im Sq

−i Im Sq −(ξq − ξq∗)

]
.

(15)

The basis of the above Hamiltonian H2×2 are the two
degenerate states |Ψ01〉 and |Ψ02〉.

1. Mirror symmetric case Jx = Jy

For the case Jx = Jy = J , we expand Eq.(15) near the
Weyl points E = 0 and get:

H2×2 ≈
2J |heff |2

|heff |2 + ξ2
q∗

[
−ṽxδqx iṽyδqy
−iṽyδqy ṽxδqx

]
, (16)

where δqx = qx− q∗x, δqy = qy − q∗y , and ṽy = cos q∗1 = γ1,

ṽx = sin q∗1 = ±
√

1− γ2
1 . The ± sign corresponds to two

Weyl points at E = 0.

To have a nice image of the chirality and winding num-
ber of the eigenvectors of the effective 2×2 Hamiltonian,
we rotate the basis axis for Eq.(16) through the operator
U = e−i

π
4 σ

y

. The effective Hamiltonian then becomes:

H2×2 = − 2J |heff |2

|heff |2 + ξ2
q∗

[
0 ṽxδqx − iṽyδqy

ṽxδqx + iṽyδqy 0

]
.

(17)

We can do the rescaling q̃x = ṽxδqx = sin q∗1δqx, q̃y =
ṽyδqy = cos q∗1δqy. The effective Hamiltonian then be-
comes:

H̃ ′2×2 ∝ −
2J |heff |2

|heff |2 + ξ2
q∗

[
0 e−iθ̃q

eiθ̃q 0

]
, (18)

where θ̃q is the angle between q̃ = (ṽxδqx, ṽyδqy) and the
qx axis. The two eigenvectors of the effective Hamilto-

nian are two pseudo-spin vectors |Ψ̃〉± = 1√
2
(1, ±eiθ̃q)T .

The sign of ṽx does not change with the increase of the
magnetic field at a given Weyl point, whereas γ1 changes
sign at h = hc1 , corresponding to a sign change of the
winding number at the Weyl point. This results in a
topological phase transition.

The same analysis applies to the Weyl points at E 6= 0
only with γ1 replaced by γ2 = (nχ +nf − 1)Jz/Jx. Since
γ2 = (nχ + nf − 1)Jz/Jx ≤ 0 at h ≤ hc2 , i.e., it does
not change sign at h < hc2 , the topological characters of
these Weyl points do not change at h < hc2 .

2. Mirror asymmetric case Jx 6= Jy

In this case we expand ξq and Im Sq near the Weyl point q∗ at E = 0 and get:

Im Sq = Jx sin q1 + Jy sin q2

= Jx cos q∗1δq1 + Jy cos q∗2δq2

= (Jx cos q∗1 + Jy cos q∗2)δqy + (−Jx cos q∗1 + Jy cos q∗2)δqx

= γ̃1δqy +
J2
y − J2

x

γ̃1
δqx,

(19)
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FIG. 8: Band structure of gapped AFM KSL with Jx = Jy < 0, Jz = 2.5Jx from the MFT. (a)h < hc0 . (b)hc0 < h < hc1 .
(c)h = hc1 . (d)hc1 < h < hc2 . (e)h = hc2 .

Re Sq = Jz + Jx cos q1 + Jy cos q2

= Jz + Jx cos q∗1 + Jy cos q∗2 − Jx sin q∗1δq1 − Jy sin q∗2δq2

= Re Sq∗ − (Jx sin q∗1 + Jy sin q∗2)δqy − (−Jx sin q∗1 + Jy sin q∗2)δqx

= Re Sq∗ + 2Jx sin q∗1δqx.

(20)

The effective 2× 2 Hamiltonian becomes:

H2×2 ∼
2Jx|heff |2

|heff |2 + ξ2
q∗

 − sin q∗1δqx i(γ1δqy +
J2
y−J

2
x

4γ1J2
x
δqx)

−i(γ1δqy +
J2
y−J

2
x

4γ1J2
x
δqx) sin q∗1δqx

 . (21)

After the same rotation of the basis axis as for the mirror symmetric case in the last subsection, the effective
Hamiltonian becomes:

H ′2×2 = − 2Jx|heff |2

|heff |2 + ξ2
q∗

 0 sin q∗1δqx − i(γ1δqy +
J2
y−J

2
x

4γ1J2
x
δqx)

sin q∗1δqx + i(γ1δqy +
J2
y−J

2
x

4γ1J2
x
δqx) 0

 . (22)

Compared to the effective Hamiltonian Eq. (17) for the mirror symmetric case, Eq.(22) is equivalent to Eq. (17) by
an rotation of axis qy while keeping the qx axis still.

The two eigenvectors of the effective Hamiltonian still

has the form |Ψ̃〉± = 1√
2
(1, ±eiθ̃q)T , where θ̃q now is

the angle between q̃ = (sin q∗1δqx, γ1δqy +
J2
y−J

2
x

4γ1J2
x
δqx) and

the qx axis. The winding number of these eigenvectors
is still determined by the sign of sin q∗1 and γ1.

For the asymmetric AFM gapless case Jy =
0.95Jx, Jx = Jz < 0 in section III.2 in the main text,
the gapless regime at h < h′c1 has γ1 < 0 and the the
gapless regime at h′′c1 < h < hc2 has γ1 > 0. For the
reason, for a given Weyl point, the winding number at
h < h′c1 and h′′c1 < h < hc2 has opposite sign. The wind-
ing number at two different Weyl points also has opposite
sign at given h since sin q∗1 has opposite sign at the two
Weyl points.

II. THE MEAN FIELD RESULTS FOR THE
GAPPED AFM CASE WITH Jx = Jy

In this section, we show the mean field results for a
typical gapped AFM case with Jx = Jy < 0, Jz = 2.5Jx.

Fig.8 shows the evolution of the band structures of the
case with the increase of magnetic field h. At h = 0,
the bands are gapped at E = 0. With the increase of h,
at some critical value hc0 , the bands become gapless at
E = 0 with two nodal points as shown in Fig.8(b). As
h further increases and reaches a critical field hc1 , two
nodal lines appear at E = 0 as shown in Fig.8(c), corre-
sponding to a topological phase transition. At h > hc1 ,
the nodal lines turn to nodal points again as shown in
Fig.8(d) until at h = hc2 , a gap opens at E = 0 and
the system turns to the trivial polarized state shown in
Fig.8(e). This is consistent with the analysis for the
gapped AFM case with mirror symmetry in the main
text.
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FIG. 9: (a)Mean field parameters for gapped AFM KSL with
Jx = Jy < 0, Jz = 2.5Jx as a function of magnetic field h.
(b)γ1 and γ2 as a function of h. (c)The low energy density of
states of matter fermion quasiparticles obtained from DMFT.
The labels of the curves are the same as Fig.3(c).

Fig.9(a) shows the mean field parameters as a func-
tion of h for the same case. It demonstrates the phase
transitions at hc1 and hc2 clearly whereas the transition
from the gapped phase to gapless phase at hc0 is contin-
uous. The evolution of γ1 and γ2 with the magnetic field
shown in Fig.9(b) is consistent with the band structures
in Fig.8.

The DMFT results of the low energy density of states
of the matter fermion quasiparticles for this case are
shown in Fig. 9(d). We can see that the evolution of the
low energy density of states with the magnetic field from
the DMFT agrees qualitatively with the band structure
shown in Fig.8 from the MFT.
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