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Abstract 

In the framework of the Landau-Ginzburg-Devonshire (LGD) approach we studied finite size effects of the 

phase diagram and domain structure evolution in spherical nanoparticles of uniaxial ferroelectric. The particle 

surface is covered by a layer of screening charge characterized by finite screening length. The phase diagram, 

calculated in coordinates "particle radius – screening length" has a wide region of versatile poly-domain 

structures separating single-domain ferroelectric and nonpolar paraelectric phases. Unexpectedly, we revealed 

a region of irregular labyrinthine domains in the nanoparticles of uniaxial ferroelectric CuInP2S6 with the first 

order paraelectric-ferroelectric phase transition. We established that the origin of labyrinthine domains is the 

mutual balance of LGD, polarization gradient and electrostatic energies. The branching of the domain walls 

appears and increases rapidly when the polarization gradient energy decreases below the critical value. 

Allowing for the generality of LGD approach, we expect that the gradient-induced morphological transition 

can be the source of labyrinthine domains appearance in many spatially-confined ferroics with long-range 

order parameter, including relaxors, ferromagnetics, antiferrodistortive materials and materials with 

incommensurate ferroic phases. 

                                                 
* corresponding author, e-mail: anna.n.morozovska@gmail.com  
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I. INTRODUCTION 

The ferroic materials described by Landau theory of symmetry-breaking have a substantial impact on 

fundamental science and various applications. Different types of topological defects in different 

ferroics (ferromagnets, ferroelecrics, ferroelastics) are even more numerous and enigmatic than 

different types of symmetry-breaking, and consequently, they become one of the key fundamental 

problems and hot topics in scientific community [1, 2]. 

 Complementary to the topological point defects [1], domain walls can be considered as 

extended 2D topological defects in ferroics (see e.g. chapter 8 in [2] and refs. therein). Vortices and 

vertices composed by the closure of four domain walls have been observed experimentally and 

described theoretically in a bulk and nanosized ferroelectrics [3, 4, 5, 6, 7]. Stable surface-induced 

labyrinthine domain structures were observed by Piezoresponse Force Microscopy (PFM) in ergodic 

ferroelectrics relaxors and explained by the presence of higher-order term in free-energy expansion 

that gives rise to the polarization modulations [8]. Fractal domain structures are sometimes observed 

in multiferroic thin films [9] and near the surface of relaxors close to relaxor-ferroelectric boundary 

[10], but the labyrinthine domains with a single characteristic length scale were observed by PFM in 

ergodic relaxors only [8]. These labyrinthine structures can coexist with classical ferroelectric 

domains closer to ferroelectric composition limit [11, 12]. The labyrinthine domain structure was 

predicted theoretically in thin films of incommensurate ferroelectrics [13] and bi-layered 

ferroelectrics [14], being similar to those observed in ultrathin magnetic films [15]. 

 However, we did not find any experimental observation or theoretical prediction of 

labyrinthine domains in the nanoparticles of ordered ferroelectrics, which intriguing polar and 

dielectric properties attract permanent attention of researchers. Classical examples are unexpected 

experimental results of Yadlovker and Berger [16, 17, 18], which reveal the enhancement of polar 

properties of cylindrical nanoparticles of Rochelle salt. Frey and Payne [19], Zhao et al [20], Drobnich 

et al [21], Erdem et al [22] and Golovina et al [23, 24, 25] demonstrate the possibility to control the 

phase transitions (including new polar phases appearance) for BaTiO3, S2P2S6, PbTiO3 and KTa1-

хNbхO3 nanopowders and nanoceramics by finite size effects.  

The theory of finite size effects in nanoparticles allows one to establish the physical origin of the 

polar and dielectric properties anomalies, and phase diagrams changes appeared under the 

nanoparticles sizes decrease. In particular, using the continual phenomenological approach Niepce 

[26], Huang et al [27, 28], Ma [29], Eliseev et al [30] and Morozovska et al [31, 32, 33] have shown, 

that the changes of the transition temperatures, the enhancement or weakening of polar properties in a 

single-domain spherical and cylindrical nanoparticles are conditioned by the various physical 

mechanisms, such as correlation effect, depolarization field, flexoelectricity, electrostriction, surface 

tension and Vegard-type chemical pressure.  
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 Notably depolarization field always decreases ferroelectric polarization and transition 

temperature, especially under the presence of imperfect screening [34, 35, 36]. For majority of 

models the particles were regarded covered with perfect electrodes and so their single-domain state 

would be stable. Only few models describing the imperfect screening effect in nanoparticles have 

been evolved [34-36]. 

 To fill the gap in the knowledge, below we analyze the phase diagram and domain structure 

evolution in spherical nanoparticles of uniaxial ferroelectric CuInP2S6 (CIPS). We regarded that the 

particle surface is covered by a layer of screening charge characterized by finite screening length. 

The imperfect screening and finite size effects are studied using the Landau-Ginzburg-Devonshire 

(LGD) approach combined with the electrostatic equations. We revealed that a regular stripe domain 

structure avalanche-like transforms into a labyrinth pattern with a gradient term decrease below the 

critical value and classified the event as a gradient-induced morphological transition.  

 The applicability of LGD approach for thin films and nanoparticles with radius less than (2-

10) nm is corroborated by the fact, that the critical sizes of the long-range order appearance and 

properties calculated from atomistic [37, 38, 39, 40, 41] and phenomenological [30-33, 42, 43] 

theories are in a good agreement with each other as well as with experimental results for nanosized 

ferromagnetics [44] and ferroelectrics [16-20, 22, 45]. Both atomistic simulations and LGD-

description are absent for CIPS nanoparticles. 

 

II. THEORETICAL APPROACH 

 Let us consider a CIPS nanoparticle of radius R with a one-component ferroelectric 

polarization ( )r3P  directed along the crystallographic axis 3 [Fig.1(a)]. The particles are covered by 

a layer of screening charge with a surface charge density σ characterized by a nonzero screening 

length λ. The specific nature of the surface charge can be, e.g., Bardeen-type surface states [46]. For 

the case the screening charges can be localized at surface states caused by the strong band-bending 

via depolarization field [47, 48, 49, 50, 51], at that λ can be much smaller (≤0.1 nm) than a lattice 

constant (~0.5 nm) [34]. Concrete expression for λ can be derived in, e.g., Stephenson-Highland 

ionic adsorption model [52, 53, 54], by the linearization of σ , as λϕε−≈σ 0 , where 
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constant. In general case λ depends on temperature T and screening charges nature. Since we do not 

know the temperature dependence of λ, we performed calculations regarding λ changing in the range 

(10-3 – 1) nm. 
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FIG. 1. Labyrinthine domains in a spherical CIPS nanoparticle. (a) Polar cross-section, (b) semi-spherical 

view and (c) equatorial cross-section. Radius R=10 nm, screening length λ=0.03 nm, room temperature 293 K. 

CIPS parameters are listed in Table I. 

 

For a layered perovskite with layers plane (001) and ferroelectric dipoles directed in the out-

of-plane direction, we can assume that the dependence of the in-plane components of electric 

polarization on the inner field electric Ei is linear ( ) ibi EP 10 −εε=  (i = 1, 2), where an isotropic 

background permittivity bε  is relatively small, ≤εb 10 [55]. Polarization component ( )r3P  contains 

background and soft mode contributions. Electric displacement vector has the form PED +εε= b0  

inside the particle and ED eεε= 0  outside it; eε  is the relative dielectric permittivity of external 

media regarded unity (air or vacuum).  

Euler-Lagrange equation for the ferroelectric polarization ( )r3P  follows from the 

minimization of LGD free energy functional flexoeselgradLandau GGGGG ++++= , that includes Landau 

expansion, LandauG , polarization gradient energy contribution, gradG , electrostatic contribution elG , 

and elastic, electrostriction and flexoelectric contributions flexoesG +  (see e.g. [30, 35, 56]): 
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Here iE  are electric field components related with electric potential ϕ as ii xE ∂ϕ∂−=  The 

coefficient α linearly depends on temperature T, ( )CT TT −α=α , where CT  is the Curie temperature. 

The coefficient β is temperature-independent and negative, since CIPS undergoes the first order 

transition to paraelectric phase. Coefficient γ and gradient coefficients g11 and g44 are positive and 

temperature independent. An isotropic approximation, 5544 gg ≈  in (001) plane was taken for 

monoclinic CIPS structure. ijσ  is the stress tensor in Eq.(1d). We omit the evident form of the 

flexoesG +  for the sake of simplicity, it is listed in Refs.[57, 58, 59]. Since the values of the 

electrostriction and flexoelectric tensor components, ijklQ  and ijklF , are unknown for CIPS, we 

performed numerical calculations using finite element method (FEM) with the coefficients varied in 

a physically reasonable range ( ≤ijklF 1011 m3/C and ≤ijklQ 0.1 m4/C2). Results proved the 

insignificant impact of electrostriction and flexoelectric coupling on domain morphology [60]. Other 

LGD parameters for a bulk ferroelectric CIPS were taken from Ref.[61] and are listed in Table I.  

 

Table I. LGD parameters for bulk ferroelectric CuInP2S6, used in calculations 

εb αT(C-2·m J/K) TC (K) β (C-4·m5J) γ (C-6·m9J) g11 (m3/F)  [62]  g44 (m3/F) 
7 1.569×107 302 −1.8×1012 2.2×1015 1.0×10-10 vary in the 

range(0.3 – 
3)×10-11 

 

Allowing for Khalatnikov mechanism of polarization relaxation, corresponding Euler-

Lagrange equation for ( )3rP  becomes time-dependent LGD-equation [63]: 

( ) 32
3

3
2

1132
2

2

2
1

2

44
5

3
3

33
3 E

x
P

gP
xx

gPPPT
t

P
=

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂+

∂
∂−γ+β+α+

∂
∂

Γ .                  (2) 

The Khalatnikov coefficient Γ determines the relaxation time of polarization αΓ=τK , that 

typically varies in the range (10-11 – 10-13)s far from TC. The boundary condition for P at the spherical 

surface is natural, 0=∂∂
=Rr

P n
r

, n is the outer normal to the surface.  

 Electric  potential ϕ satisfies a Poisson equation inside the particle, 

3
0 x

P
b ∂

∂−=ϕΔεε ,                                                             (3a) 

and Laplace equation outside it, 

0=ϕΔ .                                                                       (3b) 

3-D Laplace operator is denoted by the symbol Δ . Equations (3) are supplemented by the condition 

of potential continuity at the particle surface, ( ) 0int =ϕ−ϕ
=Rrext . The boundary condition for the 
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normal components of electric displacements, ( )( ) 0int =σ+−
=Rrext DDn , where the surface charge 

density λϕε−=σ 0 .  

 In fact the screening length λ decrease improves the screening conditions, which leads to a 

decrease in the depolarization field and hence and the domains eventual disappear giving way to a 

more energetically favorable single-domain state (see e.g. Fig.2 in Ref.[58]). 

 

III. NUMERICAL RESULTS AND DISCUSSION 

A. Main features of phase diagrams at different temperatures 

Phase diagrams was studied at different temperatures in the range (300 – 200) K. 

Unfortunately we do not know the temperature dependence of λ, and so we perform all calculations 

regarding λ changing in the range (10-3 – 1) nm. Phase diagram of CIPS nanoparticles calculated at 

T=293 K and 200 K in coordinates "radius R – screening length λ" is shown in Fig. 2(a) and 2(b), 

respectively.  

 At room temperature the phase diagram has an unexpectedly wide region of stable poly-

domain states (PDFE) separating single-domain ferroelectric (SDFE) and nonpolar paraelectric (PE) 

phases [see Fig. 2(a)]. The bottom row shows the typical changes of polarization distribution in the 

equatorial cross-section of the nanoparticle with R=5 nm, which happens with increase of λ. A 

single-domain state is stable at very small λ<0.01 nm, two-domain structure (electric quadrupole) is 

stable in the interval 0.01<λ<0.017 nm, three-domain structure (electric octupole) exist at 

0.017<λ<0.019 nm, 2N-multipolar domain stripes are stable at 0.02<λ<0.035 nm. Coexistence of 

PDFE and PE phase when the nanoparticle consists of PE surface layer and ferroelectric domain 

stripes in the core appears at 0.035<λ<0.045 nm, and is followed by the size-induced phase transition 

into a stable PE at λ>0.045 nm. Unexpectedly, we revealed a region of stable "labyrinthine" domains 

(LD) of irregular shape (yellow circles) inside the region of regular domain structures with quadruple 

two (purple circles) or multiple (magenta circles) domain stripes. LD region is within a dashed 

parallelogram in Fig.2(a). We should underline, that LD stability (or more rigorously speaking "long-

living" metastabilty) does not mean their absolute stability, because we cannot make a sweep over 

all possible domain configurations to choose the one or several equivalent ones, which energy 

reaches an absolute minimum. 
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FIG. 2. Phase diagram of CIPS nanoparticles in coordinates "radius R – screening length λ" calculated for the 

gradient coefficient g44=2×10−11 m3/F and temperatures 293 K (a) and 200 K (b). The ferroelectric single 

domain (SDFE), ferroelectric poly domain (PDFE) and paraelectric (PE) phases are shown by different colors 

of the circles. The labyrinthine domains (LD) are located within dashed light-blue regions. The bottom rows 

shows typical polarization distributions in the equatorial cross-sections of the nanoparticles with radius R=5 

nm and different values of λ (in nm). CIPS parameters are listed in Table I. 
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With the temperature decrease from 293 K (that is very close to the CIPS Curie temperature 

302 K) to 200 K the region of a SDFE significantly increases towards smaller radii R (up to the very 

small R=1 nm for which LGD applicability becomes questionable) and higher λ (from e.g. λ=0.003 

nm at 293 K to 0.02 nm at 200 K) [compare the size of SDFE regions in Fig.2(a) and 2(b)]. The wide 

region of PE phase (present at 293 K) almost disappears with the temperature decreasing to 200 K 

leading to the conclusion that PDFE state can be stable in ultra-small CIPS nanoparticles (with radius 

less than 2 nm) covered by a screening charge [compare the size of PE regions in Fig.2(a) and 2(b)]. 

The shift and increase of LD region(s) are evident with the temperature decrease from 300 to 200 K 

[compare the size and positions of LD regions in Fig.2(a) and 2(b)]. The increase of SDFE, PDFE 

and LD regions with the temperature T decrease stem from the well-established fact that FE phase 

becomes deeper and wider with the temperature increase, since the coefficient ( )CT TT −α=α  

acquires higher negative values with T decrease below Curie temperature CT . 

The effect of geometric catastrophe can be imagined from the images of LD in the 

nanoparticles of radius 4, 3 and 2 nm for which the number of branches and sharp bendings of 

domain walls gradually decreases with the particle radius decrease from 4 nm to 2 nm [see right 

column in Fig. 2(b)]. Eventually LD disappears for R=1 nm. Hence the effect of geometric 

catastrophe suppresses the LD in small particles. 

 Note the validity of our prediction regarding LD appearance and PDFE state conservation for 

nanoparticles of sizes more than 2R = 4 nm, because they corresponds to 10 lattice constants or more. 

It is general opinion that LGD approach can be valid only qualitatively for the sizes less than 10 l.c. 

[16-20, 22, 30-33], and must be approved by ab initio calculations.  

 

B. Labyrinthine domains stability and evolution 

 Polarization distributions in the equatorial cross-section of the nanoparticle with radius 

R=10 nm, screening length λ=0.03 nm and room temperature are shown in Fig. 3. Top raw shows 

initial seedings of the distributions shown in the lower raw. The energy values computed for the 

single-domain [Fig.3(a)], two-domain [Fig.3(b)], three-domain [Fig.3(c)], axially-symmetric 

domains [Fig.3(d)], eight-domain stripes [Fig.3(e)] and the labyrinthine domain structure [Fig.3(f)] 

are G = –5.98, –6.94, –7.08, –8.50, –8.55 and –9.04 (in 10-20 J) at fixed value of g44=2×10−11 m3/F. 

Thus the “labyrinthine” structure has the minimal energy corresponding the optimal balance between 

the gradient-correlation energy (1b) tending to minimize the area of the domain walls (and hence to 

decrease the number of them) and electrostatic energy (1c) decreasing with domain width decrease. 

Note that the walls of LD are uncharged in the central part of the particle and become charged and 
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broadened near its poles (see yellow-blue regions near the poles in Figs. 1(a) and Fig. S2 in 

Ref.[60]), since their broadening causes the depolarization field decrease [64]. 

 
 

(a) G= −5.98    (b) G= −6.94     (c) G= −7.08      (d) G= −8.50      (e) G= −8.55      (f) G= −9.04 

C/m2 

Initial distributions at t=0 

Final (relaxed) distributions after at t>102τK 

 
FIG. 3. Polarization distributions in the equatorial cross-section of the nanoparticle with R=10 nm, λ=0.03 nm, 

g44=2×10−11 m3/F and room temperature 293 K. Cross-sections (a)-(f) correspond to different morphologies of 

the domain structure, namely single-domain state (a), two-domain (b), three-domain (c), axially-symmetric 

domains (d), multiple stripe domains (e), and labyrinthine domains (f). Top raw shows initial seedings of the 

distributions shown in the lower raw. The scale bar is for polarization P3 in C/m2. Values of the free energy G 

are listed below in 10-20 J. CIPS parameters are listed in Table I. 

 

 Since the problem (2)-(3) together with boundary conditions is axially symmetric (about x3 

axis), one should try to find a solution with the same axial symmetry. Actually, before we "stumble" 

into LD and / or curved domain stripes, we specified the initial distribution of the domain structure in 

the form of axially symmetric distributions, e.g. in the form of coaxial cylinders shown in the top raw 

of Fig.3(d). Appeared that all radial structures are less stable than the stripes or irregular (labyrinth-

like) structures [e.g. compare the energies of the final states in Fig.3(d), (e) and (f)]. Radial 

distributions can relax to more stable distributions, and the relaxation rate depends on temperature, 

particle size and surface screening length. To understand why the radial domain structure in the form 

of coaxial cylinders has higher energy than the stripes or LD, one can use simple geometric 

considerations showing that when all other conditions are equal (e.g. at the same distance between 

the domain walls), the radial domain structure has higher surface energy than the stripes or 

labyrinthine structures. 

An example of labyrinthine domains evolution with increase of the gradient coefficient g44 is 

illustrated in Fig.4(a)-(e). Stable (in comparison with all other simulated domain structures) 

labyrinths exist at g44 less than the critical value gcr≈2.5×10-11 m3/F [Fig. 4(a)-(e)], then they 

transforms into quasi-regular domain stripes [Fig. 4(f)], which in turn disappears with g44 increase 
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more than 2.75×10-11 m3/F [Fig. 4(g)]. Complementary we made sampling over 5 – 20 different 

labyrinthine domain patterns for each g44, R and λ values, which emerged with computation time 

from different initial random distributions of polarization inside the particle (see Fig. S1 in Ref.[60]). 

From Fig.S1 we concluded the branching number Σ, defined as the total number of branched domain 

walls, dangling branches, separated stripes and loops, decreases sharply with g44 increase. Σ varies 

slightly for different samples far from the critical value gcr (top lines in Fig.S1), but the variation 

becomes bigger near the critical value gcr (bottom lines in Fig.S1). 

Examples of Σ calculation are shown in Figs.5. A color image of complex labyrinthine pattern 

with dangling branches, branch seedings, separated island and separated curved stripe is shown in 

Fig.5(a). Fig.5(b) shows the black domains with white walls corresponding to the structure (a). 

Graphs (c, d) with numbered features have been drawn allowing for the connectivity between 

different domains and particle surface in plot 5(b). Proposed algorithm of Σ calculation counts all 

branching points, dangling branches and separated stripes ends, which do not cross the particle from 

one surface to another one. Meanwhile the straight or slightly curved stripes (even very small) that 

cross the particle from one surface to another one do not contribute to Σ. However the algorithm is 

not ideal, because the criteria distinguishing "slightly curved" and "strongly curved" stripes are 

somehow voluntary. Actually, for some complex cases, like the one shown in Fig.5(a), visual re-

calculation of Σ lead to different results for peculiarities number corresponding to "red" (Σr=7) and 

"blue" (Σb=9) domains [compare Fig. 5(b) and 5(c)]. To improve the situation we operate with the 

values averaged for "red" and "blue" domains, e.g. Σ =8 corresponds to Fig.5(a).  

Graph Fig.5 (e) has no relation to plot (a), but it is characteristic for the simpler domain 

patterns close the transition to LD, where the accuracy in Σ calculation is the most important to 

establish the critical value gcr correctly [compare Fig.5 (e) with Fig.4 (e)]. Fig.5(e) illustrates how the 

branching point (number 5), dangling branches (numbers 1 and 2), and separated stripe ends 

(numbers 3 and 4), which do not cross the particle from one surface to another one, contribute to Σ 

number. Other four slightly curved stripes, which both ends at particle surfaces are marked with 

asterisks "*", do not contribute to Σ number. 
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FIG.4. Evolution of labyrinthine domain structure in a CIPS nanopariticle with increase of the gradient 

coefficient g44 (in 10−11 m3/F) [plots (a)-(g)] for the screening length λ=0.03 nm, radius R=10 nm and room 

temperature 293 K. The scale bar is polarization value in C/m2. (h) Dependence of the LD branching number Σ 

on g44. Error bars corresponds to different samples of LD emerging from different initial seeding. Black circles 

are averaged value Σ  approximated by the function ( ) 23
44139 crgg−=Σ  with =crg 2.75×10−11 m3/F 

(blue curve). CIPS parameters are listed in Table I. 
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FIG. 5. Examples of Σ calculation using graph method. (a) A color image of complex labyrinthine pattern 

with dangling branch, branch seeding, separated island and separated curved stripe. (b) Black domains with 

white walls corresponding to the structure (a). Graphs (c, d) with numbered features have been drawn 

allowing for the connectivity between different domains and particle surface in plot (b). Graph (e) has no 

relation to plot (a), but it is characteristic for the patterns near the transition to LD [compare Fig.5 (e) with 

Fig.4 (e)]. 

 

The sampling-averaged value Σ  is not integer for fixed g44. From Fig.4(h), the dependence 

of Σ  on the gradient term 44g  is described by the function ( ) 23
44139 crgg−=Σ , and so it 
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continuously appears at crgg =44 . Hence we can associate Σ  appearance with a rapid change of 

the domain walls connectivity.  

We leave for further studies answer on the question how the threshold of labyrinthine domain 

appearance and the ranges of their stability at phase diagram can be derived analytically. 

 The theoretical prediction of labyrinthine domains requires urgent verification by PFM, that is 

an ideal tool for 3D visualization of the domain structure with nanoscale resolution (see e.g. [8, 65, 

66, 67, 68] and refs therein). We are convinced by a numerical calculation that qualitatively similar 

LD can be realized in other incompletely screened uniaxial ferroelectric nanoparticles, such as 

Sn2P2(S,Se)6 and LiNbO3, with the sizes near the first-order PE-FE transition. Notably the phase 

diagrams in Figs.2 can change drastically for β≥0 corresponding to the second order PE-FE 

transition. Much more complex situation (corresponding to the balance of labyrinthine domains in the 

bulk and vortices at the surface) are expected in multiaxial ferroelectric nanoparticles with 

polarization rotation allowed, such as BaTiO3, BiFeO3, however we leave a discussion of these 

results for further studies. 

 

IV. CONCLUSION 

In the framework of LGD approach combined with the equations of electrostatics, we studied 

the finite size effects of the phase diagrams and domain structure in spherical ferroelectric 

nanoparticles covered by a layer of a screening charge with finite screening length. The phase 

diagrams, calculated in coordinates "particle radius – screening length", has a wide region of versatile 

poly-domain states separating single-domain ferroelectric and nonpolar paraelectric phases. Quite 

unexpectedly we revealed that a regular stripe domain structure sharply transforms into a labyrinth 

pattern with a gradient term decrease below the critical value and named the event as a gradient-

driven transition. Obtained results calculated for CuInP2S6 can be readily generalized for other 

incompletely screened nanoparticles of uniaxial ferroelectrics with the first order transition to the 

paraelectric phase. 

 
Acknowledgements. S.V.K. and P.M. study was supported by the U.S. DOE, Office of Basic Energy 

Sciences (BES), Materials Sciences and Engineering Division (MSED) under FWP Grant No 

DEAC0500OR22725. A portion of this research was conducted at the Center for Nanophase 

Materials Sciences, which is a DOE Office of Science User Facility. A.N.M. work was partially 

supported by the National Academy of Sciences of Ukraine (project No. 0118U003375 and No. 

0117U002612) and by the Program of Fundamental Research of the Department of Physics and 

Astronomy of the National Academy of Sciences of Ukraine (project No. 0117U000240). 

 



 13

Authors' contribution. E.A.E. wrote the codes, performed numerical calculations and prepared 

figures. Y.M.F. tested the codes and assisted E.A.E. with simulations. A.N.M. generated research 

idea, stated the problem, interpreted results and wrote the manuscript. S.V.K., Y.M.V. and P.M. 

worked on the results discussion and manuscript improvement. 

 

REFERENCES 

                                                 
[1] N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51, 591 (1979)  

[2] Topological Structures in Ferroic Materials. Edited by J. Seidel, Springer Series in Mater. Sci. 228, 181 

(2016).  

[3] A. Gruverman, D. Wu, H-J Fan, I Vrejoiu, M Alexe, R J Harrison and J F Scott, Vortex ferroelectric 

domains, J. Phys.: Condens. Matter 20, 342201 (2008). 

[4] N. Balke, B. Winchester, Wei Ren, Ying Hao Chu, A. N. Morozovska, E. A. Eliseev, M. Huijben, R. K. 

Vasudevan, P. Maksymovych, J. Britson, S. Jesse, I. Kornev, R. Ramesh, L. Bellaiche, L.-Q. Chen, and S. V. 

Kalinin,. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3, Nat. Phys. 8, 81 (2012). 

[5] B. Winchester, N. Balke, X. X. Cheng, A. N. Morozovska, S. Kalinin, and L. Q. Chen, Electroelastic fields 

in artificially created vortex cores in epitaxial BiFeO3 thin films, Appl. Phys. Lett. 107, 052903 (2015). 

[6] I. I. Naumov, L. Bellaiche, and H. Fu, Unusual phase transitions in ferroelectric nanodisks and nanorods, 

Nature 432, 737 (2004). 

[7] A. K.Yadav, C. T. Nelson, S. L. Hsu, Z. Hong, J. D. Clarkson, C. M. Schlepütz, A. R. Damodaran, P. 

Shafer, E. Arenholz, L. R. Dedon, D. Chen, A. Vishwanath, A. M. Minor, L. Q. Chen, J. F. Scott, L. W. 

Martin, and R. Ramesh, Observation of polar vortices in oxide superlattices, Nature 530, 198 (2016). 

[8] A. Kholkin, A. Morozovska, D. Kiselev, I. Bdikin, B. Rodriguez, P. Wu, A. Bokov, Z.-G. Ye, B. Dkhil, L.-

Q. Chen, M. Kosec, and S. V. Kalinin. Surface Domain Structures and Mesoscopic Phase Transition in 

Relaxor Ferroelectrics. Adv. Func. Mat. 21 (11), 1977 (2011). 

[9] G. Catalan, H. Béa, S. Fusil, M. Bibes, Patrycja Paruch, A. Barthélémy, and J. F. Scott, Fractal dimension 

and size scaling of domains in thin films of multiferroic BiFeO3, Phys. Rev. Lett. 100, 027602 (2008). 

[10] S. V. Kalinin, B. J. Rodriguez, J. D. Budai, S. Jesse, A. N. Morozovska, A. A. Bokov, and Z. G. Ye, 

Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors, Phys. 

Rev. B 81, 064107 (2010). 

[11] V. V. Shvartsman, and A. L. Kholkin, Domain structure of (Pb (Mg1⁄3Nb2⁄3)O3)0.8(PbTiO3)0.2 studied by 

piezoresponse force microscopy, Phys. Rev. B 69, 014102 (2004). 

[12] K. S. Wong, J. Y. Dai, X. Y. Zhao, and H. S. Luo, Time-and temperature-dependent domain evolutions in 

poled (111)-cut (Pb (Mg1⁄3Nb2⁄3)O3)0.7 (PbTiO3)0.3 single crystal, Appl. Physics Lett. 90, 162907 (2007). 

[13] A. N. Morozovska, E. A. Eliseev, J. Wang, G. S. Svechnikov, Yu. M. Vysochanskii, V. Gopalan, and L.-

Q. Chen, Phase diagram and domain splitting in thin ferroelectric films with incommensurate phase, Phys. 

Rev. B 81, 195437 (2010). 



 14

                                                                                                                                                                     
[14] A. Artemev, B. Geddes, J. Slutsker, and A. Roytburd, Thermodynamic analysis and phase field modeling 

of domain structures in bilayer ferroelectric thin films, J. Appl. Phys. 103, 074104 (2008). 

[15] A. Hubert, and R. Schafer, Magnetic domains: the analysis of magnetic microstructures, Springer (1998). 

[16] D. Yadlovker, and S. Berger, Uniform orientation and size of ferroelectric domains, Phys. Rev. B 71, 

184112 (2005). 

[17] D. Yadlovker, and S. Berger, Reversible electric field induced nonferroelectric to ferroelectric phase 

transition in single crystal nanorods of potassium nitrate, Appl. Phys. Lett. 91, 173104 (2007). 

18 D. Yadlovker, S. Berger. Nucleation and growth of single crystals with uniform crystallographic orientation 

inside alumina nanopores.  J. Appl. Phys. 101, 034304 (2007). 

[19] M. H. Frey, and D. A. Payne, Grain-size effect on structure and phase transformations for barium titanate, 

Phys. Rev. B 54, 3158 (1996). 

[20] Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, 

and P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics, Phys. 

Rev. B 70, 024107 (2004). 

[21] A. V. Drobnich, A. A. Molnar, A. V. Gomonnai, Yu. M. Vysochanskii, and I. P. Prits, The effect of size 

factor on the phase transition in Sn2P2S6 crystals: experimental data and simulation in ANNNI model, Cond. 

Matt. Phys. 6, 205 (2003) 

[22] E. Erdem, H.-Ch. Semmelhack, R. Bottcher, H. Rumpf, J. Banys, A.Matthes, H.-J. Glasel, D. Hirsch, E. 

Hartmann, Study of the tetragonal-to-cubic phase transition in PbTiO3 nanopowders, J. Phys.: Condens. Matter 

18, 3861–3874 (2006). 

[23] I. S. Golovina, V. P. Bryksa, V. V. Strelchuk, I. N. Geifman, and A. A. Andriiko, Size effects in the 

temperatures of phase transitions in KNbO3 nanopowder, J. Appl. Phys. 113, 144103 (2013). 

[24] I. S. Golovina, V. P. Bryksa, V. V. Strelchuk, and I. N. Geifman, Phase transitions in the nanopowders 

KTa0.5Nb0.5O3 studied by Raman spectroscopy. Functional Materials. 20, 75-80 (2013). 

[25] I. S. Golovina, B. D. Shanina, S. P. Kolesnik, I. N. Geifman, and A. A. Andriiko, Magnetic properties of 

nanocrystalline KNbO3, J. Appl. Phys. 114, 174106 (2013). 

[26] P. Perriat, J. C. Niepce, and G. Caboche. Thermodynamic considerations of the grain size dependency of 

material properties: a new approach to explain the variation of the dielectric permittivity of BaTiO3 with grain 

size, J. Therm. Anal. Calorim. 41, 635 (1994). 

[27] H. Huang, C. Q. Sun, and P. Hing, Surface bond contraction and its effect on the nanometric sized lead 

zirconate titanate,J. Phys.: Condens. Matter 12, L127 (2000). 

[28] H. Huang, C. Q. Sun, Z. Tianshu, and P. Hing, Grain-size effect on ferroelectric Pb(Zr1−xTix)O3 solid 

solutions induced by surface bond contraction, Phys. Rev. B 63, 184112 (2001). 

[29] M. Wenhui, Surface tension and Curie temperature in ferroelectric nanowires and nanodots, Appl. Phys. 

A 96, 915 (2009). 

[30] E. A. Eliseev, A.N. Morozovska, M.D. Glinchuk, and R. Blinc. Spontaneous flexoelectric/flexomagnetic 

effect in nanoferroics,Phys. Rev. B 79, 165433 (2009). 



 15

                                                                                                                                                                     
[31] A. N. Morozovska, E. A. Eliseev, and M.D. Glinchuk, Ferroelectricity enhancement in confined 

nanorods: Direct variational method, Phys. Rev. B 73, 214106 (2006). 

[32] A. N. Morozovska, M. D. Glinchuk, and E.A. Eliseev, Phase transitions induced by confinement of 

ferroic nanoparticles, Phys. Rev. B 76, 014102 (2007). 

[33] A. N. Morozovska, I. S. Golovina, S. V. Lemishko, A. A. Andriiko, S. A. Khainakov, and E. A. Eliseev. 

Effect of Vegard strains on the extrinsic size effects in ferroelectric nanoparticles, Phys. Rev. B 90, 214103 

(2014). 

[34] J. Wang, A. K. Tagantsev, and N. Setter, Size effect in ferroelectrics: Competition between geometrical 

and crystalline symmetries, Phys. Rev. B 83, 014104 (2011). 

[35] E. A. Eliseev, A. V. Semchenko, Y. M. Fomichov, M. D. Glinchuk, V. V. Sidsky, V. V. Kolos, Yu. M. 

Pleskachevsky, M. V. Silibin, N. V. Morozovsky, and A. N. Morozovska, Surface and finite size effects 

impact on the phase diagrams, polar, and dielectric properties of (Sr, Bi)Ta2O9 ferroelectric nanoparticles, J. 

Appl. Phys. 119, 204104 (2016). 

[36] V. V. Khist, E. A. Eliseev, M. D. Glinchuk, D. V. Karpinsky, M. V. Silibin, and A. N. Morozovska, Size 

effects of ferroelectric and magnetoelectric properties of semi-ellipsoidal bismuth ferrite nanoparticles, J. 

Alloys Compd. 714, 303 (2017) 

[37] C.-G. Duan, S.S. Jaswal, and E.Y.Tsymbal, Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: 

ferroelectric control of magnetism, Phys. Rev. Lett. 97, 047201 (2006). 

[38] G. Geneste, E. Bousquest, J. Junquera, and P. Ghosez, Finite-size effects in BaTiO3 nanowires, Appl. 

Phys. Lett. 88, 112906 (2006). 

[39] M. Q. Cai, Y. Zheng, B. Wang, and G. W. Yang, Nanosize confinement induced enhancement of 

spontaneous polarization in a ferroelectric nanowire, Appl. Phys. Lett. 95, 232901 (2009). 

[40] J. W. Hong, G. Catalan, D. N. Fang, Emilio Artacho, and J. F. Scott, Topology of the polarization field in 

ferroelectric nanowires from first principles, Phys. Rev. B 81, 172101 (2010). 

[41] E. Bousquet, N. Spaldin, and Ph. Ghosez, Strain-induced ferroelectricity in simple rocksalt binary oxides, 

Phys. Rev. Lett. 104, 037601 (2010). 

[42] C.L. Wang, and S.R.P. Smith, Landau theory of the size-driven phase transition in ferroelectrics, J. Phys.: 

Condens. Matter 7, 7163 (1995). 

[43] A. N. Morozovska, E. A. Eliseev, R. Blinc, and M. D. Glinchuk, Analytical prediction of size-induced 

ferroelectricity in BaO nanowires under stress, Phys. Rev. B 81, 092101 (2010). 

[44] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C.N.R. Rao, Ferromagnetism as a universal 

feature of nanoparticles of the otherwise nonmagnetic oxides, Phys. Rev. B 74, 161306(R) (2006). 

[45] D.D. Fong, G. B. Stephenson, S.K. Streiffer, J.A. Eastman, O.Auciello, P.H. Fuoss, and C. Thompson,. 

Ferroelectricity in ultrathin perovskite films, Science 304, 1650 (2004). 

[46] J. Bardeen, Surface states and rectification at a metal semi-conductor contact, Phys. Rev. 71, 717 (1947). 

[47] V.M. Fridkin, Ferroelectrics semiconductors, Consultant Bureau, New-York and London (1980) 



 16

                                                                                                                                                                     
[48] M.A. Itskovsky, Some peculiarities of phase transition in thin layer ferroelectric,Fiz. Tv. Tela 16, 2065 

(1974).  

[49] P.W.M. Blom, R.M. Wolf, J.F.M. Cillessen, and M.P.C.M. Krijn, Ferroelectric Schottky diode, Phys. 

Rev. Lett. 73, 2107 (1994). 

50A.N. Morozovska, E.A. Eliseev, S.V. Svechnikov, A.D. Krutov, V.Y. Shur, A.Y. Borisevich, P. 

Maksymovych, and S.V. Kalinin. ”Finite size and intrinsic field effect on the polar-active properties of 

ferroelectric semiconductor heterostructures.” Phys. Rev. B. 81, 205308 (2010). 

[51] Y.A. Genenko, O. Hirsch, and P. Erhart, Surface potential at a ferroelectric grain due to asymmetric 

screening of depolarization fields, J. Appl. Phys. 115, 104102 (2014). 

[52] G.B. Stephenson, and M.J. Highland, Equilibrium and stability of polarization in ultrathin ferroelectric 

films with ionic surface compensation, Phys. Rev. B 84, 064107 (2011). 

[53] M. J.Highland, T. T. Fister, D. D. Fong, P. H. Fuoss, Carol Thompson, J. A. Eastman, S. K. Streiffer, and 

G. B. Stephenson, Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by 

oxygen partial pressure, Phys. Rev. Lett. 107, 187602 (2011). 

[54] S. V. Kalinin, Y. Kim, D. Fong, and A. Morozovska, Surface screening mechanisms in ferroelectric thin 

films and its effect on polarization dynamics and domain structures, Rep. Prog. Phys. 81, 036502 (2018). 

[55] A. K. Tagantsev, and G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin 

films, J. Appl. Phys. 100, 051607 (2006). 

[56] Y. Gu, Menglei Li, A. N. Morozovska, Yi Wang, E. A. Eliseev, V. Gopalan, and L.-Q. Chen, Non-Ising 

character of a ferroelectric wall arises from a flexoelectric effect, Phys.Rev. B 89, 174111 (2014). 

[57] A. N. Morozovska, E. A. Eliseev, Y. A. Genenko, I. S. Vorotiahin, M. V. Silibin, Ye Cao, Y. Kim, M. D. 

Glinchuk, and S. V. Kalinin, Flexocoupling impact on the size effects of piezo- response and conductance in 

mixed-type ferroelectrics-semiconductors under applied pressure, Phys. Rev. B 94, 174101 (2016). 

[58] I. S. Vorotiahin, E. A. Eliseev, Qian Li, S.i V. Kalinin, Yu.i A. Genenko, and A. N. Morozovska, Tuning 

the polar states of ferroelectric films via surface charges and flexoelectricity, Acta Mater. 137, 85 (2017). 

[59] E. A. Eliseev, I. S. Vorotiahin, Y. M. Fomichov, M. D. Glinchuk, S. V. Kalinin, Yu. A. Genenko, and A. 

N. Morozovska, Defect driven flexo-chemical coupling in thin ferroelectric films, Phys. Rev. B, 97, 024102 

(2018). 

[60] See Supplementary Materials, URL will be provided by Publisher 

[61] A. Belianinov, Q. He, A. Dziaugys, P. Maksymovych, E. Eliseev, A. Borisevich, A. Morozovska, J. 

Banys, Y. Vysochanskii, and S. V. Kalinin, CuInP2S6 Room Temperature Layered Ferroelectric, Nano Lett. 

15, 3808 (2015).  

[62] Note, that the coefficient g44 rules the polarization behavior, since this coefficient determines the energy 

of uncharged domain walls. Since g11 is not small and positive for CIPS (it is 5 times higher than g44) its 

influence appeared much less important even at the particle surface, and the next positive gradient terms add 

almost nothing to the physical picture we calculated. Also, we supposed isotropic properties in (001) plane, 

g44=g55. 



 17

                                                                                                                                                                     
[63] S.V. Kalinin, A.N. Morozovska, L.-Q. Chen, and B.J. Rodriguez, Local polarization dynamics in 

ferroelectric materials, Rep. Prog. Phys. 73, 056502 (2010). 

[64] Eugene A. Eliseev, Anna N. Morozovska, Sergei V. Kalinin, Yulan Li, Jie Shen, Maya D. Glinchuk, L.-

Q. Chen, and V. Gopalan, Surface effect on domain wall width in ferroelectrics, J. Appl. Phys. 106, 084102  

(2009). 

[65] A. Gruverman, O. Auciello, and H. Tokumoto, Imaging and control of domain structures in ferroelectric 

thin films via scanning force microscopy, Annu. Rev. Mater. Sci. 28, 101 (1998). 

[66] A. Gruverman, and A. Kholkin, Nanoscale ferroelectrics: processing, characterization and future trends, 

Rep. Prog. Phys. 69, 2443 (2006). 

[67] V. V. Shvartsman, and A. L. Kholkin, Evolution of nanodomains in 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 single 

crystals, J. Appl. Phys. 101, 064108 (2007). 

[68] S.V. Kalinin, A.N. Morozovska, L.-Q. Chen, and B. J. Rodriguez, Local polarization dynamics in 

ferroelectric materials, Rep. Prog. Phys. 73, 056502 (2010). 


