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We examine excitons formed in the bulk of a topological insulator as the system is tuned via a
parameter between topological and trivial insulating phases, arguing that nontrivial topology has
fingerprints in the spectrum of these excitons. The closely related hydrogen atom problem is well
known to have a degeneracy due to a hidden symmetry, and the changes to the excitonic spectrum
that we find can be understood as a result of breaking of this underlying symmetry due to the
Berry phase. Furthermore, this phase is found to affect the spectrum in the topological parameter
regime much more strongly than in the trivial regime. We first construct a semiclassical model
of the system to develop qualitative intuition for the effects at play, then move to a more robust
numerical simulation of the full quantum system, working with the Bernevig-Hughes-Zhang model
of a 2D topological insulator.

I. INTRODUCTION

Since the discovery of topological insulators (TIs),
much work has been done exploring how these new
materials can be used to realize exotic new physical
phenomena1,2. One of their defining features is the fact
that these materials support robust conducting Dirac
states on their surfaces, which themselves have been the
focus of a great amount of research. From the perspec-
tive of exciton physics in particular, there have been
investigations into the impact that exciton physics at
the surface of topological insulators may have on the
materials’ optical properties3,4, as well as the possibil-
ity of exotic interaction effects such as chiral excitons5

or as a platform for potential realizations of excitonic
condensation6,7. Another work examined the impact of
exciton condensation on the quantum spin Hall effect8.

Something that has been largely overlooked is how the
topological nature of these materials manifests in prop-
erties of the bulk. Far away from the surface, though
global properties are different, the band structure of a
topological insulator is qualitatively very similar to that
of a trivial insulator or even a semiconductor with a large
band gap. Consequently, optical and transport proper-
ties are naively expected to be similar as well, and indeed
electrical conductivity through the bulk is exponential
small in the size of the gap for both trivial and topologi-
cal insulators. Only few studies have been done, however,
exploring the effect of nontrivial topological character on
other physical phenomena in the bulk. One such study
examined the polarization properties of a 2D topological
model, concluding that features of the optical conductiv-
ity of this model, including an plasmon resonance absent
in graphene or usual 2DEGs, provide a way to identify
its topological character via bulk measurements9. An-
other work found that phonon linewidths of bulk optical
phonons contain information on band inversions in the
electronic spectrum10. Here we add to this line of inquiry,
investigating how the properties of excitons formed from
the bulk bands of a topological insulator depend on the

topological character.
We consider excitons in the bulk of a 2D model that

can be continuously tuned between topologically triv-
ial and nontrivial parameter regimes–the well-studied
Bernevig-Hughes-Zhang (BHZ) model11, developed to
describe the band-inversion physics and resulting topo-
logical phase of 2D Hg(Cd)Te quantum wells. It is given
by the Hamiltonian

HBHZ(p) =

(

ĥp 0

0 ĥ∗
−p

)

,

ĥp = ǫp1̂+ dp · τ̂ , dp =
(

Apx,−Apy,Mp

)

,

(1)

where ǫp = C − Dp2 is the electron-hole asymmetry,
Mp = M−Bp2 is the momentum-dependent Dirac mass,

τ̂ is the vector of Pauli matrices, 1̂ is the unit matrix,
and A,B,C,D, and M are material parameters. The
Hamiltonian is invariant under both time reversal and
inversion, discussed in Appendix A. Importantly for our
purposes, the mass-like parameter M is related to the
thickness of the quantum well and can be tuned between
positive and negative values. Changing this sign changes
the relative sign of the p = 0 and p → ∞ limits of the
mass term Mp, corresponding to two topologically dis-
tinct phases. Though excitons have not been observed in
the quantum wells described by this model, because of
its simplicity it provides the ideal theoretical testbed for
our analysis.
Important quantities to consider in the context of topo-

logical insulators are the Berry connection, the Berry cur-
vature, and the resulting Berry phase. It has been well es-
tablished that Berry physics can lead to a shift and split-
ting of otherwise degenerate exciton energy levels even
in a system with trivial topological character12,13, i.e.
without the usual hallmarks of topological phases such
as protected edge states and nontrivial topological index
like the Chern number. It is therefore reasonable to ex-
pect that similar effects will be seen in the topological
phase of the BHZ model, which does display all of these
features as a direct result of Berry physics.
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FIG. 1. (Color online) The n = 1 energies for excitons formed
from the particles in the upper BHZ block as a function of the
dimensionless parameter γ = sgn(M)(kex/k∗)

2 ∝ M , scaled
by the n = 1 2D hydrogen energy. The quantities k∗ and
kex are defined following Eq. 7. The sign of γ determines the
topological phase, as labeled. The inset shows the single n = 0
state for the same range of γ, scaled by the n = 0 hydrogen
energy. There is a clear qualitiative difference in the behavior
of the energy levels on either side of the transition, with a
crossover between them. In the topological phase there is a
large splitting of states due to Berry physics that is absent
in the trivial phase. Furthermore, the m = 0 states change
energy quickly above the topological transition. Energies are
obtained using the effective fine structure constant α = 0.4.

We find that these expectations are indeed true, with
key features of our main results given in Figure 1;
the hierarchy of exciton energy levels is drastically al-
tered as one moves from the topologically trivial phase
through the topological transition into the nontrivial
phase. Within the topological phase, states with oppo-
site orbital angular momentum are well split from each
other and the m = 0 angular momentum state is pushed
to a smaller binding energy than the rest, all of which
would be degenerate in the absence of Berry curvature.
In the trivial phase, however, all states are nearly degen-
erate, with the splitting decreasing the further one tunes
away from the topological transition. Though there is no
sharp feature at the topological transition itself that dis-
tinguishes these two regimes, as one might expect from
a topological effect, this behavior can nonetheless be ex-
plained as arising from effects intimately tied to topolog-
ical character.

It is worth mentioning for completeness that other
phenomena could potentially lead to splitting of exciton
states14, such as nonparabolicity in the spectrum15,16,
screening of the Coulomb interaction in 2D systems17,18,
or the exchange interaction between particles and holes19.
None of these, however, are present in the model we use to
generate these results. Moreover, the effect we find is dis-
tinct and distinguishable since none of these other effects
are sensitive to changes in topology, and so would lead
to splitting of states across the entire parameter range,

not just on a single side of the topological transition.
In Sec.II we begin by presenting an intuitive under-

standing of the physics at play in this system, considering
a semiclassical model as well as an effective Hamiltonian
for Dirac-like systems. In Sec.III we formulate the full
exciton problem and discuss further how topological ef-
fects will be manifested. In Sec.IV we discuss the meth-
ods used to numerically calulate the exciton spectra in
the regimes of interest, and present our main numerical
results.

II. SEMICLASSICAL APPROACH

Before presenting the full quantum mechanical exciton
problem we discuss its semiclassical counterpart. This
not only gives a clear physical picture of the role of the
Berry phase, but also captures its effect on the electronic
spectrum. The reason is that the semiclassical method
applied to the usual 2D excitonic Coulomb problem re-
produces the full spectrum exactly, and not just the
structure of highly excited states. This remarkable re-
sult provides a fair assurance that our analysis here will
provide useful insights into the problem at hand.
We start from the Lagrangian L(re, rh,pe,ph) for

the dynamics of interacting electron and hole wave-
packets20–22 given by

L =
∑

α=e,h

(

ṙα · pα + ṗα ·Aα,pα
− Eα

pα

)

− V (re − rh).

(2)
Here re(h) is the location of the electron (hole) wave-
packet and pe(h) is its momentum. We approximate
their dispersions as quadratic in the vicinity of band min-
ima as Eα

p = α ǫp + p2/2m, where ǫp is the particle-

hole asymmetry as defined after Eq. 1. V (r) = e2/ǫr is
the Coulomb interaction with dielectric constant ǫ. The
function Aα,pα

= i 〈p, α|∇p |p, α〉 is the Berry connec-
tion, calculated from the particle and hole states of the
BHZ Hamiltonian 1. We consider only intrablock exci-
tons with zero center of mass momentum qCM = 0 since
only they are optically active and are probed in experi-
ments. The resulting Lagrangian for the relative motion
of electron and hole is given by

L = ṙ · p+ ṗ ·Ap −
p2

2µ
− V (r), (3)

where µ = m/2 is the reduced electron-hole effective mass
and the corresponding energy is independent of electron-
hole asymmetry ǫp of the BHZ model; Ap = Ae,p +
Ah,−p is the Berry connection for the relative electron-
hole motion, which for the BHZ model is found to be (see
Appendix B)

Ap = −

(

s+
Mp
∣

∣dp

∣

∣

)

ẑ× p

p2
, (4)
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where s ≡ sgnM/B with the corresponding Berry cur-
vature

Ωp = ∇p ×Ap = A2M +Bp2
∣

∣dp

∣

∣

3 ẑ. (5)

These two functions contain the topological information
of two particle states within the model, with the inte-
gral of the Berry curvature over all momentum space
giving the Chern number, a topological invariant that
distinguishes topological and trivial phases. Note that
the Berry connection is not gauge invariant, changing by
the divergence of a scalar function if the state vectors are
transformed by multiplication with a momentum depen-
dent phase, but the Berry curvature is invariant under
such transformations.
The Euler-Lagrange equations obtained from (3) are

given by

ṗ = −∇rV (r)

ṙ =
p

µ
+∇rV (r) ×Ωp.

(6)

The term containing the electron-hole Berry curvature
is the anomalous velocity. Examining these equations
in polar coordinates shows that the anomalous velocity
contributes only to the angular motion of the exciton,
with left-spinning and right-spinning states affected ex-
actly oppositely, breaking the symmetry between them
that is present in the absence of the Berry curvature. In
particular, the anomalous velocity changes the usual ex-
pression detailing the conservation of angular momentum
to

Lz = [r× p]z +
Φp

2π
ẑ. (7)

Here Φp is the Berry phase acquired by traversing a cir-
cular trajectory with momentum p. From this observa-
tion one can anticipate that states with opposite angular
momenta will not have the same energy in this system,
unlike the case for the 2D hydrogen atom.
We can begin to get a more quantitative intuition

for how topologically relevant physics comes into play
through the function Φp. To do so we compare two
momentum scales. The first is the topological scale

k∗ =
√

∣

∣M/B
∣

∣. In the topological regime, since M and

B have the same sign, the momentum-dependent Dirac
mass Mk = M − Bk2 changes sign at this momentum,
making it the most relevant momentum scale in the con-
text of topological effects. The Berry curvature reaches
its maximum value near this momentum in the topo-
logical phase, and it is the point at which the function
Φp grows towards approximating the Chern number. In
the trivial regime, though this is a well defined momen-
tum, there are no effects of note at this scale. The sec-
ond scale is the characteristic momentum for excitonic
physics, related to the inverse Bohr radius of the exci-
ton, kex = 1/aB = µe2/ǫ. In the topological phase, if the

excitonic momentum is small compared to the topological
scale, then the Berry phase term is likewise small. This
is always the case in the trivial phase since the Berry cur-
vature is small for all reasonable momenta (see Appendix
B). If the ratio of these two scales becomes even moder-
ately sized in the topological phase, however, then the
Berry phase will become a nontrivial perturbation to the
angular momentum. Though it is not immediately ap-
parent how such a shift will affect the exciton spectrum,
it is clear that any effect will only occur in the topological
phase when kex/k∗ becomes sufficiently large.
Additional insight can be made by changing coor-

dinates, rewriting the angular momentum as Lz =
(R× p)z . Here R = r−Ap and p are the canonical co-
ordinates of the problem, and the shift in the position co-
ordinate is the momentum space equivalent of the Peierls
substitution, which takes the Berry connection correctly
into account. Using these coordinates the equations of
motion (6) can be derived from the effective Hamiltonian
Heff(R,p) given by

Heff =
p2

2µ
+ V (R+Ap). (8)

Expanding in the Berry connection and taking into ac-
count its solenoidal distribution in momentum space we
get Heff = H0+∆H , where H0 is the Hamiltonian of the
usual Coulomb problem

H0 =
p2R
2µ

+
L2
z

2µR2
−

e2

ǫR
, (9)

with pR = p · R̂, and ∆H is the correction due to the
presence of the Berry curvature given by

∆H =

(

s+
Mp
∣

∣dp

∣

∣

)

e2

ǫR

Lz

(Rp)2
. (10)

Examining this correction term we see that it acts as a
perturbation to the 2D hydrogen atom problem and will
generically split energy levels with differing angular mo-
mentum, as we determined to be the effect of the Berry
phase above.
The expression for ∆H we find here is a generaliza-

tion of a correction derived previously using the Foldy-
Wouthuysen transformation in the particular case of a
constant Berry curvature13,23. The Foldy-Wouthuysen
transformation produces a consistent quadratic approxi-
mation to a Hamiltonian with a linear dispersion at high
energies. Because we have approximated the dispersion
as purely quadratic in our semiclassical analysis thus far,
we have missed the Darwin term, which has the form
HDarwin = 1

4Ωz∇
2V (R), where Ωz = Ωz(p = 0). This

term gives an effective shift of the angular momentum by
a value of 1

2 in the perturbation to the hydrogen atom
problem. This shift leads to an asymmetric splitting of
states with opposite angular momentum as well as a shift
for the m = 0 state, which, in this effective Hamilto-
nian picture, would otherwise remain unaffected by Berry
physics.
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III. EXCITONIC STATES

Excitons are two-particle electron-hole bound states
formed due to Coulomb interactions. Only excitons with
zero total momentum qCM = 0 are optically active and
will be considered here. Excitonic states can be written

|Xi,j〉 =
∑

k

C
(ij)
k a†k,+,iak,−,j |0〉 . (11)

Here C
(ij)
k is the wave function of the exciton in momen-

tum space, |0〉 is the state with filled valence bands and

empty conduction bands, and a†k,α,i (ak,α,i) creates (de-

stroys) the single particle state |k, α, i〉, where α = ±
labels the band and i = 1, 2 labels the block of the
BHZ Hamiltonian the state is taken from. When ro-
tated to the band basis, each of the two 2 × 2 blocks of
the BHZ Hamiltonian produce a single conduction and
valence band, hosting the electrons and holes that are
the building blocks of excitons. When i = j then the
electron and hole come from the same block (intrablock
excitons), while the case of i 6= j corresponds to an in-
terblock exciton. In general intrablock excitons are opti-
cally active while interblock excitons require some degree
of inversion symmetry breaking to be accessable via opti-
cal means. We do not consider such symmetry breaking
in our model, but we calculate interblock exciton energies
nonetheless as a point of comparison.
The exciton wave function satisfies a Schrodinger-like

equation in momentum space given by

2|dk|C
(ij)
k −

∑

k′

Uk−k′F
(ij)
k,k′C

(ij)
k′ = (Eg+EX)C

(ij)
k . (12)

Here Eg = 2|M | is the energy gap and EX < 0 is the
exciton binding energy. The screened Coulomb inter-
action is given by Uq = 2πe2/ǫq, with ǫ being the ef-
fective dielectric constant of surrounding medium, and
2|dk| = Ek,+,i − Ek,−,j is the two-particle free disper-
sion, independent of the particle-hole asymmetry. Fi-
nally, F (ij) is a function resulting from the rotation from
the original basis of the Hamiltonian to the band basis,
and its importance will be discussed at length.
In our further analysis we will approximate the two

particle dispersion with a constant parabolic dispersion,

2|dk| → 2|M |+
k2

2µ
, with µ =

|M |

2A2
. (13)

This changes the features of the spectrum in the topolog-
ical phase, which for the unmodified BHZ model devel-
ops a degenerate band minimum at a finite momentum
for large enough |M |; in a more accurate approximation
there is a value of M for which the effective mass near
k = 0 changes sign within the topological phase. This
alone can lead to large effects on excitonic properties
but is completely unrelated to the topological transition.
Since smooth deformations of the band structure leave
topological properties unchanged, the above simplifica-
tion is one way to remove this parametric dependence of

the model on M while leaving topological properties in-
tact. This allows us to more easily isolate the effect of
topology alone.

Since this model has rotational symmetry we can per-
form a full multipole decomposition, writing the exciton
wave function as

Ck =
∑

m

Cm(k)eimϕk , (14)

where ϕk is the angle of k from the kx-axis. The eigen-
value equation itself becomes

k2

2µ
Cm(k)−

∑

k′

U eff
m (k, k′)Cm(k′) = EXCm(k), (15)

with U eff
m , the effective interaction in them channel, given

by

U eff
m (k, k′) =

∑

m′

Um−m′(k, k′)Fm′(k, k′). (16)

Being the index related to rational invariance,m is a com-
ponent of the angular momentum of the exciton, specif-
ically the component related to the relative motion of
its constituents (see Appendix A for the full angular mo-
mentum). It should be noted the choice of the underlying
spinor wave functions of electrons and holes is not unique
(see Appendix B), and one can change them up to an
arbitrary gauge transformation. Though gauge transfor-
mations leave all observables unchanged, they can in gen-
eral uniformly shift the label m by any integer, making
this label of excitonic states ambiguous and dependent
on gauge choice. The gauge that we employ is chosen to
reduce to the normal labeling of states for the 2D hydro-
gen atom in the limit MB → −∞, infinitely far into the
trivial regime.

The function F
(ij)
k,k′ = 〈k,+, i|k′,+, i〉 〈k′,−, j|k,−, j〉

results from the change to the band basis and is given by
the overlaps of electron and hole spinor wave functions.
We can explicitly write this function as

F
(11)
k,k′ = ei(s−1)(ϕk−ϕ

k′ ) cos2 θk
2 cos2 θ

k′

2

+ei(s+1)(ϕk−ϕ
k′) sin2 θk

2 sin2 θ
k′

2

+2eis(ϕk−ϕ
k′) cos θk

2 cos θ
k′

2 sin θk
2 sin θ

k′

2 ,

F
(12)
k,k′ = cos2 θk

2 cos2 θ
k′

2 + sin2 θk
2 sin2 θ

k′

2

+2 cos θk
2 cos θ

k′

2 sin θk
2 sin θ

k′

2 cos(ϕk − ϕk′),

(17)

with F (11) = F (22)∗, F (12) = F (21), cos θk = Mk/|dk|
and s ≡ sgnM . This is the only ingredient in the exci-
tonic eigenvalue equation (12) which reflects the underly-
ing topology, and it is qualitatively different in trivial and
topological regimes. The topological information carried
in these functions can be seen explicitly by considering
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FIG. 2. (Color online) The multipole coefficients of the over-
lap function F plotted as functions of their two arguments
k and k′, with the infinite domains k, k′ ∈ [0,∞) projected
onto a finite interval. The plots on the left show the typi-
cal behavior of the F ’s in the trivial phase, and those on the
right show them in the topologically nontrivial phase. There
is a clear and distinct difference in the qualitative behavior of
these functions on either side of the transition, with a sudden
jump from one behavior to the other at the transition itself.

their multipole expansions,

F
(11)
k,k′ =

2
∑

m=0

Fsm(k, k′)eism(ϕk−ϕ
k′),

F
(12)
k,k′ = F0(k, k

′) + F2s(k, k
′) + Fs(k, k

′) cos(ϕk − ϕk′),

(18)
and examining the behavior of the three functions Fsm in
both the trivial and topological phases. These functions
are plotted in Figure 2.
Far into the trivial parameter regime, one sees that F0

is approximately equal to 1 for all values of k, k′, while
the other functions are very small. Indeed in the limit

MB → −∞ then F0 → 1 and Fm 6=0 → 0, so F → 1 and
the Schrodinger equation approaches exactly that for the
2D hydrogen atom.

A similar statement cannot be made in the topological
parameter regime, with the behavior of F being funda-
mentally nontrivial for all values of the tuning parameter.
In this regime both F0 and F−2 show nontrivial behavior
as one or both of their arguments become large compared
to the topological scale k∗. The remaining function, F−1

does not display such a drastic change on either side
of the topological transition, though in the topological
phase it does always reach the value 1/2 for k = k′ = k∗.
Note that these differences in the qualitative behavior of
these functions are indeed tied directly to the topologi-
cal character of the respective phases. There is a sudden
transition between one behavior and the other as the tun-
ing parameter passes through the topological transition,
with the (k, k′) → (∞,∞) limits of the functions F0 and
F±2 changing discontinuously at that point.

Both to gain further physical insight and to simplify
eventual numerical integration, we rewrite the eigenvalue
problem in a dimensionless form by scaling all momenta
by the characteristic exciton momentum, kex = 1/aB =
µe2/ǫ. Since the Bohr radius is the most natural length
scale in the problem, its inverse gives the most relevant
momentum for excitonic physics. This rescaling natu-
rally results in an equation with only two dimensionless
parameters: the relative fine structure constant of the
material α = e2/ǫA and the quantity γ = (kex/k∗)

2,
comparing the size of the excitonic and topological mo-
mentum scales, which we use as our tuning parameter.

As we first considered in Sec.II, we can understand
how the topological nature of the system manifests itself
in excitonic properties by considering the relative size of
these momentum scales, i.e. the size of γ. First note that
the small momentum features of the functions in Figure
2 are very much alike on either side of the transition.
Close to the transition, where |γ| is small and small mo-
menta are most important, then excitons in both sides
of the topological transition should be qualitatively sim-
ilar. Conversely, if |γ| is not small then the nontrivial
features of the F functions near k ∼ k∗ will be relevant
in the topological phase and excitons should behave quite
differently depending on the sign of γ. From this we an-
ticipate that our numerical analysis will not find a sharp
feature in excitonic properties at the transition itself, in-
stead seeing a gradual crossover between two behavior
regimes.

Another way to see the effects of topology is to
note how this exciton problem compares with the two-
dimensional hydrogen atom. Just as for the 2D hydro-
gen atom, the eigenstates of the exciton problem in this
model are labeled by two indices, n = 0, 1, 2, . . . and
m = 0,±1, . . . ,±n, the principal and angular momen-
tum quantum numbers.24 For the 2D hydrogen atom a
hidden SO(3) symmetry (distinct from, but containing
SO(2) rotational symmetry) ensures a perfect degener-
acy between the 2n + 1 angular momentum states for
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each n25,26, with energies given by

En = −
µe4

2ǫ2
1

(

n+ 1
2

)2 . (19)

In our system, though n and m are still good quantum
numbers, the nontrivial overlap function F breaks the
SO(3) symmetry, mixing angular momentum channels of
the Coulomb interaction and reorganizing the spectrum.
The result is that the different angular momentum states
for each energy level n will have their energies split from
each other, as anticipated in Sec.II. Note that for in-
terblock excitons states with angular momentum differ-
ing by a sign must still be degenerate due to time rever-
sal symmetry, but those with different values of |m| will
generically be split.
In general the breaking of this symmetry is ensured by

the existence of any nonzero Berry curvature (F 6= 1),
even in a phase with trivial Chern number. However, far
enough into the topologically trivial phase one can con-
sider this symmetry breaking as just a small perturbation
to the 2D hydrogen atom problem (i.e. F ≈ 1+ δF with
δF ≪ 1), which only introduces a small splitting between
the states. The same cannot be said of the topologically
nontrivial phase, where the behavior of F is fundamen-
tally nontrivial as well, as described above and in Fig.2.
For this case the effect cannot be approximated as a small
perturbation to the 2D hydrogen atom, so we can expect
that the splitting between states will not necessarily be
vanishingly small.

IV. NUMERICAL ANALYSIS

We discretize the momentum in the integral
Schrodinger equation according to a modified Gaussian
quadrature method (with N = 192 points) that is de-
signed to handle the divergence in the Coulomb potential
at k = k′27. Choosing a constant value α = 0.4 for the
effective fine structure constant we can then invert the
resulting matrix equation to find the excitonic spectrum
as a function of the parameter γ. We scale all energies
that we calculate by the corresponding energies of the 2D
hydrogen atom, i.e. with the same n, defining the effec-
tive mass in Eq. 19 the same way as in Eq. 13 so that the
energy vanishes as γ → 0.
Our main results are presented in Fig. 1, showing

the n = 0 state and three n = 1 states for intrablock
excitons.28 In addition to these results, we also calculated
the corresponding states for interblock excitons, finding
similar effects. The qualitative behavior of the exciton
energy levels in the topologically trivial and nontrivial
regimes is immediately apparent, with the different angu-
lar momentum levels separating from each other quickly
as a function of γ in the nontrivial regime, and converging
to the 2D hydrogen energy moving deeper into the normal
regime, as expected based on the discussed properties of
the function F . Furthermore we find that intrablock ex-
citon levels with opposite angular momentum split from

each other, while corresponding levels in interblock exci-
tons remain degenerate as ensured by symmetry. We also
note that while there is a crossover between two behav-
ior regimes there is no sharp feature at the topological
transition itself, again as anticipated.

The most notable behavior, seen in all cases, is the
strong dependence of the m = 0 state on γ, which has
considerably lower energy in the topological regime com-
pared to the trivial regime. Indeed, for interblock exci-
tons this is the primary feature we find. Since this effect
is found in all cases it must be caused by a different mech-
anism than that causing the splitting of opposite angular
momentum states in the intrablock case, i.e. the Berry
phase. In other words, it is an effect that is insensitive
to time reversal and seems to be strongest for the cases
of zero angular momentum. In particular, the Darwin
term mentioned in Sec.II cannot be the only explanation
since it is proportional to the Berry curvature and there-
fore cancels exactly in the interblock case. Unfortunately,
we do not yet fully understand the effect leading to this
phenomenon, but the onset of this energy shift at the
transition indicates a topological origin, perhaps related
to the quantum geometric tensor29 or moments describ-
ing to the distribution of Berry curvature in momentum
space, e.g. the Berry curvature dipole30.

V. CONCLUSIONS

By examining excitonic spectra in the bulk of a model
with nontrivial topology we have demonstrated that
topology can in principle have strong manifestations in
bulk physics. In particular we have shown in the BHZ
model that the degeneracy of 2D excitonic states that
would exist in a system without a Berry curvature is bro-
ken due to the inclusion of such physical effects. In the
trivial phase with Chern number 0 the splitting is small,
with the Berry phase acting as a small perturbation to
the 2D hydrogen atom problem. On the other side of
the topological phase transition, however, the splitting
is much greater since the effects of nontrivial topology
can no longer be considered as just a small perturbation.
Though there is no sharp feature precisely at the transi-
tion point the difference in the behavior in the two phases
can nevertheless be understood as a result of a change
in the topological character. As the characteristic exci-
tonic momentum scale becomes sizable compared to the
scale associated with topological effects then the large
momentum differences between the physics of the trivial
and nontrivial phases becomes essential. The result is a
dramatic reorganization of the excitonic spectrum, pro-
ducing a hierarchy of states that is utterly distinct for
values of the tuning parameter well into each of the two
phases.
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Appendix A: Symmetries and Angular Momentum

BHZ Hamiltonian respects both time-reversal and in-
version symmetry, with the two blocks of the Hamilto-
nian (1) mapping into each other under time reversal
and remaining unchanged with inversion. This can be
explicity verified by representing the time reversal and
inversion operators respectively as

Θ = −iσ̂yK ⊗ 1̂, and P = 1̂⊗ τ̂z , (A1)

and confirming that they commute with the Hamilto-
nian. Here K denotes complex conjugation. The set of
single particle eigenstates respects these symmetries as
well, which one can straightforwardly verify, finding

Θ |k,±, i〉 =
∑

j

ǫij |−k,±, j〉

P |k,±, i〉 = ± |−k,±, i〉 .

(A2)

Here the ± labels the conduction and valence bands,
while i, j labels the block of the Hamiltonian that acts
on the states.
In addition to these discrete symmetries the system is

also rotationally invariant so total angular momentum
is also a good quantum number. Since the system is
two-dimensional, the total angular momentum is equiv-
alent to its z-component. The angular momentum of a
particles has three components—spin, Sz = 1̂ ⊗ σ̂z/2,
atomic orbital, Kz = diag(0, 1, 0,−1), and orbital, Lz =

1̂ (r× p)z—so in total we have Jz = Sz +Kz + Lz, and
a simple calculation confirms that [Jz , HBHZ] = 0.
The eigenstates of HBHZ are also eigenstates of Jz , and

we can most easily compute the angular momentum of
single particle states at k = 0, though the result must
hold at all points in k-space, giving

Jz |k,±, i〉 = (−1)i+1
[

1∓ 1
2 sgnM

]

|k,±, i〉 . (A3)

Note that this value is simply either 1
2 or 3

2 up to a sign.
To consider excitons we must add the Coulomb interac-

tion to this single particle Hamiltonian. With regards to
symmetry it is enough to note that the Coulomb interac-
tion is also invariant under time reversal, inversion, and
rotations, so the states of the interacting system must
obey these symmetries as well. Let intrablock exciton
eigenstates be labeled as |n,m, i〉, where n and m are
two quantum numbers, and i labels the block we take
the particle and hole contituents from. In the center of
mass frame these exciton eigenstates are

|n,m, i〉 =
∑

k

C
(i)
nmk a

†
k,+,iak,−,i |0〉 . (A4)

A straightforward calculation shows that

Jz |n,m, i〉 =
[

m+ (−1)i sgnM
]

|n,m, i〉 ≡ j |n,m, i〉 ,

(A5)
where the second term in the eigenvalue is the sum of the
spin and orbital angular momenta of the single particle
bands, Eq.A3. We see here that m labels the part of the
angular momentum interpreted classically as arising from
the relative motion of the exciton’s constituent particle
and hole. Furthermore, it can be easily verified that time
reversal acts in the expected way, simply flipping the sign
of the angular momentum, JzΘ |n,m, i〉 = −jΘ |n,m, i〉.

Appendix B: Berry Physics in BHZ model

The spinor eigenstates corresponding to the two bands
of the upper block of the Hamiltonian (1) are

|k,+〉 =

(

ei
s+1

2
ϕk cos θk

2

ei
s−1

2
ϕk sin θk

2 ,

)

,

|k,−〉 =

(

−e−i s−1

2
ϕk sin θk

2

e−i s+1

2
ϕk cos θk

2 ,

) (B1)

where s ≡ sgnMB and cos θk = Mk/|dk|. The states for
the other block can be generated from these by applying
the time reversal operator, discussed in Appendix A.

The information about the topology is stored in the
Berry connection of electrons defined in terms of these

-1.0 -0.5 0.0 0.5 1.0

0

10

20

30

40

50

γ=sgn(M)(kex/k*)
2

Ω
z
(k
=

k
ex
)

Trivial Topological

FIG. 3. (Color online) A plot of the z-component of the Berry
curvatureΩ+(k) as a function of momentum in both the topo-
logical (top) and trivial (bottom) phases. The Berry curva-
ture Ω−(k) is simply related by a sign. The momentum is

measured in units of the topological scale |k∗| =
√

|M/B|.
In the topological regime the Berry curvature is peaked near
k∗ and is positive for all values of the momentum, leading to
a nonzero Chern number, while in the trivial regime it takes
both positive and negative values producing a Chern number
of 0.
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states as

A±(k) = i 〈k,±|∇k |k,±〉 = ∓
s+ cos θk

2k2
(ẑ× k) .

(B2)
The corresponding Berry curvature for the upper block
is

Ω±(k) = ∇k ×A±(k) = ±A2M +Bk2

2d(k)3
ẑ. (B3)

It is gauge independent, and its integral gives the Chern
number distinguishing topological phases. The momen-
tum distribution of the the Berry curvature in the topo-

logical and trivial regimes is presented in Fig. 3. Cal-
culating the same quantities for the lower block of the
Hamiltonian gives the same results up to overall signs.
When considering the interacting two particle problem

we define the particle and hole states as

|k, e〉 = |k,+〉 , |k, h〉 = C |k,−〉 , (B4)

using the particle-hole transformation C = Kσ̂x. With
these definitions we can define the Berry connections for
particles and holes in the upper block analogously as in
Eq. B2 to find Ae(k) = A+(k) and Ah(k) = A−(k) =
−Ae(k).
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