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Abstract

In the last decade, significant progress has been made in the many-body Hamiltonian formula-

tion of liquid dynamics theory. Earlier analysis of experimental data for a wide variety of elemental

liquids had provided the reliable but qualitative description of the atomic motion: vibrations in

a representative 3N -dimensional potential energy valley, plus transits, in which atoms cross the

intersections between these valleys. Recent comparisons of first-principles theory with experiment

for several elemental liquids at melt revealed a highly accurate and versatile theory. In the present

work, we report on an extensive quench study of the entire condensed-matter structure-energy dis-

tribution for a metallic Na MD system. With these results, all that was learned from experimental

data is confirmed, refined in detail, and made more accurate. We show the entire structure-energy

distribution, composed of widespread symmetrics and higher lying randoms; we show the increas-

ing dominance of the randoms as N increases, until the symmetrics vanish completely; and we

show the random distribution continue its spectacular narrowing as N continues to increase. This

behavior certifies our early assignment of the random distribution to the liquid phase, and our

prediction of macroscopic uniformity of the random structures. Procedures are discussed to iden-

tify and calibrate a single random structure to represent the liquid, and the role of the structure

energy in liquid thermodynamics is described. A comparison with other liquid dynamics theories

is observed in the Introduction, and the relation to the equation-of-state program is noted in the

Conclusion.
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I. INTRODUCTION

Much of what is known about condensed matter physics on the atomic and electronic level

is expressed in Hamiltonian many-body theory. The basic technique is to first construct

an approximate but tractable Hamiltonian for the system under study, then improve the

theory by making an appropriate correction. While this formulation has provided excellent

descriptions of the atomic dynamics in gas and crystal phases, it has not previously been

successfully applied to liquid dynamics. Under the title of Vibration-Transit (V-T) theory,

our research is developing this missing application of many-body theory.

V-T theory has been developed over many years, with improvements along the way. By

now its major principles are settled. The atomic motion consists of two components, normal-

mode vibrations in a representative 3N -dimensional potential energy valley, plus transits,

which carry atoms across the intersections between these valleys. The vibrational motion

makes by far the dominant contribution to thermodynamic functions, and is treated by a

first-principles tractable Hamiltonian. This dominant part of the theory is 100% predictive

in all applications. The transit motion is treated by a two-parameter representation of a

small portion of the many-body potential energy surface. This approximation produces the

two key properties needed by a liquid dynamics theory: equilibrium melting upon increasing

temperature from zero, and the concomitant appearance of self diffusion.

In two broad fields of application, namely thermodynamics and time correlation func-

tions, V-T theory is now capable of producing highly accurate results when compared with

experimental or MD data for elemental liquids. The thermodynamic functions studied in-

clude the internal energy and the entropy, and the zero-pressure liquid density and bulk

modulus. The calculations are done with density functional theory, and also with inter-

atomic potentials. These comparisons give us an unprecedented description of the atomic

motion in the monatomic liquid. Evidence supports application of the same theory to liquid

metallic alloys and molecular liquids. These thermodynamic studies will be referenced in

the appropriate places in the following Sections.

In time correlation functions, V-T theory accurately accounts for MD data for the same

Na system studied here1,2. The vibrational Hamiltonian is identical in both fields of appli-

cation. The physical description of transits is also the same in both fields, but the transit

calibration parameters differ. This is normal because equilibrium and non-equilibrium pro-
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cesses measure different facets of the same atomic motion. We shall defer further comment

on this work, since it is beyond our present scope.

From earlier times, and continuing today, liquid dynamics has a long history of theoretical

study. Different formulations have been made, and much has been learned. The development

of pseudopotential theory, and its application to the calculation of inter-ion potentials in

nearly-free-electron (NFE) metals3–5, provided a paradigm shift in liquid dynamics theory.

The NFE metals provided then, as they still do, the most accurate and complete compilation

of experimental data for elemental liquids. The natural inclination was to construct the the-

ory of liquid thermodynamic functions in terms of inter-ion potentials and multi-ion spatial

correlation functions6,7. This formulation was ultimately placed on a first-principles basis8.

The work has been continued through a wide variety of applications in liquid dynamics

theory9,10. Liquid state theories of the critical behavior were reviewed11.

Another formulation, the ‘phonon theory of liquid dynamics’, was recently reviewed in

extensive detail12. In this program, the atomic motion consists of two components, oscilla-

tory and diffusive. The oscillatory contribution is Debye theory for N longitudinal and 2N

transverse modes13. Diffusive motion is then accounted for by removing the lowest-frequency

transverse modes, those with ω < ωF , where ωF (T ) is the Frenkel frequency14, of diffusive

origin. A modification of the diffusive contribution has recently been presented15,16. The

theory compares favorably with experimental data for constant volume specific heat of ele-

mental and molecular liquids17. Moreover, the theory is applied to an extremely wide range

of physical systems, including quantum liquids, glasses, and supercritical fluids.

There are two ways to compare V-T theory with the studies just mentioned. All are the

same in their motivation to understand, and be able to calculate thermodynamic properties

of liquids. On the other hand, their techniques for achieving this goal are as different as

one can imagine, from the beginning. This is the normal theoretical response to a complex

problem.

Condensed matter theory defines a structure as a stable quenched configuration, i.e. a

configuration in which the force on every atom is zero and the system potential energy is

a local minimum. For some years now, the atomic motional contribution to liquid thermo-

dynamics in V-T theory has been resolved into three components: (a) The liquid-structure

configuration and potential energy, which defines the classical groundstate; (b) the contri-

bution from the vibrational normal modes in a 3N -dimensional liquid valley; and (c) the
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transit contribution. At this point we are preparing a detailed description of the theory and

its application to thermodynamics, for each of the components (a), (b), and (c). Topic (a)

is treated in the present work.

Our description of the liquid atomic motion is derived from several accurate analyses of

experimental thermodynamic data for elemental liquids and crystals. This analytic research

is briefly summarized over its 20 year timeline in Sec. II. Along with this analysis, we

developed a description of the liquid potential energy surface (PES), referred to as the

“Hypothesis”, capable of rationalizing the experimental data.

Sec.III reports the results of an extensive quench study for liquid Na. We see the en-

tire condensed-matter distribution of potential energy structures, the low-lying symmetric

structures inhabited by the stable crystal and metastable amorphous solids, and the narrow

high-lying random-structure distribution that dominates with increasing N, until the entire

PES belongs to them. The random potential energy valleys are the domain of the liquid

state.

In Sec.IV, the role of the random structure in the liquid groundstate is defined for classical

mechanics. For the random structure distribution of Sec. III, the control of finite-N errors

in Molecular Dynamics (MD) calculations is illustrated. Procedures required to identify and

calibrate a single random structure for V-T theory are discussed.

The theory we are constructing is unique in its basic physical concepts. For further

clarification, in Sec. V, points of progress in this study are summarized in terms of those

underlying concepts. Accurate ab initio calculations of thermodynamic properties for several

elemental liquids are mentioned. Beneficial application of V-T theory to equation-of-state

work is discussed.

II. INFORMATION FROM EXPERIMENTAL DATA

The first episode in the development of the present liquid dynamics theory consisted of

an extensive and long-running analysis of experimental thermodynamic data for elemental

liquids. The analysis covers 41 elements for which highly accurate experimental data are

available, distributed over 14 groups of the Periodic Table. The elements represent a wide

range of electronic structures and interatomic potentials, including the rare gases, nearly-

free-electron metals, s-p electron metals and transition metals. By finding common behavior
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among such a physically diverse collection of elements, we are able to establish theory at a

broadly general level. The primary experimental data set is the entropy S as function of

temperature T at fixed volume V . The data are corrected from the volume at zero pressure

to the volume of the liquid at melt, Vlm, by using additional thermodynamic data at T > Tm.

The reason for this correction is that we want to extract the Hamiltonian parameters, such

as system energy levels, and these parameters are constant, independent of T , for a liquid

system at constant V . Here we shall summarize the foundational-level description of the

liquid atomic motion, as derived from the early analysis of experimental data.

In a study of the melting of elements at high pressure P , Stishov discussed the changes

of V and S upon melting at constant P , and also discussed anomalous melting curves,

where Tm decreases with P 18. In our study experimental melting entropy data, we corrected

the crystal entropy to the volume Vlm, as mentioned above, and determined the entropy

difference between liquid and crystal at Tm and Vlm, denoted as ∆S(Vlm, Tm)
19. This entropy

difference showed two well-separated distributions. For 18 metallic elements with highly

accurate data, the normal distribution has mean and standard deviation given by

∆S(Vlm, Tm) = (0.80± 0.10)kB. (1)

For the elements studied the entropy of the liquid at melt is Sl

m
≈ 10kB. Hence the mean

∆S(Vlm, Tm) is very small at around 0.08Sl

m
, and the distribution width is extremely small

at around 0.01Sl

m
. The distribution is amazingly narrow for any physical parameter of a

collection of liquids. In addition, 10 transition metals having less accurate data overall show

a distribution mean close to that in Eq. 1, but with larger scatter (for the entire data set,

see Table 22.1 of20).

The accurate melting analysis was done for 34 elements, of which six are anomalous19.

For those six, ∆S(Vlm, Tm) ranges from 1.48kB for Sn to 3.85kB for Ge. These values are very

large compared to the normal melting value, Eq. 1, and are widely spread. To rationalize

this behavior, we observed that the electronic structure is unchanged (changed) between

crystal and liquid in normal (anomalous) melting. This correlation significantly increases

our understanding of the physics of melting. The bimodal ∆S distribution was not resolved

in earlier studies because it is masked by the scatter of the experimental data at constant

P (18; see also7).

Eventually, with the start of a Hamiltonian formulation of liquid dynamics, we directed
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our analysis of experimental data toward sorting out the relation between the atomic motion

and the PES. This sorting-out process is chronicled by the “Hypothesis”, a developing list

of characteristics of the PES that is indicated by experimental data.

It is generally considered that the condensed matter PES consists of a great many inter-

secting 3N -dimensional potential energy valleys. Highly accurate evaluations of the atomic

contribution to constant-volume specific heat were extracted from experimental data for ele-

mental crystal and liquid phases at melt (Table I of21; Fig. 23.1 of20). The result is a uniform

value of 3kB for crystal and liquid alike, with small scatter. Exceptions are rationalized for

Si21 and Ar20. The result implies the atomic motion is nearly pure harmonic vibrations. This

is understood for the crystal, for which the atoms vibrate in a single harmonic valley. To

explain the same apparent behavior for the liquid, the supposition was made that the liquid

potential energy valleys are uniform in their statistical mechanical properties (Paragraphs

(a) and (b) of Sec.III, also Sec.VI, of21). The result is then rationalized by considering the

liquid potential energy valleys to be harmonic.

In the same research report, the concept of transits was introduced21. However, the

proper statistical mechanical treatment of transits was not developed until much later22. By

then, the atomic motion was given two components, vibrations and transits, and statistical

mechanical functions were composed accordingly. For example, the atomic motion contri-

bution to entropy is Svib + Str. Then, through an analysis of high-T experimental entropy

for elemental liquids at Vlm, Str(Vlm, Tm) was identified with ∆S(Vlm, Tm) of Eq. 1 (Sec.IIIA

of22). This holds for normal and anomalous melters alike. The current Hypothesis statement

follows.

A. Hypothesis

The entire complement of potential energy valleys falls in two classes, random and sym-

metric. The random valleys are maximally disordered within the constraints of boundary

conditions and interatomic potentials. The maximal disorder implies that, among the total

complement of structure energies, the randoms lie at the highest energies. Maximal disorder

also implies that the random valleys are of overwhelming numerical superiority, and that

they all have the same macroscopic statistical mechanical averages. The latter property is

abbreviated by saying that the random valleys are ‘macroscopically equivalent’. This equiv-
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alence means that all random valleys have a common value of the structure potential, hence

that the distribution of random-structure potential energies has zero width. This conclusion

logically extends to all macroscopic statistical mechanical properties, and it implies that one

can use a single random valley for liquid statistical mechanical calculations in a sufficiently

large system. The characteristics just mentioned are evaluated in the thermodynamic limit,

N → ∞, and are subject to finite-N corrections.

In contrast, the symmetric valleys have some remnant of crystalline symmetry. All sym-

metric proportions are allowed, from a very minor content to single crystals. With excep-

tions of zero statistical weight, the symmetric structures lie in a broad distribution below

the random distribution. The symmetrics are also relatively few in number, and make no

contribution to statistical mechanics except at very small N , or very small T , well below

Tm.

III. STRUCTURE-ENERGY DISTRIBUTION

An initial study of the N -dependence of the distribution of the Na structure potential,

Φ0, has been presented23,24. Similar computations are extended here, in order to reveal

previously unresolved characteristics of the Φ0 distribution. 1008 quenches are carried out

from computer generated initial stochastic configurations at 8 values of N , ranging from

367 to 9883. Quenching from stochastic configurations is described in23–25. Here we make

use of a well tested ion pair potential for Na26,27 to determine the forces. We note though

the technique has been used for Density Functional Theory (DFT) calculations of the liquid

cold curves, i.e. the Φ0 vs V curves, for Na and Cu28.

Figure 1 shows the complete structure distribution for N = 367. The figure carries

essential information on the statistical mechanics of a monatomic system, and illustrates

in detail the Hypothesis stated at the end of Sec.II. The numerically-dominant high-lying

narrow peak is the random distribution. The bcc crystal is the lowest-lying structure, and

the bcc phase is stable at T ≤ Tm. Between crystal and liquid lie the symmetric structures,

characterized by varying degree of remnant crystalline symmetry. The symmetric valleys

host single crystals, polycrystals, and amorphous solid states. Except for the stable crystal,

the symmetric states are all metastable at all T . The entire random distribution is the

domain of the liquid phase.
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FIG. 1. Distribution of structure potentials Φ0 at N = 367, from 1008 quenches. Φ0 is measured

from the bcc crystal. The dominant high-lying distribution consists of random structures, down

to the first empty bin, and symmetric structures lie between bcc and the random distribution.
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FIG. 2. Distribution of Φ0 at N = 500. From Fig. 1, the random distribution narrows and the

number of symmetrics decreases.

Two more structure distributions at increasing N are shown in Figs. 2 and 3. While

the mean of the random distribution changes little with increasing N , its width decreases

strongly. This property is encoded in the Hypothesis. From quantitative error estimates in

Sec.IV, it is shown that the “sufficiently large system” is easily accessible to present day
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FIG. 3. Distribution of Φ0 at N = 1844. From Fig. 2, the random distribution narrows further

and only one symmetric is found.

MD calculations.

A visual of the narrowing of the random structure distributions from our lowest to highest

N is shown in Fig. 4. This image directly shows the statistical concentration of random

information as more samples are drawn (see the discussion of Fig. 6).

In contrast to the random structure distribution, the symmetric distribution remains

broad as N increases, as shown in Figs. 1 and 2. However, while the numbers of random

and symmetric valleys both increase dramatically as N increases, the numerical dominance

of the randoms also increases dramatically, so that the number of symmetrics appearing in

a fixed number of quenches soon vanishes. Starting with Fig. 1, the number of symmetric

structures decreases in Fig. 2, and the last observed symmetric structure lies just below the

narrowing random peak in Fig. 3. At larger N , no symmetric structures are found in 1008

quenches.

For theoretical work, we need to make a practical quantitative separation between sym-

metric and random structures. The symmetric character we have observed in quenched

Na structures varies right across its allowed range, from a macroscopically distorted sin-

gle crystal, to a nearly-random structure with one or two deformed nearest neighbor bcc

configurations. We denote these structures respectively as global and local symmetrics. In

Fig. 1, the broad symmetric distribution consists of global symmetrics; the excess wing on
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FIG. 4. Random Φ0 distribution to a common scale from 1008 quenches at N = 367, 500, 1844 and

9883. The narrowing with increasing N reduces liquid statistical mechanics to a single random

valley. All histograms are drawn to the same vertical and horizontal scales, and each histogram has

the same total count, hence has the same area. The Φ0 scale is shown for the far right histogram,

and both scales for the first three histograms are marked in Figs. 1-3 respectively.

the low-energy side of the random distribution consists of a symmetry spread, and includes

the local symmetrics. Our technique for separating symmetric and random structures is

to divide them at the first empty histogram bin below the random peak. The technique

is non-subjective. It has error, but only as a finite-N effect. Figures 1-3 show that the

separation bin, the empty bin, moves up in potential energy as the distribution narrows.

Hence the symmetric contamination of the random distribution goes to zero as N increases.

Symmetric contamination is barely apparent in Fig. 3, and is not apparent in the larger-N

distributions (see Fig. 4).
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IV. CALIBRATION OF THE STRUCTURE THEORY

Let us denote a single random structure potential by Φr

0, and its average over the random

distribution by 〈Φr

0〉. The most accurate estimate we have for the liquid structure potential

is 〈Φr

0〉. However, each Φr

0 corresponds to a specific configuration, in which the atomic equi-

librium positions RK are recorded, K = 1, . . . , N . We need to keep this stable equilibrium

configuration, as it is an essential part of the vibrational normal-mode theory, which in turn

provides our entire vibrational formulation. But the structure configuration is lost in 〈Φr

0〉.

We therefore choose a structure whose potential is close to 〈Φr

0〉, and denote it as the liquid

structure with a superscript l. Φl

0 is now the liquid structure potential, and carries with it a

tabulation of the structure configuration. This information will be the starting point of our

vibrational Hamiltonian. In that formulation, Φl

0 is the classical groundstate energy, purely

potential. For the quantum groundstate energy, the vibrational zero point energy is added

to Φl

0.

0.84

0.88

0.92

0.96

1.00

0 2000 4000 6000 8000 10000

N

m
e

a
n

 e
n

e
rg

y
 (

m
R

y
)

FIG. 5. Dots are the mean random-structure potential energy, 〈Φr
0〉, graphed against N . The

width bars are the Φr
0 std dev at each N .

The internal energy in V-T theory, UV T , has three major contributions, plus terms that

are small at T & Tm, as follows:

UV T (V, T ) = Φl

0(V ) + 3kBT [1 + . . . ] + Utr(V, T ). (2)

Here 3kBT is the classical vibrational contribution, [1+ . . . ] represents the vibrational quan-

tum corrections, and Utr(V, T ) is the transit contribution. Notice we omit explicit considera-

tion of the electronic thermal excitations in the present work. At T & Tm , 3kBT dominates
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Eq. 2. Fig. 5 shows the mean and std dev of the Φr

0 distributions vs N . The std dev mea-

sures scatter in the quench data. The scatter error at the largest N is 0.1% of 3kBTm, and

this percentage decreases as T increases. This error is insignificant for most applications.

At N = 500, the scatter error is still only 1.0% of 3kBTm. Two conclusions follow. (a) In

MD calculations, only a modest N is required to reduce the Φr

0 scatter error to a negligible

level. (b) The first two terms on the right side of Eq. 2 have only numerical error; formal

theoretical error is all contained in Utr, and Utr is small, being . 0.1(3kBT ). Hence a simple

approximate transit theory will in general be accurate enough. This condition is a benefit

of the many-body Hamiltonian formulation.

Figure 6 shows the Φr

0 std dev on a log-log graph, and its straight line fit. The graph

reveals the operation of the central limit theorem, as follows. For an N -atom structure, let

us define the single atom potential as φK , K = 1, . . . , N , and set Φ0 = N−1
∑

K
φK . The

key assumption of the central limit theorem is that the φK are randomly drawn from a fixed

distribution, for every N . Then the theorem states that the Φ0 distribution is proportional

to exp(−NΦ2
0/2σ

2), with variance σ2/N , σ =constant. This rationalization is justified by

Fig. 6, because the std dev is found proportional to N−α, where α = 0.489. α lies close

enough to 0.5 to invoke the theorem. The practical significance of Fig. 6 is that it allows us

to estimate computational error as function of N . The theoretical significance of Fig. 6 is

its implication that the std dev goes to zero as N goes to infinity. This was assumed in the

Hypothesis, in order to establish macroscopic uniformity of the random valleys (Sec.II).
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FIG. 6. Dots are the Φr
0 std dev at each N , graphed against N on a log-log scale. Dashed straight

line is a fit to the dots, and has slope −0.489.

We shall now discuss the procedures required to identify and calibrate a single liquid struc-
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ture. We first consider normal melting elements, and work at fixed volume. Na is known to

be NFE, in bcc and liquid phases. We verified this as a check on our DFT calculations by

comparing the electronic density of states (DOS) for bcc and random structures. To search

for random structures, one begins with a set of quenches, say 10, at fixed V and N . The

quenched Φr

0 should lie in a distribution above the stable crystal Φc

0 by very approximately

kBTm, and of width small compared to kBTm. Any apparent symmetrics are to be removed

from the random distribution. Suspicious results are to be checked with additional indepen-

dent quenches. It is always a good idea to do some testing of quenched structures. Several

sensitive tests are illustrated in29.

An alternative procedure works when V is to be varied. For Na and Cu, from one DFT

quench at each of a set of volumes, the Φr

0 vs V points lie on a smooth curve with very little

scatter28. This also demonstrates a narrow Φr

0 distribution. At this point, the quenched

structures may all be designated liquid structures, and each structure configuration may be

used to calibrate Φl

0 and the vibrational normal mode theory.

The situation with anomalous melting can present a problem when theoretical calculations

are done by DFT. For example, α-Ga is a partially covalent crystal, which melts to an NFE

liquid. The problem is that quenches from the liquid can arrive at structures that are correct

amorphous solids, but do not have the liquid electronic structure. This does not happen

in Ga. For verification, we compared several definitive theoretical quantities from a set

of quenched structures with the same quantities at the crystal structure. The quantities

include the electronic DOS and the vibrational DOS (see Supplemental Material for29. It

was verified in detail that the quenched structures are appropriate liquid structures.

However, the problem does appear in Si and Ge, the two most anomalous melters. DFT

quenches from the NFE liquid arrive at structures with distorted covalent bonding, repre-

sentative of the real amorphous solid30. The problem is not fatal, but is beyond the scope

of our discussion.

V. DISCUSSION AND CONCLUSION

For many years, our goal has been to construct a Hamiltonian formulation of monatomic

liquid dynamics. This goal requires only a single construction: A tractable approximate

many-body potential energy function. From the early years, mentioned in Sec. II, we did
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not think in terms of the general potential energy function Φ(r1, . . . , rN), which depends

on the instantaneous positions rK of the atoms. Rather, we started with the conventional

description of the many-atom PES as a collection of intersecting 3N -dimensional potential

valleys. We then analyzed experimental thermodynamic data for a collection of elemental

liquids, to see what could be discovered about the macroscopic physical character of these

potential energy valleys. This quest is minimally outlined in Sec.II. The information obtained

from experimental data is primarily about the atomic motion. In all cases, it has eventually

been possible to assign the information to vibrations or transits (Sec.II). The vibrations

and transits then imply information about the underlying potential energy valleys, and this

information is compiled in the Hypothesis (Sec.II). The Hypothesis is the template for the

tractable many-body potential energy. Its variables are not the atomic positions, but are

the 3N -dimensional intersecting harmonic potential energy surfaces.

The study of quenched structures in Sec.III provides direct information about the poten-

tial energy valleys, as follows.

1. The study measures the complete condensed matter structure distribution and its N -

dependence, for a physically realistic interatomic potential for Na at the volume of the

liquid at melt. The result stands alone as an MD observation of the many-body PES.

2. The result verifies the Hypothesis accurately and in detail. In 8064 quenches, not one

structure fails to follow the description at the end of Sec.II. Because the Hypothesis is

based on experimental data from elemental liquids covering a broad range of bonding

types, we expect the quench study of Sec.III to represent elements across a large

portion of the Periodic Table.

3. Our primary interest is the liquid state. However, seeing the entire potential surface

helps to clarify the liquid domain and its boundary. By convention, condensed matter

physics identifies a phase by its structure. For example, bcc Na is a material phase,

and its definition applies at all (V, T ), whether the phase is stable or metastable. In

this convention, we identify the liquid domain as the random valley distribution, for

all (V, T ).

Sec.IV begins the calibration of V-T theory. To keep the logic clear, we shall define exactly

what is to be calibrated, though it transcends what is calibrated here. Let us define the V-T
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potential ΦV T (V ), a tractable approximation to the potential recorded in the Hypothesis.

ΦV T (V ) has three components: the liquid structure potential Φl

0(V ); the harmonic potential

Φvib(V ), defined at the structure and extended to infinity; and correction to the extended

harmonic potential to account for the intervalley intersections, denoted Φtr(V ). Calibration

of Φl

0(V ) is described in Sec.IV. Notes are presented on how to identify and calibrate a single

liquid valley. Ultimately, a data base on liquid calibration parameters will greatly enhance

the general capability of calculating liquid properties. The corresponding much simpler data

base for crystals is widely used. In this respect, an attractive property of V-T theory is that

calibration of the liquid parameters at one volume enables calculation of thermodynamic

properties at all temperatures, for that volume. This is another benefit of the many-body

Hamiltonian formulation.

The present theoretical development is directly applicable to equation-of-state calcula-

tions. The thermodynamic equations for internal energy and entropy are written in28,29. In

these references, structural and vibrational parameters are calculated from first-principles

DFT. The transit contribution is from31. Calculations for Na and Cu as function of vol-

ume include the structure potential, pressure, bulk modulus, and the set of vibrational

frequencies28. Data compared with experiment at Tm include the zero-pressure volume, the

energy, entropy, and bulk modulus. The overall accuracy is phenomenal, being strictly as

good as is lattice dynamics for the crystal (Table V in28). Calculations for crystal and liquid

Ga at melt conditions allowed us for the first time to separate the normal and anomalous

contributions to the melting process. Results for the liquid are again as accurate as for the

crystal, and the thermodynamic changes across melting are very accurate (Tables II and IV

of29).

Further V-T theory is well suited to be applied in general equation-of-state (EOS) mod-

eling. EOS models are needed to provide thermodynamic materials properties over broad

ranges of temperature and pressure for various hydrodynamic simulations including plane-

tary modeling and shock physics simulations. Here the standard practice is to separate the

total energy into three terms32

E = E0 + Ei + Ee , (3)

where E0 is the cold curve or zero temperature compression curve, Ei is the thermal energy

from the ions, and Ee is the thermal energy due to the electrons. In a multiphase approach

this decomposition is done for each phase including the liquid, and then the phase boundaries
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are determined by examining the Gibbs free energy33–35. The cold curve for the liquid is

modeled in the same manner as the solid. That is using some sort of compression model

above ambient density, i.e. Murnaghan EOS, and connecting to a gas model below such as

a Lennard-Jones or Van der Waals EOS. This liquid cold curve is generally regarded as an

abstraction and modeling convenience, and is often determined by extrapolating isotherms

generated from above melt temperature ab initio calculation, or even just using the crystal

cold curve. In contrast V-T theory provides a clear definition for what the cold curve of a

liquid physically is and provides the EOS model contribution as E0 = Φl

0. This connection is

a main point of this paper. The theory also provides the ion contribution to the energy Ei,

or atomic motional energy, which is due to the vibrational plus transit potentials, Φvib+Φtr.

Current EOS modeling for the liquid is often based on solid-like Debye models near melt

and interpolation to ideal gas like behavior at high temperatures36,37. Other approaches in-

clude perturbation theory approaches38–41, usually of hard spheres, or semi-empirical param-

eterizing of Van der Waals type equations of state33,42 which attempt to extend description

to the liquid state. The advantage of V-T theory is in providing accurate thermodynamics

for the EOS from melt up to temperatures of about 5Tmelt above which one can connect to

higher temperature models.
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