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Analytical solution has been found for the second-order effective anisotropy of magnetic nanopar-
ticles of a cubic shape due to the surface anisotropy (SA) of the Néel type. Similarly to the spherical
particles, for the simple cubic lattice the grand-diagonal directions (±1,±1,±1) are favored by the
effective cubic anisotropy but the effect is twice as strong. Uniaxial core anisotropy and applied
magnetic field cause screening of perturbations from the surface at the distance of the domain-wall
width and reduce the effect of SA near the energy minima. However, screening disappears near the
uniaxial energy barrier, and the uniform barrier state of larger particles may become unstable. For
these effects the analytical solution is obtained as well, and the limits of the additive formula with
the uniaxial and effective cubic anisotropies for the particle are established. Thermally-activated
magnetization-switching rates have been computed by the pulse-noise technique for the stochastic
Landau-Lifshitz equation for a system of spins.

PACS numbers: 02.50.Ey, 02.50.-r, 75.78.-n

I. INTRODUCTION

In magnetic nanoparticles, a significant fraction of
atoms belongs to the surface, and their magnetic prop-
erties such as exchange and anisotropy can be strongly
modified. Successes in synthesis of magnetic particles of
a controlled shape stimulate investigating the effects of
the surface on the magnetic properties numerically and
even analytically. One of the important ingredients is
surface anisotropy (SA) proposed by Néel1 and modeled
microscopically by Victora and MacLaren2. SA arises
due to missing neighbors for the surface spins and break-
ing the symmetry of their crystal field and it must be
much stronger than a typical crystallographic anisotropy
in the particle’s core. However, there is still not much in-
formation on the SA in different materials3–5. The most
common manifestation of the SA is decreasing of the ef-
fective anisotropy of magnetic films with the thickness d
as Keff = KV + KS/d, where KV and KS are volume
and surface contributions3–6. It was found that atomic
steps on surfaces strongly contribute into the effective
anisotropy3,7.

In small magnetic clusters, individual spins are tightly
bound together by the exchange interaction, and they
form an effective rigid giant spin with an effective
anisotropy dependent on the surface. In particular,
the Néel SA (NSA) was used to model the effective
anisotropy of Co nanoclusters of the form of truncated
octahedrons8,9. In this case, contributions of different
faces and edges partially cancel each other, leading to a
significantly reduced result. For totally symmetric shapes
such as spherical and cubic, the cancellation of the SA
for the rigid cluster’s spin is complete.

However, individual spins can deviate from collinear-
ity for stronger SA and larger particles10–13. Exam-
ples of strong noncollinearity are “throttled” and “hedge-
hog” spin configurations10,11,14,15. Small non-collinearity
can be treated perturbatively16,17, that results into the

second-order effective anisotropy16 Keff ∼ D2
S/J , where

DS is the SA and J is the exchange. For particles with
simple cubic (sc) lattice and spherical shape it was found
that the effective second-order anisotropy has a cubic
symmetry with the lowest energy along the grand di-
agonals (±1,±1,±1) of the sc lattice, where the devi-
ations from collinearity and the resulting energy gain are
maximal. The result scales with the particle’s volume as
perturbations from the surface penetrate into the parti-
cle’s core. Thus in experiments, the second order effective
anisotropy cannot be easily identified with the surface. If
the particle’s size becomes too large, deviations from the
collinearity become so strong that the perturbation the-
ory becomes invalid. For magnetic particles with shapes
close to symmetric, the first- and second-order effective
anisotropies can coexist and compete with each other18.

An example of high-symmetry magnetic particles are
iron nanocubes19,20 having an 13.6 nm edge length and a
typical small bulk cubic anisotropy of iron. However, the
surface anisotropy in this system is not mentioned as the
surface is oxidated and thus these nanocubes are better
described by the core-shell model.

As the SA must be much stronger than the core
anisotropy, both first-and second-order surface terms
can compete with the latter. In the simplest addi-
tive approximation, for symmetric shapes one can just
add the uniaxial core anisotropy and the cubic second-
order surface anisotropy that leads to complicated en-
ergy landscapes18,21. In Refs.18,22 it was shown that
for the face-centered (fcc) lattice the sign of the second-
order surface anisotropy is inverted, so that the directions
(±1, 0, 0) etc., have the lowest energy. Different tem-
perature dependences of the core and effective surface
anisotropies may cause reorientation transitions on tem-
perature, as was shown in Ref.23 using the constrained
Monte Carlo method24. Additive effective anisotropy
of magnetic particles affects their dynamic properties
such as magnetic resonance25 and thermally-activated
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switching26–28.

As it was mentioned in Ref.16, in the presence of the
uniaxial core anisotropy D, the effect of the surface will
be screened at the distance of the domain-wall width δ =
a
√
J/(2D) from the surfaces, a being the lattice spacing.

Thus the effect of the surfaces should be reduced for the
particle’s sizes L & δ. Another effect is the mixing term
in the effective anisotropy arising from both core and
surface anisotropies and having another symmetry18.

All analytical and numerical investigations mentioned
above were performed on spherical particles, plus ellip-
soidal and truncated octahedron shapes in Refs.18,22. An-
alytical solution for the deviations from collinearity in
spherical particles uses the Green’s function for the in-
ternal Neumann problem for the Laplace equation in
a sphere. Studying the screening requires solving the
Helmholtz equation for which the Green’s function in a
sphere is unknown. For this reason, screening was in-
vestigated only perturbatively in the L/δ � 1 limit in
Ref.18. A closed-form expression for the Green’s func-
tion of Laplace and Helmholts equations for cubes and
parallelepipeds is unknown. This hampered the investi-
gation of these shapes, although they are no less impor-
tant than spherical and ellipsoidal. For instance, recently
Fe nanocubes have been synthesized19,20.

Fortunately, for the cubic shape there is an exact ana-
lytical solution that is direct and not using Green’s func-
tions. This solution is much simpler than that for the
spherical shape and it allows an extension for the case of
screening by the core anisotropy and by the applied field.
This is the subject of this paper. In particular, it will be
shown that screening is active near the energy minima
but becomes “antiscreening” closer to the barriers, that
leads to stronger noncollinearities and eventually to the
destruction of the quasi-uniform barrier states.

The plan of the paper is the following. In Sec. II the
model of classical spins with surface anisotropy is intro-
duced and the expression for the first-order effective par-
ticle’s surface anisotropy is obtained for parallelepipeds.
In Sec. III the method of constrained energy minimiza-
tion needed to deal with deviations from spin collinearity
in the particle is reviewed and further developed in com-
parison to previous publications. This method is needed
for both numerical and analytical work. In Sec. IV the
numerical implementation of the constrained energy min-
imization is discussed. Sec. V contains the analytical
solution for the second-order effective anisotropy for the
cubic particle with sc lattice in the absence of the core
anisotropy and magnetic field. Sec. VI shows the numer-
ical results obtained by the constrained energy minimiza-
tion and their comparison with the analytical results. In
Sec. VII a more general analytical solution in the pres-
ence of the uniaxial core anisotropy and the magnetic
field is obtained and the effects of screening are investi-
gated. Sec. VIII presents the results for the thermally-
activated magnetization switching of the cubic particle
considered as a many-spin system.

II. THE MODEL

The magnetic particle will be described by the classical
spin Hamiltonian

H = −D
∑
i∈core

s2
zi+

∑
i∈surface

HSA,i−h·
∑
i

si−
1

2

∑
ij

Jijsi·sj ,

(1)
where h ≡ µ0H is the magnetic field in the energy units,
µ0 is the magnetic moment of the spin, HSA is the sur-
face anisotropy, Jij is the exchange with the coupling
J between the neighboring spins on a simple cubic (sc)
lattice with the lattice spacing a, D is the core uniaxial-
anisotropy constant. The spins are normalized by one,
|si| = 1, and the spin value S is absorbed in the energy
constantsD and J . The Néel’s surface anisotropy is given
by1,2

HSA,i =
1

2
DS

∑
j∈nn

(si · uij)2
, (2)

where uij is the unit vector connecting the surface site
i to its nearest neighbor on site j. This anisotropy
arises due to missing nearest neighbors for the surface
spins. In particular, for the simple cubic lattice and
xy surfaces (those perpendicular to z axis), the Néel
anisotropy becomes HSA,i = − 1

2DSs
2
iz . This means

that for DS > 0 the spins tend to align perpendicu-
larly to the surface, while for DS < 0 the surface spins
tend to align parallel to the surface. In a parallelepiped-
shaped particle, the Néel anisotropy on the edges along z
axis becomes HSA,i = − 1

2DS

(
s2
ix + s2

iy

)
or, equivalently,

HSA,i = 1
2DSs

2
iz. Thus for DS > 0 the z-edge spins tend

to align perpendicularly to z axis. The Néel anisotropy
vanishes at the corners and in the core of the particle.

The effect of surface anisotropy essentially depends on
the lattice structure (see, e.g. Ref.18). Here, for simplic-
ity, only the sc lattice is considered.

Energy-dimensional atomic values of the exchange and
anisotropy constants are most convenient for atomistic
calculations. In particular, the dimensionless ratio D/J
is a small parameter in all substances that allows the
magnetization to change only at the domain-wall scale
δ = a

√
J/ (2D) � a. In experimental papers, usually

the bulk anisotropic energy constant K in erg/cm3 is
given. The relation between the micro- and macroscopic
anisotropy constants reads K = D/v0, where v0 is the
unit-cell volume (here v0 = a3). The experimental values
of the surface anisotropy, if known, are given in a similar
way in erg/cm2. The exchange constant can be estimated
from the Curie temperature TC that within the mean-
field approximation is given by kBTC = (1/3)S(S+1)Jz,
where kB is the Boltzmann constant, S is the atomic spin
value and z is the number of nearest neighbors (here z =
6). Numerous experimental results4,29–31 show that the
value of the surface anisotropy in Co particles embedded
in different matrices such as alumina, Ag or Au, as well
as in thin films and multilayers, could vary from DS =
10−4J to DS = J .



3

Spins in particles small enough, L . δ, are tightly
bound together by the exchange and forming an effective
giant spin. For a parallelepiped-shaped particle of the
size Nz ×Ny ×Nz = N the effective Hamiltonian

Heff = −NcoreDs
2
z +H(1)

SA −Nh · s, (3)

where Ncore = (Nz − 2)× (Ny − 2)× (Nz − 2) and H(1)
SA

is the sum of contributions from 6 surfaces and 12 edges

H(1)
SA = −DS

[
(NyNz − 4) s2

x + (NzNx − 4) s2
y

+ (NxNy − 4) s2
z

]
. (4)

This expression vanishes for Nx = Ny = Nz = 2 since
in this case there are neither faces nor edges, only cor-
ners. For DS > 0, the lowest-energy direction is per-
pendicular to the biggest faces. For DS < 0, the lowest-
energy direction is perpendicular to the smallest faces.
For Nx = Ny ≡ N⊥ the model becomes uniaxial

H(1)
SA = −DSN⊥ (N⊥ −Nz) s2

z. (5)

The first-order effective anisotropy due to the surface
scales with the surface, thus for large particle sizes L it
becomes small as 1/L in comparison to the contribution
of the core anisotropy.

III. DEVIATIONS FROM COLLINEARITY AND
CONSTRAINED ENERGY MINIMIZATION

For the particle of a cubic shape, H(1)
SA = 0 but there

still is a second-order contribution H(2)
SA ∼ D2

S/J due to
deviation from collinearity generated by the SA. These
deviations depend on the orientation ν of the particle’s
magnetization m, where

m ≡ 1

N
∑
i

si, ν ≡ m

m
. (6)

Larger deviations correspond to a larger adjustment en-
ergy gain, thus the corresponding directions of m have
lower energy16. Deviations from the collinearity ψi are
introduced via the formula

si = ν

√
1−ψ2

i+ψi
∼= ν

(
1− 1

2
ψ2
i

)
+ψi,

∑
i

ψi = 0.

(7)
Below ψi will be calculated within the linear approxima-
tion that is valid for ψ2

i � 1.
To define the particle’s energy for different m direc-

tions ν, one has to constrain the latter. This can be done
by using the method of Lagrange multipliers16,18,21,32 in
which one minimizes the function

F ≡ H−Nλ · (ν − ν0) , (8)

where ν0 is the preset direction, |ν0| = 1. The con-
strained equilibrium solution satisfies the equations

si ×
∂F
∂si

= 0,
∂F
∂λ

= −N (ν − ν0) = 0. (9)

From the second equation follows ν = ν0. In the first
equation

−∂F
∂si

= heff,i + hλ, heff,i ≡ −
∂H
∂si

(10)

and the constraint field is uniform and given by

hλ ≡ N
∂ (λ · ν)

∂si
=

1

m
[λ− ν · (ν · λ)] . (11)

Note that hλ is perpendicular to m since it constrains
only its direction ν, leaving its magnitude m free to
change.

Analytically, the constraint field can be found at zero
order in ψi, considering the rigid particle’s spin and av-
eraging the effective field over the particle to get the con-
tribution of the surface. Thus the first of equations (9)
becomes

ν ×
(
h̄eff + hλ

)
= 0, (12)

where from Eq. (3) one obtains

h̄eff = h + 2D̃νzez + hSA, D̃ ≡ Ncore

N
D (13)

and

hSA ≡ −
1

N
∂H(1)

SA (ν)

∂ν
. (14)

In particular, for Nx = Ny ≡ N⊥ one obtains

hSA = 2DS
N⊥ −Nz
N⊥Nz

ssez. (15)

Since hλ is perpendicular to ν, the solution of Eq. (12)
is

hλ = −h̄eff + ν
(
ν · h̄eff

)
. (16)

IV. NUMERICAL METHODS

One practical method of numerically solving Eq. (9) is
the method of relaxation in which the evolution equations

ṡi = −αsi × [si × (heff,i + hλ)]

λ̇ =
αλ
N

∂F
∂λ

= −αλ (ν − ν0) (17)

with relaxation constants α and αλ are solved16,18,21. A
faster method is a combination of the field alignment and
overrelaxation used in Refs.33–35 for finding local energy
minima in magnetic systems with quenched randomness.
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Figure 1. Energy landscape for the cubic particle with the
surface anisotropy in terms of the polar and azimuthal angles
θ and ϕ: Numerical and analytical results for the particle sizes
L = 16, 32 and the SA strenghts DS = 0.1, 0.03. “Analytical”
curves use Eq. (34) while “Analytical, finite size” curves use
Eq. (34) with the additional factor (1− 0.7/L)4.

In this method, all spins si are updated consecutively by
the field alignment si,new = heff,i/ |heff,i| or the overre-
laxation si,new = 2 (si,old · heff,i) heff,i/h

2
eff,i − si,old with

the probabilities α and 1−α, respectively. The first pro-
cedure is pseudorelaxation while the second is pseudo-
dynamics flipping the spins by 180◦ around the effective
field. The highest efficiency of this method is achieved
in the underdamped regime α = 0.1÷ 0.01. For the con-
strained minimization here, one has to replace heff,i ⇒
heff,i+hλ and add the iteration λnew = λold−αλ (ν − ν0)
at the end of each full-system spin update. The spin up-
dates within this method are parallelizable that leads to
a significant speed-up.

The method of costrained energy minimization works
well if the spin noncollinearity is small enough. In this
case the particle’s energy is a nice one-valued function

Figure 2. Spin structures in a cubic particle of the size L = 32
for DS = 0.1, scans through middle of the particle. Upper
panel: particle’s magnetization direction (1, 1, 0) etc. Spins
slightly canted to lower the system’s energy in accordance
with the analytical solution, Eq. (27). Lower panel: particle’s
magnetization direction (0, 0, 1). Spins slightly turned toward
the directions perpendicular to the right and left surfaces as
the result of the instability of the collinear state (for L = 16
spins are still strictly collinear).
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showing minima for the grand-diagonal directions for
spherical16,18,21 and cubic particles with a sc lattice. For
larger DS and L, the solution looks distorted and can
become multi-valued. Further increase of these parame-
ters may results in the loss of convergence. The physical
reason for this is that the particle is no more in the single-
domain state that is a prerequisite for the method’s va-
lidity. In particular, even in the absence of the SA, large
particles are overcoming the energy barrier due to the
uniaxial anisotropy via a non-uniform rotation in which
a domain wall is moving across the particle. Onset of this
regime leads to the failure of the constrained minimiza-
tion method.

In the numerical work, J ⇒ 1 and a⇒ 1 are set.

V. CUBIC PARTICLE WITH SURFACE
ANISOTROPY ONLY

The analytical solution for the second-order effective
surface anisotropy is simpler for the cubic-shaped par-
ticle with the SA only. In this case, in the rigid-spin
approximation, there is no effective field acting on the
spin, so according to Eq. (16) there is no constraint field
hλ as well. (A similar problem was considered in Ref.17,
however, no effective cubic anisotropy was obtained.) In
the continuous approximation, the particle’s energy has
the form

H =
1

a3

ˆ
dV

[
1

2
a2J

(
∂sα
∂r

)2

− 1

2
DSaδS (n · s)

2

]
(18)

with summation over the repeated α. Here δS is the sur-
face δ-function and n is the outer normal to the surface.
Minimizing this energy leads to the equation

s×∆s = 0 (19)

with the boundary condition

s×
(
a
∂s

∂rα
nα −

DS

J
(n · s) n

)
= 0 (20)

at the surfaces.
Now, considering DS/J as small and starting from a

collinear state of a fixed direction ν, one can consider
surface-induced deviations ψ from this state,

s(r) = ν

√
1−ψ2(r) +ψ(r) ∼= ν

[
1− 1

2
ψ2(r)

]
+ψ(r),

(21)
where s(r) ·ψ(r) = 0 and ψ satisfies the sum rule

ˆ
d3rψ(r) = 0. (22)

Below ψ will be found within the linear approximation,
whereas the quadratic term will be used to calculate the

Figure 3. Energy landscape for prolate and oblate particles
with SA. The second-order effective anisotropy computed as
H(2)

SA = Heff − H(1)
SA is comparable with the first-order one.

Upper panel: prolate particle. Lower panel: oblate particle.

decrease of the particle’s magnetization m – the magne-
tization deficit. The equation for ψ becomes

∆ψ = 0, a
∂ψ

∂rα
nα =

DS

J
f (ν,n) , (23)

where

f (ν,n) ≡ (n · ν) [n− (n · ν)ν] (24)

is perpendicular to ν and vanishes if ν is perpendicular
to any particle’s face, n · ν = ±1. For the parallelepiped
of linear sizes Lx,y,z, the boundary conditions become

±a ∂ψ
∂x

∣∣∣∣
x=±Lx/2

=
DS

J
f (ν,n) (25)

etc. At the opposite faces of the particle f (ν,n) is the
same as it is quadratic in n. At different faces, f (ν,n)
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Figure 4. Second-order effective anisotropy for cubic, pro-
late, and oblate particles with SA. The result is practically
independent of the particle’s aspect ratio.

are, in general, different. The explicit values are given by

f (ν,n) =


νx (ex − νxν) , x = ±Lx/2
νy (ey − νyν) , y = ±Ly/2
νz (ez − νzν) , z = ±Lz/2.

(26)

For the cube of linear size L, one can search for the so-
lution in the form

ψ(r) =
DS

LaJ

(
Cxx

2 + Cyy
2 + Czz

2
)

(27)

that satisfies the Laplace equation and at the same time
Eq. (22) for

Cx + Cy + Cz = 0. (28)

From the boundary conditions above one finds

Cx,y,z = f (ν,n)|x,y,z=±L/2 , (29)

the values from Eq. (26). One can check that this solu-
tion satisfies Eq. (28).

The maximal value of ψ reached at the surfaces of the
particle should be small,

ψ ∼ L

a

DS

J
� 1, (30)

that defines the applicability range of the linearization.
For νx = νy = νz = 1/

√
3 at the center of the face

x = L/2, y = z = 0 one has 6
√

2 ' 8.5 in the denomi-
nator of this formula, thus the applicability condition is
milder than above. On the other hand, there are insta-
bilities of the found states at larger L and DS that were
observed numerically but haven’t been yet worked out
analytically. These instabilities also limit the applicabil-
ity of the method.

Now the particle’s magnetization can be computed us-
ing the quadratic terms in Eq. (21) as

m =
1

V

L̊

0

dxdydz

{
ν

[
1− 1

2
ψ2(r)

]
+ψ(r)

}
. (31)

Here the linear term vanishes while the quadratic term
yields

m = ν

[
1− 1

360

(
L

a

DS

J

)2 (
1− ν4

x − ν4
y − ν4

z

)]
. (32)

Clearly, the magnetization deficit vanishes if ν is perpen-
dicular to any particle’s face and reaches its maximum for
the grand-diagonal directions (±1,±1,±1). Again, the
small coefficient in this formula suggests that the appli-
cability condition for the linearization method is milder
than given by Eq. (30).

The energy of the particle for the state found above at
the lowest, quadratic, order in DS becomes

H(2)
SA =

ˆ
dV

a3

[
1

2
a2J

(
∂ψα
∂r

)2

−DSaδS (n · ν) (n ·ψ)

]
,

(33)
i.e., H(2)

SA = Eex + EDS . After integration one obtains

H(2)
SA = −ND

2
S

6J

(
1− ν4

x − ν4
y − v4

z

)
, (34)

whereas Eex = −H(2)
SA > 0 and EDS = 2H(2)

SA < 0. This
result is similar to that for the spherical particle16 and
differs from it by the missing factor κ ' 0.53. Adding the
first-order effective particle’s Hamiltonian, Eq. (3), one
obtains

Heff = −NcoreDs
2
z −Nh · s +H(1)

SA +H(2)
SA, (35)

where H(1,2)
SA are given by Eqs. (4) and (34), respectively.

This additive approximation does not take into account
screening and is good for not too large particle’s sizes,
L . δ.

VI. NUMERICAL RESULTS

Fig. 1 shows the energy landscapes of cubic particles
of sizes L = 16 and 32 computed by the constrained en-
ergy minimization as explained in Sec. IV together with
the analytical result of Eq. (34). There is a fair overall
agreement between the numerical and analytical results,
although Eq. (34) shows deeper energy minima. The dis-
crepancy must be due to finite-size effects. Indeed, each
face contains only (L− 2)2 sites subject to the SA rather
than L2 sites. This suggests renormalization of DS as
DS ⇒ D̃S = (1− 2/L)2DS that results in the additional
factor (1 − 2/L)4 in H(2)

SA. However, this renormaliza-
tion would be too strong for the results in Fig. 1 making
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Figure 5. Energy landscapes for cubic particles with the sur-
face and core anisotropies: Numerical results for the particle
sizes L = 16, 20, 24 and the SA strenghts DS = 0.1, 0.2,
0.3. For larger L and DS , the barrier in the middle is low-
ered because of the instability leading to deviations from the
single-domain state. For even larger L and DS , the result of
the constrained energy minimization becomes multi-valued.
Upper panel: D = 0. Lower panel: D = 0.01.

the energy minima a way too shallow. However, there
are edges working in the same directions as faces, only
weaker. Also the exchange interaction weakens near the
surfaces because of the missing neighbors. In the absence
of an analytical solution for the lattice problem, one can
fit the finite-size effect replacing the effective number of
spins in the face by (L − ς)2. The results of Eq. (34)
with the additional factor (1−ς/L)4 with ς = 0.7 in H(2)

SA
shown in Fig. 1 as “Analytical, finite size” are closer to
the numerical results than the pure results of Eq. (34)
labeled “Analytical”.

Whereas for L = 16 the numerical results for the two
different values of DS scale, for L = 32 there are visi-
ble deviations from scaling. In particular, for DS = 0.1

Figure 6. Particle’s magnetization m vs its linear size L for
DS = 0.1 and different values of the core anisotropyD. Upper
panel: magnetization in the direction of the energy minimum,
(1, 1, 1) for D = 0. Here D > 0 stabilizes the quasi-collinear
state by screening the surface perturbations. Lower panel:
magnetization in the direction of the energy barrier, (1, 1, 0).
Here D > 0 destabilizes the quasi-collinear state because of
the tendency to form a domain wall across the particle.

the energy of the (0, 0, 1) state is lowered due to the in-
stability of the collinear state in which spins near some
surfaces turn by 90◦under the influence of the SA. This
can be seen in the lower panel of Fig. ??. This state
cannot be obtained within the linear approximation. For
L = 16 there is still no instability and the (0, 0, 1) state
is strictly collinear. On the other hand, the (1, 1, 0) state
in the upper panel of Fig. ?? is that given by Eq. (27)
and its numerically found magnetization is m = 0.9898
while Eq. (32) yields a close value m = 0.9858. Within a
typical experimental accuracy, these values are the same.
On the other hand, the magnetization in the unstable
(0, 0, 1) state for L = 32 is lower: m = 0.9680.

Numerical results for the energy landscape of prolate
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and oblate box-shape particles with DS = 0.1 are shown
in Fig. 3. In this case there is the first-order contribu-
tion to the effective anisotropy H(1)

SA given by Eq. (5).
The second-order term can be computed as the differ-
ence: H(2)

SA = Heff −H(1)
SA, where Heff is the numerically

obtained particle’s energy. One can see that the second-
order term can be large enough to compete with the first-
order one. For prolate and oblate particles, H(2)

SA is very
close to the cubic-particle result, as shown in Fig. ??.

Fig. 5 shows the energy landscapes for three different
particle’s sizes and three different values of DS for the
core anisotropy D = 0 and D = 0.01. In contrast to Fig.
1, the energy is shown not scaled with D2

S . One can see
that for larger L and DS the barrier in the middle is flat-
tened and lowered because of the instability leading to
the deviation from the single-domain barrier state with
all spins perpendicular to z axis. As the result of this in-
stability, spins on one side of the cube turn toward z axis
to lower the energy, whereas spins on the other side turn
in the opposite direction36. Further increasing L results
in forming a domain wall in the middle of the particle,
and the constrained energy minimization fails. This state
cannot be obtained within the linear approximation. The
lower panel of 5 shows the energy landscape dominated
by the core anisotropy, however, strongly modified by the
SA. Here, too, the uniform barrier state is destroyed for
large particles and strong SA.

Dependence of the particle’s magnetization on the par-
ticle’s size L is shown in Fig. 6. The role of the core
anisotropyD is strikingly different for the energy-mimina
and the energy-barrier states. For D = 0 at the min-
ima at (±1,±1,±1), the magnetization deficit is growing
with L according to Eq. (32), so m goes down. However,
for larger L the saturation state is reached in which the
surface spins are oriented according to the SA (perpen-
dicular to the surfaces near the surfaces for DS > 0).
In this state, instead of Eq. (27), ψ(r) [or, rather, s(r)]
is a function of r/L only, independently of a. Thus m
becomes a geometrical constant m ' 0.85 independent
of L and DS . Experiments on nanocubes in Ref.19 show
a stronger demagnetization, m ≈ 0.7 that should be a
consequence of the surface oxidation. For D > 0, pertur-
bations from the surface become screened at the distance
of the domain-wall width δ = a

√
J/(2D). Thus on in-

creasing L the magnetization m at first decreases until
L ∼ δ, then increases again because of the screening.
This is clearly seen in the upper panel of Fig. 6 where
the extremely large values of L should be noticed.

In the lower panel of Fig. 6, the magnetization in the
barrier state (110) is close to 1 for L small enough, while
the spin configuration is shown in the upper panel of Fig.
??. Further increase of L causes instabilities of the sur-
face spins in the xy surfaces: for DS > 0 these spins turn
perpendicular to the surfaces parallel z axis. In the limit
L → ∞ for D = 0, a state with s(r) depending on r/L
only should be reached, in which m is a another geomet-
rical constant. However, D > 0 leads to the instability at
smaller L with the subsequent formation of a domain wall

in the middle of the particle. After that the constrained
energy minimization method fails, that’s why the D > 0
curves in the lower panel of Fig. 6 could not be computed
for larger L. To the contrary, DS < 0 stabilizes surface
spins in the xy planes, so that the discussed instability
does not happen for D = 0 and requires the values of D
exceeding some threshold to develop.

VII. SCREENING AND OTHER
GENERALIZATIONS

In this section the results of Sec. V will be generalized
for the model with the uniaxial anisotropy and magnetc
field. Some calculations will be made for a parallelepiped
particle where the first-order effective surface anisotropy
is present. In the continuous approximation, the Hamil-
tonian has the form

H =

ˆ
dV

a3

[
a2J

2

(
∂sα
∂r

)2

−Ds2
z − h · s− DS

2
aδS (n · s)

2

]
.

(36)
Using Eq. (21), from the first of equations (9) one obtains

0 = (ν +ψ)×
[
h + 2D (νz + ψz) ez + a2J∆ψ + hλ

]
,

(37)
where hλ is given by Eq. (16). The boundary conditions
are defined by Eq. (25). Substituting hλ and rearranging
keeping only the linear-ψ terms, one arrives at

ν ×
[
2Dψzez + a2J∆ψ − hSA

− ν · (h + 2Dνzez + hSA)ψ] = 0. (38)

One can search for the solution in the form

ψ = ψ1ν1 + ψ2ν2, (39)

where ν1 and ν2 are unit vectors perpendicular to ν and
to each other, so that ν × ν1 = ν2. It is convenient
to choose ν1 · ez = 0 and ν2 in the plane spanned by
ez and ν. Then equations for ψ1 and ψ2 decouple, and
after some algebra one obtains Helmholtz equations with
sources

∆ψ1 − κ2
1ψ1 = ν1 · hSA

∆ψ2 − κ2
2ψ2 = ν2 · hSA, (40)

where

κ2
1 ≡

ν · (h + hSA) + 2Dν2
z

a2J

κ2
2 ≡

ν · (h + hSA) + 2D
(
2ν2
z − 1

)
a2J

. (41)

Here κ2 > 0 corresponds to the exponentially decaying
perturbations (screening), whereas κ2 < 0 describes pro-
liferating perturbations (anti-screening). For instance,
for h = hSA = 0 and νz > 1/

√
2 (θ < π/4) both κ2

1

and κ2
2 are positive and the uniaxial anisotropy stabilizes

the particle’s magnetization. Larger deviations from the
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easy axis lead to κ2
2 < 0 and destruction of the parti-

cle’s magnetization. For the source terms in the case
Nx = Ny ≡ N⊥ from Eq. (15) one obtains

ν1 ·hSA = 0, ν2 ·hSA = −2DS
N⊥ −Nz
N⊥Nz

νz
√

1− ν2
z .

(42)
In the sequel, we consider cubic particles for which

hSA = 0. The solution of Eqs. (40) can be searched for
in the form

ψα =
DS

aJ

Cαx coshκαx+ Cαy coshκαy + Cαz coshκαz

κα sinh (καL/2)
,

(43)
where α = 1, 2 and ψ is defined by Eq. (39). This
function satisfies the Helmholtz equations, if the sum of
the C-coefficients is zero. They can be determined from
the boundary conditions, Eq. (25). Using Eq. (26), one
obtains

Cαx = fα (ν,n)|x=L/2 = νxναx

Cαy = fα (ν,n)|y=L/2 = νyναy

Cαz = fα (ν,n)|z=L/2 = νzναz, (44)

where ναx = να · ex, etc. One can see that

Cαx + Cαy + Cαz = ν · να = 0, (45)

as it should be. With the current choice of the vectors
ν1 and ν2, the explicit form of the C-coefficients is

C1x = −C1y =
νxνy√
1− ν2

z

, C1z = 0, (46)

and

C2x = C2y =
ν2
yνz√

1− ν2
z

, C2z = −νz
√

1− ν2
z . (47)

In the case κ = ik (the anti-screening case), Eq. (43)
becomes

ψα = −DS

aJ

Cαx cos kαx+ Cαy cos kαy + Cαz cos kαz

kα sin (kαL/2)
.

(48)
At kα → 0 this expression is regular but it diverges at
kαL → 2π. For instance, for h = 0 and νz = 0 in Eq.
(41) one has k2 = 1/δ, so that the particle’s size should
satisfy L < 2πδ. However, in the model with a uniaxial
ansotropy there is another stability criterion36, L < πδ,
for the same state with the spin perpendicular to the
easy axis – the barrier state. If this condition is violated,
then there is a finite ψ even in the absence of the surface
anisotropy. Thus, the divergence of the solution at L =
2πδ is beyond the applicability range of the linearization
method. For D = 0, there is no corresponding instability,
but screening and antiscreening can be created by the
magnetic field. In this case, the point kαL = 2π can
be approached, and this defines the applicability of the
method.

The energy of the particle at second order in ψ is given
by Eq. (33) with the additional term −Dψ2

z in square
brackets. The terms linear in ψ vanish because of Eq.
(22). After some algebra one arrives at the final result

Heff = −N
(
Dν2

z + h · ν
)
− ND

2
S

3J

[
ν2
xν

2
y

1− ν2
z

F (κ1L)

+

(
ν2
z

(
ν2
x + ν2

y

)
−
ν2
xν

2
yν

2
z

1− ν2
z

)
F (κ2L)

]

−L
2

δ2

ND2
S

J
ν2
z

(
ν4
x + ν4

y + ν2
xν

2
y

)
FD (κ2L) , (49)

where δ = a
√
J/(2D),

F (x) =
3

x

3 sinh (x) + x

cosh (x)− 1
− 24

x2
∼=

{
1− x4

2520 , x� 1
9
x −

24
x2 , x� 1

(50)
and

FD(x) =
1

x3

sinh (x) + x

cosh (x)− 1
− 4

x4
∼=

{
1

180 −
x2

3780 , x� 1
1
x3 − 4

x4 , x� 1.
.

(51)
In the case of κ = ik one has to replace F (ikL)⇒ G(kL),
where

G(x) =
24

x2
− 3

x

3 sin (x) + x

1− cos (x)
(52)

has the same behavior as F (x) at x � 1 but diverges
at x = 2π. The last term in Eq. (49) is the cross-term
originating from −Dψ2

z in the integrand of the energy.
For D = 0, one has κ1 = κ2 = κ, and the energy

simplifies to

Heff = −Nh · ν − ND
2
S

3J
F

(
L

a

√
h · ν
J

)
×
(
ν2
xν

2
y + ν2

yν
2
z + ν2

zν
2
x

)
. (53)

Here there can be screening or anti-screening because of
the magnetic field. For h = 0, Eq. (34) is recovered.

In the limit of κ1L, κ2L � 1, the second-order part
of Eq. (49) simplifies to Eq. (34). In this case, the
first- and second-order terms in the effective particle’s
anisotropy are additive. The leading correction term of
order (L/δ)

2 comes from the cross-term in the energy
with a small numerical factor. The corrections from the
terms with the function F are of order (L/δ)

4 with an
extremely small numerical factor.

Energy landscapes plotted using Eq. (49) for L small
enough show very small deviations from the results ob-
tained using the additive effective Hamiltonian, Eq. (35).
For larger L, some deviations are seen but then, with the
further inclease of L, the solution quickly diverges for the
orientations having the imaginary κ – near the barriers
and opposite to the magnetic field, where anti-screening
occurs. As an example, hysteresis loops for H along z
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Figure 7. Hysteresis loops for H along z axis, using the addi-
tive effective particle’s Hamiltonian, Eq. (35), and the exact
analytical solution, Eq. (49), that depends on the ratio L/δ.

axis are shown in Fig. 7. The results of the additive
model do not depend on L/δ. The exact results using
Eq. (49) are very close to the latter for L/δ . 5. How-
ever, for L/δ & 5 the solution diverges and the hysteresis
loop breaks down.

For the field along z axis, the energy of the particle can
be minimized with respect to the azimuthal angle ϕ that
yields ϕ = π/4 and equivalent solutions. For these values
of ϕ, one can write down the compact expression of the
energy in terms of x ≡ cos θ. Eq. (49) in the reduced
form becomes

e(x) = −x2 − 2αx− 1

4
β
(
1− x2

) [
F (κ1L) + 3x2F (κ2L)

]
−9

4
βx2

(
1− x2

)2
L̃2FD (κ2L) , (54)

where

e ≡ Heff

ND
, α ≡ h

2D
, β ≡ D2

S

3DJ
, L̃ ≡ L

δ
(55)

and

κ1L = L̃
√
αx+ x2, κ2L = L̃

√
αx+ 2x2 − 1. (56)

In the case of zero field and dominating uniaxial
anisotropy, the dimensionless energy barrier is given by

u = e(0)− e(1) = 1− 1

4
β. (57)

It does not depend on screening and is the same as within
the additive approximation. To investigate the stability
of the state along z axis, x = 1, one can expand e(x) in
terms of δx ≡ 1− x. This yields

e ∼= −1− 2α+ 2
[
1 + α− βF

(
L̃
√

1 + α
)]
δx (58)

thus the energy minimum is stable for

1 + α

F
(
L̃
√

1 + α
) > β. (59)

For small particles screening is negligible, F ∼= 1, and
one obtains the condition 1 + α > β. For large particles,
one uses the asymptotic form F (x) ∼= 9/x that results
in the condition (1 + α)

3/2
> 9β/L̃ that means a greater

stability against the surface effects parametrized by β.
In the upper panel of Fig. 7, β = 1, so that within
the additive approximation the energy minimum x = 1,
i.e., mz = 1 exists for α > 0, i.e., H > 0. Screening
in the exact solution makes this energy minimum more
stable, so that it disappears at the negative field corre-

sponding to α =
(

9β/L̃
)2/3

− 1, as can be seen in Fig.
7. These results are also related to precession frequen-
cies near energy minima and can be important for the
magnetic resonance in magnetic nanoparticles25,37.

VIII. THERMALLY-ACTIVATED
MAGNETIZATION SWITCHING

At low temperatures, the particle spends much time in
the vicinity of the energy minima, making seldom switch-
ing to other energy minima over energy barriers. The
characteristic time of the magnetization switching is im-
portant, for instance, for memory storage applications.
The theory gives the Arrhenius thermal activation law
for the escape rate,

Γ = Γ0e
−U/T , (60)

where U is the energy barrier. In the case of a cubic
particle with the surface anisotropy only in zero field,
the barrier between the energy minima at (1, 1, 1) and
(1, 1,−1) is at (1, 1, 0), and the value of the energy barrier
following from Eq. (34) is given by

U =
ND2

S

36J
. (61)
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Figure 8. Thermally-activated switching of a magnetic parti-
cle with SA, considered as a many-spin system. In all com-
putations λ = 0.1. Upper panel: An example of the time
dependence of the particle’s magnetization components for
a 4 × 4 × 4 cube with DS = −0.1 at T = 0.002. (+++)
means mx,my,mz > 0 etc. Lower panel: Switching rate Γ vs.
the temperature for different particle’s sizes and DS values.
Dashed Arrhenius line is Eq. (61) for L = 10, DS = −0.1.
Solid Arrhenius lines contain finite-sie corrections, see text.

Switching rates for the additive core-surface effective
anisotropy of magnetic particles within the single-spin
model were calculated analytically in Ref.26 and analyt-
ically and numerically in Ref.27. The ac susceptibility of
assemblies of magnetic particles taking into account the
effective cubic surface anisotropy and dipolar interaction
between the particles was studied in Ref.28.

To test the predictions above for the simplest case of a
particle with the SA only, considered as a many-particle
system, computations using the recently proposed pulse-
noise method38 of solving the stochastic Landau-Lifshitz
equation for a system of classical spins have been per-
formed on cubic particles of cubic shape. This method

replaces a quasi-continuous random field by equidistant
pulses rotating all spins by random angles around ran-
dom axes. Between the pulses, the deterministic Landau-
Lifshitz equation is solved with an efficient high-order
differential-equation solver. The overall speed of this
method is defined by the latter, so the method is fast and
suitable for computing on many-spin systems. Although
the values of DS in these computations are negative, it
does not matter because the effect of DS is quadratic.
Switching was detected when any of the three magneti-
zation components changed its sign.

The results are shown in Fig. 8. In the upper panel,
jumping of the magnetization of a 4 × 4 × 4 cube be-
tween the eight energy minima at a very low tempera-
ture is shown via the three magnetization components.
The behavior is typical for the strong Landau-Lifshitz
damping λ = 0.1 used in these computations. The es-
cape rates were computed with the method explained in
the appendix to Ref.36 for the particle’s sizes 8 × 8 × 8
and 10× 10× 10 and different values of DS . The results
shown in the lower panel of Fig. 8 are in a fair accord
with the theory, although the the barriers given by Eq.
(61) and shown by the dotted line for the 10 × 10 × 10
particle with DS = −0.1 are too high. In fact, be-
cause of finite-size effects the barrier given by Eq. (61)
should be lower, as discussed in Sec. VI. Here, replacing
DS ⇒ D̃S = (1 − 1.3/L)2DS corrects the barriers, as
shown by the solid Arrhenius lines with fitted prefactors
Γ0, as even small temperature dependence of the bar-
rier strongly affects the prefactor and makes comparison
with the theory for the latter hardly possible. Even with-
out these corrections, one can see that the theory works
comparing the slopes of the temperature dependence for
L = 10, DS = −0.1 and L = 8, DS = −0.15. As the
product L3D2

S is nearly the same in both cases, the bar-
riers should be nearly the same, that is indeed so, as can
be seen in the figure.

IX. DISCUSSION

The cubic magnetic particle turned to be an easier ob-
ject than the spherical particle for analytically calculat-
ing the second-order effective surface anisotropy since the
linearized Laplace and Helmholtz equations for the devi-
ations from the collinearity can be solved directly with-
out using Green’s functions. This is, probably, a matter
of luck since the analytical solution found for the cube
cannot be easily generalized for a parallelepiped. On the
other hand, the solution for the parallelepiped should be
close to that for the cube as the numerically computed ef-
fective particle’s energy is practically independent of the
particle’s aspect ratio, see Fig. ??.

The analytical solution found here allows to study the
effect of screening of the surface perturbations at the dis-
tances of the domain-wall width δ in the presence of the
uniaxial core anisotropy in the whole range of L/δ, where
L is the particle’s linear size. These results are useful near
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the energy minima, where screening increases their sta-
bility. On the other hand, closer to the energy barriers
screening is replaced by the anti-screening that leads to
the instability of the linearized solution found here. It
was shown that for small and moderate L/δ the effect of
screening is very small, so that the applicability range of
the additive approximation for the terms in the effective
anisotropy is rather broad.

Magnetic particle of a cubic shape can be an analyti-
cally solvable model for other types of crystal lattices. It
would be worth to investigate whether the sign of the ef-
fective cubic anisotropy is opposite for the fcc lattice, as
has been found numerically for the spherical particles18.

Another possible extension is analytically solving the
discrete problem on the lattice instead of the Laplace
equation in the continuous approximation since for small
particles the finite-size effects are quite pronounced.
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