Unraveling the structure and bonding evolution of the newly discovered iron oxide FeO$_2$

Cheng Lu, Maximilian Amsler, and Changfeng Chen

Phys. Rev. B 98, 054102 — Published 6 August 2018

DOI: 10.1103/PhysRevB.98.054102
Unraveling structure and bonding evolution of newly discovered iron oxide FeO_2

Cheng Lu,1,* Maximilian Amsler,2,† and Changfeng Chen1,‡

1 Department of Physics and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, USA
2 Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA

(Dated: July 18, 2018)

Recently reported synthesis of FeO_2 at high pressure has stimulated great interest in exploring this new iron oxide and elucidating its properties. Here we present a systematic computational study of crystal structure, chemical bonding and sound velocity of FeO_2 in a wide range of pressure. Our results establish thermodynamic stability of the experimentally observed pyrite phase (P-phase) of FeO_2 at pressures above 74 GPa and unveil two new metastable FeO_2 phases in Pbcn and P42/mnm symmetry at lower pressures. Simulated x-ray diffraction (XRD) spectra of Pbcn and P42/mnm FeO_2 match well with measured XRD data of the decompression products of P-phase FeO_2, providing compelling evidence for the presence of these metastable phases. Energetic calculations reveal unusually soft O-O bonds in P-phase FeO_2 stemming from a low-frequency libration mode of FeO_6 octahedra, rendering the O-O bond length highly sensitive to computational and physical environments. Calculated sound-velocity profiles of P-phase FeO_2 are markedly different from those of the Pbcn and P42/mnm phases, underscoring their distinct seismic signatures. Our findings offer insights for understanding the rich structural, bonding, and elastic behaviors of this newly discovered iron oxide.

PACS numbers: 61.50.-f, 63.20.dk, 64.60.Bd, 71.20.-b

I. INTRODUCTION

Iron oxides constitute a considerable fraction of the Earth’s composition [1–4] and have attracted great interest as prototypes for modeling the material behavior in Earth’s deep interiors [2–5]. The phase diagram of the Fe-O system includes compounds of diverse stoichiometries, structures, and properties, which emerge at different pressure and temperature environments [6–12]. At ambient conditions, ferrous oxide (FeO, wüstite) [6] forms a paramagnetic Mott insulator in a rock-salt B1 structure, which undergoes a structural transition to a rhombohedral phase at 16 GPa. Hematite (α-Fe_2O_3) [7] is a wide-band antiferromagnetic insulator with a rhombohedral corundum-type structure, and its structural motif consists of stacked layers of corner-sharing octahedra with Fe atom surrounded by six O atoms. The Fe atom is not completely centered in the regular octahedron; instead, it is closer to three surrounding O atoms. Magnetite (Fe_3O_4) [8] is half-metallic with high spin polarization and mixed valence states, crystallizing in a cubic structure of the spinel [Fe^{3+}
_4][Fe^{2+}Fe^{3+}]/2O_4 type. Its tetrahedral four-coordinated A site is occupied by Fe^{3+}, while its octahedral six-coordinated B site is occupied by Fe^{2+} and Fe^{3+} [9]. At increasing pressure and temperature, additional phases of iron oxides have been reported, including Fe_4O_5 [10], Fe_5O_6 [11], Fe_5O_7 and Fe_25O_32 [12].

Recently, Hu et al. [4] reported the synthesis of a new phase of iron oxide, FeO_2, through a chemical reaction of Fe_2O_3 and O_2 at pressures above 75 GPa and a temperature of about 1600 K. Based on in-situ XRD measurements and density function theory (DFT) calculations, the authors suggested that FeO_2 adopts a crystal structure identical to pyrite (FeS_2), where O replaces S to form bonds with Fe and neighboring O atoms. In this structure, henceforth referred to as the P-phase, the corresponding lengths of the Fe-O and O-O bonds are reported to be 1.792 Å and 1.937 Å, respectively [13]. Consequently, Hu et al. [4] proposed to adopt a chemical picture typical for iron peroxide. Subsequent theoretical work [14], however, raised questions concerning the oxidation state of iron in FeO_2. Using DFT calculations, it was shown that the oxidation state of the Fe ions in the P-phase is not 2+, as in FeS_2, but has an unexpected valence close to 3+ based on the argument that the O-O distance in FeO_2 is much larger than in free O_2 molecules (1.21 Å) [15] or in (O_2)^2− ions in typical peroxides (1.49 Å) [14, 16]. Moreover, high-pressure evolution of the crystal structure and chemical bonding in FeO_2 and its impact on key physical properties remain largely unexplored.

To resolve fundamental structural and bonding behaviors of P-phase FeO_2, explore additional FeO_2 phases, and establish their structure and property evolution under pressure, we have performed an unbiased structure search by the Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) method [17, 18] which has worked well on a large variety of materials [19–29], to determine the pressure induced structural evolution and phase transition of FeO_2, accompanied by first-principles calculations [30–35] to probe associated energetics, chemical bonding, and elastic properties. In agreement with the experimental reports [4], our calculations identify the pyrite structure as the thermodynamically stable form of FeO_2 at pressures above 74 GPa. Our structure search also uncovers two metastable FeO_2 phases in Pbcn and
P42/mnm symmetries at reduced pressures. An analysis of simulated and measured XRD spectra shows a good match between these metastable phases and the decomposition products of FeO$_2$ obtained in the experiment [4]. Our energetic calculations unveil that the O-O bonding in FeO$_2$ is unusually soft, which is attributed to a low-frequency libration mode of FeO$_6$ octahedra, making the O-O bond length highly sensitive to computational (e.g., types of exchange-correlation potential and whether or not including the on-site Coulomb interaction) and physical (e.g., pressure and temperature) environments. We also calculated elastic parameters to determine the sound velocities of the identified FeO$_2$ phases to assess their seismic signatures.

II. COMPUTATIONAL METHODS

Our structure prediction is based on a global optimization of the free-energy surfaces using the CALYPSO methodology [17, 18], which has the capability of predicting crystal structures with only the knowledge of the chemical composition at given external conditions (for example, pressure) as input [24–29]. In the present work, the variable-cell approach is used with one to four formula units (f.u.) of FeO$_2$, and a fixed-cell approach with one, two, and four FeO$_2$ f.u. per cell. Structural searches are performed at 0, 25, 30, 40, 50, 75, 100, and 150 GPa. The DFT nonmagnetic (NM) calculations are adopted in the variable-cell structure searches and the spin polarized DFT+U calculations are adopted in the fixed-cell structure searches. Each generation of trial structures contains 50 candidates, with 70% generated by the particle swarm optimization (PSO) and 30% generated randomly; the search is terminated after 30 generations. The top 50 structures with relatively low-energy in the CALYPSO structure searches are reoptimized by spin polarized DFT+U calculations to identify the true ground state structures of FeO$_2$ under different pressures.

The underlying first-principles structural relaxations and electronic property calculations are carried out using DFT with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional as implemented in the VASP code [30]. To take into account electronic correlation effects, we include an onsite Coulomb repulsion term within the generalized gradient approximation (GGA+U) [36–38]. The frozen-core all-electron projector-augmented wave (PAW) method [31] is adopted, with 3d^74s^1 and 2s^22p^4 treated as valence electrons for Fe and O, respectively. A cutoff energy of 800 eV for the expansion of the wave function into plane waves and fine Monkhorst-Pack k-meshes [32] is chosen to ensure that the enthalpies are converged to better than 1 meV/atom.

The enthalpy-pressure relations of FeO$_2$ are calculated using the GGA+U functional. We adopted the optimized values for U (5 eV; on-site Coulomb interaction) and J (0.8 eV; Hund coupling constant) from a recent work [39] to describe the electronic structure of FeO$_2$. The decomposition (Fe$_2$O$_3$+O$_2$) enthalpies are calculated by adopting the α-Fe$_2$O$_3$, ζ-Fe$_2$O$_3$, ρ-Fe$_2$O$_3$ and η-Fe$_2$O$_3$ structures for Fe$_2$O$_3$ [40], and α-O$_2$, δ-O$_2$, ε-O$_2$ and ζ-O$_2$ structures for the solid oxygen [41]. For example, at 75 GPa, the ground state structures of Fe$_2$O$_3$ and O$_2$ are η-Fe$_2$O$_3$ (Cmcm symmetry) and ε-O$_2$ (C2/m symmetry), respectively. The decomposition enthalpies of Fe$_2$O$_3$ and O$_2$ at 75 GPa are calculated by considering η-Fe$_2$O$_3$ and ε-O$_2$ structures, which results in the Fe$_2$O$_3$+O$_2$ data line. For comparison with the experimental data, we also performed the pressure-volume calculations by using other exchange-correlation functionals, including the generalized gradient approximation (GGA), the local density approximation (LDA) and LDA+U.

The phonon calculations are carried out using the supercell approach [42] as implemented in the PHONOPY code [33]. Electronic charges are calculated using Bader’s Quantum Theory of Atom in Molecules approach [34] with a 300×300×300 Fast Fourier Transform grid.
III. STRUCTURE EVOLUTION

We have performed a systematic structure search using fixed and variable cells that contain up to four formula units in the pressure range of 0-150 GPa. The pressure evolution of the enthalpies for the relevant encountered phases is shown in Fig. 1(a). At 0 GPa, all examined FeO\textsubscript{2} structures are unstable against dissociation into Fe\textsubscript{2}O\textsubscript{3} and O\textsubscript{2}, consistent with the experimental observation that no crystalline FeO\textsubscript{2} phase is seen at ambient conditions. The enthalpy of P-phase FeO\textsubscript{2} decreases quickly with rising pressure and drops below that of Fe\textsubscript{2}O\textsubscript{3}+O\textsubscript{2} at 74 GPa, which is in excellent agreement with the experimental transition pressure of 75 GPa [4]. Our results show that P-phase FeO\textsubscript{2} remains the stable structure up to 150 GPa. Interestingly, upon decompression below 74 GPa, the enthalpy of P-phase FeO\textsubscript{2} intersects with those of three nearly degenerate metastable FeO\textsubscript{2} phases, in P\textsubscript{4}2\textsubscript{1}/mn\textsubscript{m}, Pb\textsubscript{cn}, and P\textsubscript{2}/m symmetries, respectively, that coexist in the pressure range of 30-40 GPa and are dynamically stable as evidenced by their calculated phonon dispersion curves that show no imaginary phonon modes [Fig. 1(b)]. This raises an intriguing possibility of finding new FeO\textsubscript{2} phases in the decompression products of the P-phase provided the kinetic barrier for the dissociation is sufficiently high. The metastable FeO\textsubscript{2} phase in P\textsubscript{4}2\textsubscript{1}/mn\textsubscript{m} symmetry is isomorphous with the rutile phase of TiO\textsubscript{2}, which is among the most commonly observed structure types for transition-metal dioxides, including CrO\textsubscript{2} and MnO\textsubscript{2} [44, 45]. The metastable FeO\textsubscript{2} phase in orthorhombic Pb\textsubscript{cn} symmetry adopts an α-PbO\textsubscript{2} type structure. We list in Table S1 [46] the structural details of the stable P-phase and three metastable phases of FeO\textsubscript{2} at select pressure points where experimental measurements were taken and comparisons made (see below) with calculated results.

We have simulated XRD spectra of all four FeO\textsubscript{2} phases shown in Fig. 1(b) and compared the results with experimental XRD data. We find an excellent match between simulated and experimental XRD data at 76 GPa [Fig. 2(a)]. Meanwhile, in the absence of decomposition into Fe\textsubscript{2}O\textsubscript{3} and O\textsubscript{2}, the pressure evolution of the predicted metastable FeO\textsubscript{2} phases can be regarded as a sequence of phase transitions on decompression. To verify this conjecture, we have obtained from the authors of the experimental work [4] their unpublished high-resolution XRD data taken at 31 GPa and 41 GPa, where our calculated enthalpy results [Fig. 1(a)] show that P-phase and metastable FeO\textsubscript{2} phases become very close in enthalpy and, therefore, are likely to coexist. A comparison of the simulated and measured XRD spectra [Fig. 2(b)] indeed shows that nearly all of the previously unsigned and unexplained diffraction peaks that appear but do not match the spectra of P-phase FeO\textsubscript{2} at 31 and 41 GPa find excellent matches with the simulated XRD peaks of the P\textsubscript{4}2\textsubscript{1}/mn\textsubscript{m} and Pb\textsubscript{cn} FeO\textsubscript{2} phases. This remarkable match indicates the likely presence of these two metastable phases in the decompression product. Meanwhile, the simulated XRD peaks of the P\textsubscript{2}/m FeO\textsubscript{2} phase (not shown here) are absent in the measured XRD spectra, probably impeded by a higher energy barrier associated with this particular phase transition. These findings offer compelling evidence for the existence of the
metastable FeO$_2$ phases in $P4_2/mnm$ and $P6cn$ symmetry within the range of the experimentally probed pressures, i.e., 31 to 41 GPa. These phases likely exist in an even wider range of pressure, but more work is needed to gain insight regarding their phase boundaries, which is an interesting topic for further study, especially at the low-pressure end where the $P4_2/mnm$ phase has a clear energetic advantage and may become a single phase in the recovered specimen. The presence of these metastable phases at reduced pressures establishes new viable FeO$_2$ crystal structures, which have important implications for expanding the iron oxide family of compounds and assessing their impact on geophysical and geochemical processes.

IV. CHEMICAL BONDING AND VALENCE STATE

We have explored several exchange-correlation functionals and different types of pseudopotentials to examine how these different computational environments affect the energetic, structural, and electronic properties of FeO$_2$. We first examined lattice parameters of FeO$_2$ at 76 GPa. Experimental results show that P-phase FeO$_2$ is stable at this pressure with an observed lattice parameter of $a = 4.3640$ Å and a volume of $V = 83.115$ Å3. We adopted the structure of P-phase FeO$_2$ and atomic positions from the Extended Data Table 2 of Hu et al. and performed structural relaxations at 76 GPa using different DFT methods. The semilocal PBE functional with the standard PAW potentials in a closed-shell set-up produces an O-O bond length of 2.076 Å, agreeing well with previously reported theoretical O-O distance of 2.077 Å reported by Jang et al. [13], which agrees well with the theoretical O-O distance of 2.077 Å. We find only minor changes in the structural parameters when using the hard/semicore PAW potentials provided in VASP [30].

We then examined the electronic correlation effect within the GGA+U approach [36–38]. We adopted the recently proposed onsite Coulomb interaction term $U = 5$ eV and Hund coupling parameter $J = 0.8$ eV for Fe. Within different magnetic states used in the calculations, we find large variations of the O-O distances, ranging from 1.876 Å to 2.232 Å. The calculated O-O distance is 1.876 Å in the GGA+U approach without spin polarization, which agrees well with the theoretical O-O bond length of 1.896 Å reported by Jang et al. [13]. On the other hand, a spin-polarized calculation shows that an antiferromagnetic (AFM) state lowers the total energy compared to the closed-shell or ferromagnetic (FM) setting, leading to an O-O distance of 2.232 Å. This low-energy AFM spin state has alternating spin-up and spin-down Fe layers, which breaks the cubic symmetry and leads to an orthorhombic cell with the lattice parameters of $a = 4.3683$ Å, $b = 4.3621$ Å, and $c = 4.3613$ Å, which are very close to the lattice constant of $a = 4.3639$ Å in a symmetrized cubic cell with a volume of 83.104 Å3, and the same as the experimental data ($a = 4.3640$ Å and $V = 83.115$ Å3) at 76 GPa [4]. Further, the computed Fe-O bond length is 1.7873 Å, merely 0.29% shorter than the experimental value of 1.7925 Å. This good overall agreement between theory and experiment (see Table S2 [46]) indicates that the AFM GGA+U approach provides a good description of P-phase FeO$_2$, despite a notable discrepancy in an overestimation of the O-O distance at 2.232 Å compared to the experimental value of 1.9371 Å [4]. We also calculated the volume-pressure relation for P-phase FeO$_2$, and the results also show that the GGA+U approach produces the best agreement with experimental data (Fig. S1 [46]).

To elucidate the sensitive nature of the O-O bond length under different computational environments, we investigated structural dynamics of FeO$_2$ by calculating its phonon dispersion at 76 GPa using a $2 \times 2 \times 2$ supercell. The results reveal a low-frequency transverse optical (TO) mode at about 11.8 THz at the Γ point, which corresponds to a rigid rotation of the FeO$_6$ octahedra. This libration eigenmode [see Fig. 3(a)] causes a stretching/shortening of the O-O bond. The large variation of the calculated bond lengths indicates a very soft energy landscape along the associated O-O dimer direction.

To evaluate the softness of the energy landscape for the O-O bonding in FeO$_2$, we compute its energy profile along the O-O stretching mode and compare with that of a typical peroxide (Na$_2$O$_2$) [47] and a simple oxide (RuO$_2$) [48]. At discrete, fixed O-O bond lengths we allow the remaining atoms to relax, while keeping the cell parameters at their equilibrium values. This allows a mapping of the energy landscape as a function of the O-O distance. Results in Fig. 3(b) show that the equilibrium O-O distance in FeO$_2$ lies between that of Na$_2$O$_2$ (1.54 Å) and RuO$_2$ (2.49 Å), and that the curvature of the energy landscape along the O-O bond is much softer for FeO$_2$ compared to those of Na$_2$O$_2$ and RuO$_2$. In fact, the curvature for FeO$_2$ (between 0.77 and 1.57
(see Fig. S2 [46] for details) reveal metallic nature of the P42/mnm and Pbcn phases in the pressure range (31-41 GPa) of interest. In both cases, the DOS in the vicinity of the Fermi level has large contributions from the Fe 3d as well as the O 2p states, indicating a charge transfer between Fe 3d and O 2p orbitals. In contrast, the P-phase is semiconducting with an increasing band gap at rising pressure, reaching 0.481 eV at 76 GPa. We assess charge distribution in FeO2 by computing the Bader charges using the Atom in Molecules approach [34, 49–51], and the results show a considerable amount of charge transfer between Fe and O atoms. At 31 GPa, the Bader partial charges in the P42/mnm phase are +1.76 and -0.88 for Fe and O, respectively. Similar values are found for the Pbcn phase (+1.76 for Fe and -0.88 for O) and the P-phase (+1.75 for Fe and -0.875 for O) at the same pressure. The Bader charges of the P-phase at 76 GPa are reduced slightly to +1.60 and -0.80 for Fe and O, respectively. For comparison, the Fe Bader charges in other typical iron oxides at 76 GPa are +1.27 for FeO, +1.72 for Fe2O3, +1.72 and +1.47 for the two distinct Fe sites in Fe3O4. These results seem to suggest that the oxidation state of Fe in FeO2 is close to 3+ since +1.60 is closer to +1.72 than +1.27. However, the calculated Bader charge of O in FeO2 is -0.80, which is close to values in CaO2 (-0.71/-0.74) and Na2O2 (-0.68/-0.70), and lower than those in FeO (-1.27), Fe2O3 (-1.14) and Fe3O4 (-1.15/-1.18) at 76 GPa. These findings support the picture that FeO2 is a peroxide, in agreement with the initial interpretation of Hu et al. [4]. The oxidation state for Fe in FeO2 is likely to attain a partial charge state Fe+(2+δ), where δ ranges from 0 to 1 [52]. Further details on the charge states in FeO2 and several other transition-metal oxides are given in Table S3 [46].

We have further assessed the bonding character in FeO2 by analyzing the electron localization function (ELF) [53], which provides a convenient measure to identify spatial localization of electrons, where values higher or lower than 0.5 represent regions with more or less electron localization compared to a uniform electron gas, respectively. The two metastable phases in P42/mnm and Pbcn symmetry show a strong localization of electrons in the vicinity of the O atom [Fig. 4(a,b)], which can be attributed to the O 2p lone electron pairs. At increasing pressure, small localized ELF basins form along the shortest O-O directions. Although the magnitude of this localization is small in the P-phase [Fig. 4(c)], it still indicates the formation of a single covalent bond between the nearest O atoms. The presence of this weak O-O covalent bond in the P-phase supports the picture that FeO2 at 76 GPa is indeed a peroxide.

We also have performed a COHP [35, 54–56] analysis to examine the difference in bonding properties between various FeO2 phases. The COHP decomposes the DOS according to the weighted Hamiltonian matrix elements. Bonding and antibonding states are represented by positive and negative values of -COHP, respectively [57]. We show in Fig. 4(d)-(f) select -COHPs of the shortest Fe-O and O-O bonds of P42/mnm, Pbcn, and P-phase FeO2 at 31, 41, and 76 GPa, respectively. The Fe-O interactions look qualitatively similar in all three cases, with the occupied bonding states and unoccupied antibonding states below and above the Fermi level, respectively. The O-O interaction, on the other hand, varies significantly among the different phases. For the P42/mnm phase [Fig. 4(d)], there is essentially no contribution from the O-O bonds in the COHP. For the Pbcn phase at increased pressure, there is evidence of emerging O-O interaction [Fig. 4(e)] through the σ* antibonding states slightly below the Fermi level (around -2 eV). This effect is stronger in the P-phase at further increased pressure, where the magnitude of the O-O antibonding states below the Fermi level has a sharp peak [Fig. 4(f)]. The integrated COHP (ICOHP) can provide an estimate of the strength of bonding. For comparison, we have calculated the ICOHP for the two adjoining O atoms in FeO2. The ICOHP values are about -0.035 eV for P42/mnm at

$eV/\text{Å}^2$, depending on the exchange-correlation functional and the magnetic state used in the calculation) is significantly lower than the value for Na2O2 (4.58 $eV/\text{Å}^2$) or RuO2 (2.66 $eV/\text{Å}^2$). Such softness of the O-O bond in FeO2 explains its high sensitivity to computational environments and suggests that it also will be sensitive to actual physical environments, such as temperature and pressure, which vary at different synthesis, characterization and geological conditions.

We have calculated electronic density of states (DOS) of the stable and metastable FeO2 phases; the results reveal metallic nature of the P42/mnm and Pbcn phases in the pressure range (31-41 GPa) of interest. In both cases, the DOS in the vicinity of the Fermi level has large contributions from the Fe 3d as well as the O 2p states, indicating a charge transfer between Fe 3d and O 2p orbitals. In contrast, the P-phase is semiconducting with an increasing band gap at rising pressure, reaching 0.481 eV at 76 GPa. We assess charge distribution in FeO2 by computing the Bader charges using the Atom in Molecules approach [34, 49–51], and the results show a considerable amount of charge transfer between Fe and O atoms. At 31 GPa, the Bader partial charges in the P42/mnm phase are +1.76 and -0.88 for Fe and O, respectively. Similar values are found for the Pbcn phase (+1.76 for Fe and -0.88 for O) and the P-phase (+1.75 for Fe and -0.875 for O) at the same pressure. The Bader charges of the P-phase at 76 GPa are reduced slightly to +1.60 and -0.80 for Fe and O, respectively. For comparison, the Fe Bader charges in other typical iron oxides at 76 GPa are +1.27 for FeO, +1.72 for Fe2O3, +1.72 and +1.47 for the two distinct Fe sites in Fe3O4. These results seem to suggest that the oxidation state of Fe in FeO2 is close to 3+ since +1.60 is closer to +1.72 than +1.27. However, the calculated Bader charge of O in FeO2 is -0.80, which is close to values in CaO2 (-0.71/-0.74) and Na2O2 (-0.68/-0.70), and lower than those in FeO (-1.27), Fe2O3 (-1.14) and Fe3O4 (-1.15/-1.18) at 76 GPa. These findings support the picture that FeO2 is a peroxide, in agreement with the initial interpretation of Hu et al. [4]. The oxidation state for Fe in FeO2 is likely to attain a partial charge state Fe+(2+δ), where δ ranges from 0 to 1 [52]. Further details on the charge states in FeO2 and several other transition-metal oxides are given in Table S3 [46].

We have further assessed the bonding character in FeO2 by analyzing the electron localization function (ELF) [53], which provides a convenient measure to identify spatial localization of electrons, where values higher or lower than 0.5 represent regions with more or less electron localization compared to a uniform electron gas, respectively. The two metastable phases in P42/mnm and Pbcn symmetry show a strong localization of electrons in the vicinity of the O atom [Fig. 4(a,b)], which can be attributed to the O 2p lone electron pairs. At increasing pressure, small localized ELF basins form along the shortest O-O directions. Although the magnitude of this localization is small in the P-phase [Fig. 4(c)], it still indicates the formation of a single covalent bond between the nearest O atoms. The presence of this weak O-O covalent bond in the P-phase supports the picture that FeO2 at 76 GPa is indeed a peroxide.

We also have performed a COHP [35, 54–56] analysis to examine the difference in bonding properties between various FeO2 phases. The COHP decomposes the DOS according to the weighted Hamiltonian matrix elements. Bonding and antibonding states are represented by positive and negative values of -COHP, respectively [57]. We show in Fig. 4(d)-(f) select -COHPs of the shortest Fe-O and O-O bonds of P42/mnm, Pbcn, and P-phase FeO2 at 31, 41, and 76 GPa, respectively. The Fe-O interactions look qualitatively similar in all three cases, with the occupied bonding states and unoccupied antibonding states below and above the Fermi level, respectively. The O-O interaction, on the other hand, varies significantly among the different phases. For the P42/mnm phase [Fig. 4(d)], there is essentially no contribution from the O-O bonds in the COHP. For the Pbcn phase at increased pressure, there is evidence of emerging O-O interaction [Fig. 4(e)] through the σ* antibonding states slightly below the Fermi level (around -2 eV). This effect is stronger in the P-phase at further increased pressure, where the magnitude of the O-O antibonding states below the Fermi level has a sharp peak [Fig. 4(f)]. The integrated COHP (ICOHP) can provide an estimate of the strength of bonding. For comparison, we have calculated the ICOHP for the two adjoining O atoms in FeO2. The ICOHP values are about -0.035 eV for P42/mnm at
FIG. 5: Stereographic projections of calculated P-wave velocity V_p (in km/s) and S-wave anisotropy A_{VS} (in %) for (a) $P4_2/mnm$ FeO$_2$ at 31 GPa, (b) $Pbnm$ FeO$_2$ at 41 GPa, and (c) P-phase FeO$_2$ at 81 GPa. The coordinate axes are $X_1 = [100]$, $X_2 = [010]$, $X_3 = [001]$. The black square (white circle) in each plot indicates the crystallographic direct ion of the maximum (minimum) value.

31 GPa, -0.121 eV for $Pbnm$ at 41 GPa, and -0.373 eV for P-phase at 76 GPa, respectively. Hence, the O-O σ^* antibonding interaction in the P-phase is stronger than in the other two phases. These results once again support the picture that the P-phase is a peroxide.

V. SOUND VELOCITY AND ANISOTROPY

We finally investigate the sound-velocity profile of the three viable FeO$_2$ phases and compare them to experimental results. Very recently, Liu et al. [5] measured the phonon density of states (PDOS) of FeO$_2$ by nuclear resonant inelastic X-ray scattering (NRIXS) technique at room temperature. The compressional (P-wave, V_p) and shear (S-wave, V_s) sound velocities of FeO$_2$ at 81(±2) GPa were 9.57 km/s and 4.09 km/s, respectively. We have calculated the elastic tensors C_{11}, C_{12} and C_{44}, and derived the V_p and V_s of P-phase FeO$_2$ at 81 GPa. The obtained sound velocities, V_p(10.85 km/s) and V_s(5.95 km/s), are in reasonable agreement with the experimental values (see Table S4 [46]). The discrepancy between experiment and theory may be attributed to several factors, including the presence of hydrogen in the FeO$_2$ sample [4], the anharmonic effects [58] that were neglected in the calculations, and an orientational preference of the specimen caused by a uniaxial stress component in the sample chamber.

The intrinsic sound-velocity anisotropy defined by $A_{VX} = 100\times((V_{X_{max}}-V_{X_{min}})/((X_{X_{max}}+X_{X_{min}})/2$) ($X = P, S$) describes the directional propagation of sound waves [43]. Results in Fig. 5(a) show that extremal P-wave propagations of $P4_2/mnm$ FeO$_2$ at 31 GPa occur in the basal plane with the fastest velocity $(V_{P_{max}} = 10.08$ km/s) in the (001) direction and the slowest $(V_{P_{min}} = 7.33$ km/s) in the (100) direction. The corresponding AV_p and AV_s are 31.5% and 77.02%, respectively. The fastest and slowest V_p of $Pbnm$ FeO$_2$ at 41 GPa are 10.54 km/s in the $\langle 230 \rangle$ direction and 8.23 km/s in the $\langle 100 \rangle$ direction, respectively, with an AV_p of 24.6% [Fig. 5(b)]. The maximum AV_s is 33.55% in the $\langle 302 \rangle$ direction, a reduction by half compared to the value for the $P4_2/mnm$ phase.

In contrast to the $P4_2/mnm$ and $Pbnm$ phases, the P-phase hosts a drastically different sound-velocity profile [Fig. 5(c)]. Its fastest and slowest V_p are 10.99 km/s in the $\langle 001 \rangle$ direction and 10.76 km/s in the $\langle 221 \rangle$ direction, respectively, with an AV_p of 2.1%. The maximum AV_s of the P-phase is 5.27%, a six-fold reduction compared to the $Pbnm$ phase. These significant differences may be attributed to the different underlying crystal structures. Although the $Pbnm$ and P-phase are both octahedrally coordinated, the $Pbnm$ phase at 41 GPa contains three pairs of nonequivalent Fe-O bonds with bond lengths between 1.7833 Å and 1.9052 Å. In contrast, the P-phase at 81 GPa is six-fold coordinated with all equivalent Fe-O bonds of a uniform bond length 1.7822 Å. This bonding difference drastically reduces the sound-velocity anisotropies and leads to very different sound-velocity profiles. These results highlight large variations in the elastic response and the resulting sound velocity behavior in various FeO$_2$ phases at different pressures, which provide insights for interpreting the seismic signatures of these FeO$_2$ phases.

VI. CONCLUSIONS

Our study establishes thermodynamic stability of recently synthesized P-phase FeO$_2$ at pressures above 74 GPa and, more importantly, unveils two metastable FeO$_2$ phases in $P4_2/mnm$ and $Pbnm$ symmetries, respectively, as validated by an excellent match of simulated and measured XRD spectra in the decompression products of P-phase FeO$_2$. An analysis of the lattice vibration of P-phase FeO$_2$ uncovers a soft mode associated with a rigid rotation of the FeO$_6$ octahedra. This liberation mode stems from a shallow potential energy surface along the O-O bond connecting adjacent FeO$_6$ octahedra, rendering its length highly sensitive to computational and actual physical environments. The resulting large bond-length variation makes it inconsistent and unreliable to determine the Fe oxidation state based solely on the O-O bond length. We therefore have pursued a series of alternative approaches based on ELF, Bader charge, and COHP calculations, and the results collectively provide strong evidence characterizing P-phase FeO$_2$ as a peroxide while assigning Fe a valence state between +2 and +3. We further computed sound velocities of the newly discovered FeO$_2$ phases. The results agree well with
recent experimental data on P-phase FeO$_2$ and reveal very different sound-velocity profiles in two metastable phases, showcasing their distinct seismic signatures. The present findings advance fundamental understanding of structural, bonding and elastic properties of new iron oxide FeO$_2$ phases, offering insights for assessing and interpreting their seismic signatures.

ACKNOWLEDGMENTS

We thank Prof. Roald Hoffmann for valuable discussions. C.L. acknowledges Dr. Qingyang Hu for providing the unpublished experimental XRD data of FeO$_2$ at 31 GPa and 41 GPa. C.L. and C.F.C. acknowledge support from the U.S. Department of Energy under Cooperative Agreement DE-NA0001982. M.A. acknowledges support from the Novartis Universit"at Basel Excellence Scholarship for Life Sciences and the Swiss National Science Foundation (Project No. P300P2-158407, P300P2-174475). The computational resources from the Swiss National Supercomputing Center in Lugano (Projects s700), the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant OCI-1053575, the Bridges system at the Pittsburgh Supercomputing Center (PSC), which is supported by NSF Award ACI-1445606, the Quest high performance computing facility at Northwestern University, and the National Energy Research Scientific Computing Center (DE-AC02-05CH11231), are gratefully acknowledged.

* Electronic address: cheng.lu@unlv.edu
† Electronic address: amaler.max@gmail.com
‡ Electronic address: chen@physics.unlv.edu

[40] E. Bykova, L. Dubrovinsky, N. Dubrovinskaia, M. Bykov,

[46] See Supplemental Material at http://link.aps.org/supplemental/ for details on the calculated pressure-volume relations, structural data, electronic properties, and sound velocities of FeO$_2$ at high pressure, the calculated Bader’s charge of typical iron oxides, peroxides, monoxides and dioxides.

