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Abstract

The combined effect due to mechanical strain, coupling to the plasmons in a doped conducting

substrate, the plasmon-phonon coupling in conjunction with the role played by encapsulation of

a secondary two-dimensional (2D) layer is investigated both theoretically and numerically. The

calculations are based on the random-phase approximation (RPA) for the surface response function

which yields the plasmon dispersion equation that is applicable in the presence or absence of an

applied uniaxial strain. We present results showing the dependence of the frequency of the charge

density oscillations on the strain modulus and direction of the wave vector in the Brillouin zone.

The shielding of a dilute distribution of charges as well as the rate of loss of energy for impinging

charges is investigated for this hybrid layered structure.

PACS numbers: 73.21.Ac, 71.45.-d, 71.45.Gm, 71.10.Ca, 81.05.ue
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I. INTRODUCTION

It is undoubtedly true that there has been a tremendous effort on the part of con-

densed matter and materials scientists to increase their knowledge of the properties of low-

dimensional structures. These include doped as well as undoped graphene,1–3 silicene,4,5

phosphorene,6,7 germanene,8,9 antimonene,10,11 tinene,12 bismuthene13–18 and most recently

the two-dimensional pseudospin-1 α− T3 lattice19. Experimental studies of such structures

may involve a wide range of techniques including angle-resolved photoemission spectroscopy

(ARPES)20–23 and electron energy loss spectroscopy (EELS)24–36. Both of these methods

rely on an analysis of the energy of an electron emitted from or passing in the vicinity of

the surface of the condensed matter under investigation.

We know that when an electromagnetic wave is incident on a material, especially on a

conductor, the quasiparticles can respond by oscillating at specific frequencies which could

be sustained over considerable distances and times if the frequency and wave number of

the external perturbation are in resonance with the collective charge density oscillations.

Generally, the dispersion relation of these plasmon modes is determined by the geometric

and electronic properties of the 2D layer as well as the nature of the conducting substrate

with which it is Coulomb coupled. In the case of free-standing graphene, the frequency of

the plasmon behaves as
√
q‖ in the long wavelength limit.37 However, the plasmon dispersion

relation could be modified when the two-dimensional (2D) graphene sheet is subjected to

strain and also if it is coupled to the charge density oscillations and plasmons in neighboring

media as illustrated in Fig. 1.

Theoretical results for EELS have been presented for free-standing graphene in Ref.

[34] where the authors reported the contributions to the rate of loss of energy due to the

single-particle and plasmon excitations for particle motion parallel to the planar surface.

The method of calculation was based on the formalism presented by previous authors38,39

who considered a 2D layer and cylindrical nanotube interacting with a beam of imping-

ing charged particles. However, in recent work, Woessner, et al.40,41 released experimental

and theoretical results for plasmon excitations in a heterostructure of graphene which is

encapsulated42–44 between two films of hexagonal boron-nitride using a method that ex-

ploits near-field-microscopy. The collective mode spectrum revealed in the experimental

data of Refs. [40,41] is far more complex than that in Ref. [34] for free-standing graphene.
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Consequently, we direct our attention to the heterostructure in Fig. 1 which involves atom-

ically flat materials. Our formalism includes contributions from plasmon-phonon coupling

involving transverse and longitudinal optical phonons from the surrounding conducting me-

dia. Additionally, although there have been several papers dealing with the effect due to

mechanical strain on the plasmon dispersion for free standing graphene by Pelligrino et.al45,

so far no consideration has been given to the influence of strain on the fast-particle en-

ergy loss spectrum or the plasmon mode dispersion for structure coomposing of a 2D layer

and conducting substrate for which longitudinal and transverse phonon modes from the

conducting substrate are taken into consideration.

When a graphene layer is subjected to mechanical strain, the regular crystal structure

is deformed which leads to a modification of its energy band structure,33,46–51 electrical and

thermal conductivity,33,52 as well as other transport properties.53,54 Meanwhile, its polar-

izability is altered, thereby leading to qualitative changes in the plasmon mode dispersion

relation. Making use of the polarization function derived in Refs. [33,45,55,56] for strained

graphene, we have investigated the plasmon mode dispersion for a structure shown schemat-

ically in Fig.1. In addition, we analyzed the effect due to strain57 on the plasmon mode

dispersion relation for previously studied structures58,59 which are special cases of the illus-

trated hybrid heterostructure. We have obtained analytical and numerical results showing

the effect due to strain and phonon vibrations in the substrate on the plasmon excitation

spectrum in the long wavelength limit by varying several parameters including the angle

giving the direction of the applied strain, the strain modulus, the separation between the

graphene layers, the dielectric constant for the background material and the wave vector.

This information will be useful in designing applications involving nanoelectronic and opto-

electronic devices.

A critical ingredient which is needed for conducting our investigation outlined above is the

surface response function. This is achieved by using a transfer matrix method, as outlined in

Ref. [44], involving the electrostatic potential, electric field and the induced charge density at

the interfaces of the structure shown in Fig. 1. This procedure allows us to incorporate the

effect due to energy band gap, mechanical strain, as well as plasmon-phonon coupling, all of

which have not been investigated simultaneously so far in our hybrid structure. Additionally,

we could exploit the calculated surface response function to determine the plasmonic and
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FIG. 1: (Color online) Schematic illustration of a pair of 2D graphene layers nonlocally screened

by two conducting materials with dielectric functions ε1(ω) and ε2(ω). A background medium with

dielectric constant εb = 2.4 lies between them. A particle of charge Z∗e moves parallel to the

surface.

single-particle excitation contributions to the rate of loss of energy for a beam of charged

particles moving in the vicinity of the heterostructure.

We have organized the rest of our paper as follows: In Sec. II, we present the method

for calculating the power loss of a charged particle and the introduction of the surface

response function through the induced potential just outside the structure. An explicit

expression for the surface response function is obtained in Sec. III by ensuring the continuity

of the electrostatic potential and accounting for the change in electric field due to the
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induced charge density on the 2D planes where conducting carriers are located. In Sec. IV,

closed-form analytic expressions are obtained in the long wavelength limit for some specific

geometrical arrangements arising from Fig. 1. Detailed analytical results for the plasmon

dispersion relation are presented in Sec. V for a pair of dissimilar 2D layers, with one acting

as an overlayer for a dielectric in which the other is embedded. This arrangement is relevant

to a recent experimental study of low frequency plasmons in a graphene-Cu(111) contact.

Detailed numerical results for arbitrary wavelength are presented in Sec. VI showing the

combined effect due to strain and plasmon-phonon coupling from the surrounding medium.

Comparison of the energy loss from plasmons and single-particle excitations in strained

and unstrained graphene is also presented. The versatility of the surface response function

is further demonstrated by calculating the screened potential of an impurity located near

the surface of our hybrid structure. We concluded our paper with a brief summary of our

accomplishments in Sec. VII.

II. ENERGY LOSS IN TERMS OF THE SURFACE RESPONSE FUNCTION

We introduce our notation with a brief review. Let us assume that the medium oc-

cupies the half-space z < 0. Consider a point charge Z∗e moving along a prescribed

path r(t) outside the medium. The external potential φext(r, t) satisfies Poisson’s equation

∇2φext(r, t) = −(Z∗e/ε0)δ (r− r(t)) which has solution

φext(r, t) =

∫
d2q‖
(2π)2

∫ ∞
−∞

dω φ̃ext
(
q‖, ω

)
ei(q‖·r‖−ωt)eq‖z , (1)

where φ̃ext
(
q‖, ω

)
= −Z∗e/(4πε0q‖)F

(
q‖, ω

)
with the form factor defined as

F
(
q‖, ω

)
≡
∫ ∞
0

dt e−q‖z(t)ei(ωt−q‖·r‖(t)) . (2)

In this notation, q‖ is a two-dimensional wave vector in the xy-plane parallel to the surface

which is situated at z = 0. Also, it is understood that the frequency has a small imaginary

part, i.e., ω → ω + i0+.

The external potential will give rise to an induced potential which, outside the structure,

can be written as
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φind(r, t) = −
∫

d2q‖
(2π)2

∫ ∞
−∞

dω φ̃ext
(
q‖, ω

)
ei(q‖·r‖−ωt)g(q‖, ω)e−q‖z . (3)

This equation defines the surface response function g(q‖, ω). It has been implicitly assumed

that the external potential φext is so weak that the medium responds linearly to it. The

function g(q‖, ω) is itself related to the density-density response function χ by

g(q‖, ω) =
2π

q‖

∫ ∞
−∞

dz

∫ ∞
−∞

dz′eq‖zeq‖z
′
χ(z, z′;q‖, ω)

= −
∫ ∞
−∞

dz eq‖zρind(z;q‖, ω) (4)

which defines the induced surface charge density ρind(z;q‖, ω).

The quantity Im g(q‖, ω) can be identified with the power absorption in the structure due

to electron excitation induced by the external potential. The total potential in the vicinity

of the surface (z ≈ 0), is given by

φ(r, t) =

∫
d2q‖
(2π)2

∫ ∞
−∞

dω
(
eq‖z − g(q‖, ω)e−q‖z

)
ei(q‖·r‖−ωt)φ̃ext

(
q‖, ω

)
(5)

which takes account of nonlocal screening of the external potential.

Now, let us express the induced potential as

φind(r, t) =
Z∗e

4πε0

∫
d2q‖
(2π)2

1

q‖

∫ ∞
−∞

dω F
(
q‖, ω

)
ei(q‖·r‖−ωt)g

(
q‖, ω

)
e−q‖z . (6)

Then, the instantaneous force is

Find = e∇ φind(r, t)|r=r(t)

=
Z∗e2

4πε0

∫
d2q‖
(2π)2

1

q‖

∫ ∞
−∞

dω F
(
q‖, ω

)
ei(q‖·r‖−ωt)g

(
q‖, ω

)
e−q‖z

(
iq‖ − q‖ẑ

)∣∣
r=r(t)

.(7)

Assuming that the charge moves parallel to the surface with velocity v at a height z0 so that

its trajectory is described by r‖(t) = vt and z(t) = z0. Then, in this case, the form factor

in Eq. (2) becomes F
(
q‖, ω

)
= i e−q‖z0/(ω − q‖ · v). Making use of this result in Eq. (7),

a straightforward calculation yields the rate of loss of energy of the charged particle to the

medium of plasma as
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dW

dt
= Find · v =

Z∗e2

4πε0

∫
d2q‖
2π

q‖ · v
q‖

e−2q‖z0 Im
{
g
(
q‖, ω = q‖ · v

)}
. (8)

We can use the result in Eq. (8) to determine the contributions to dW/dt from the plasmon

excitations as well as the single-particle excitations for the hybrid structure shown schemati-

cally in Fig. 1. However, what is needed to proceed further with our calculation is an explicit

formula for g
(
q‖, ω

)
. This is achieved by making sure that the potential just outside the

surface at z = 0 in Eq. (5) is continuous with that inside the material and the latter is

continuous throughout the z < 0 region.

III. SURFACE RESPONSE FUNCTION FOR A HYBRID STRUCTURE

The structure shown schematically in Fig. 1 consists of a graphene layer on top of a

conductor with dielectric function ε1(ω) and thickness d1. This in turn lies on a dielectric

with background constant εb and thickness 2d where another 2D layer is embedded in the

middle. This whole structure is placed on a conducting substrate whose dielectric function

is ε2(ω). We write the potential in each region with a dielectric constant displayed in Fig. 1

as

φi(r, t) =

∫
d2q‖
(2π)2

∫ ∞
−∞

dω
(
ai e

−q‖z + bie
q‖z
)
ei(q‖·r‖−ωt)φ̃ext

(
q‖, ω

)
, (9)

where ai, bi are determined using the electrostatic conditions at the boundaries separating

the regions.44 After a straightforward calculation, we obtain the coefficients for the potential

in the region −d1 ≤ z ≤ 0 as

a1 = −
N11(q‖, ω)

D11(q‖, ω)
, b1 =

N12(q‖, ω)

D11(q‖, ω)
, (10)

where

N11(q‖, ω) = 2q‖ε0

{
e6dq‖+4d1q‖Na1 + 2e4(d+d1)q‖Na2 − e2(d+2d1)q‖Na3

}
(11)

and
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Na1 = (ε1(ω)− εb)(ε2(ω) + εb)(2q||ε0εb − χ2) ,

Na2 = χ2

(
ε1(ω)ε2(ω) + εb

2
)
,

Na3 = (ε1(ω) + εb)(ε2(ω)− εb)(2q||ε0εb + χ2) . (12)

Also,

N12(q‖, ω) = − 2e2d1q‖q‖ε0

{
e6dq‖+4d1q‖Nb1 + 2e4(d+d1)q‖Nb2 − e2(d+2d1)q‖Nb3

}
(13)

with

Nb1(q‖, ω) = (ε1(ω) + εb)(ε2(ω) + εb)(2q‖ε0εb − χ2(q‖, ω) ,

Nb2(q‖, ω) = χ2(q‖, ω)
(
ε1(ω)ε2(ω)− ε2b

)
,

Nb3(q‖, ω) = (ε1(ω)− εb)(ε2(ω)− εb)(2q‖ε0εb + χ2(q‖, ω) (14)

and

D11(q‖, ω) = e6(d+d1)q‖Dd1 + e6dq‖+4d1q‖Dd2 − 2e(4dq‖+6d1q‖)Dd3

+2e(4(d+d1)q‖)Dd4 + e(2(d+3d1)q‖)Dd5 − e(2(d+2d1)q‖)Dd6 (15)

with

Dd1(q‖, ω) = (ε1(ω) + εb)(ε2(ω) + εb)
{
q‖ε0(ε1(ω) + 1)− χ1

}
(2q‖ε0εb − χ2) ,

Dd2(q‖, ω) = (ε1(ω)− εb)(ε2(ω) + εb)
{
q‖ε0(ε1(ω)− 1) + χ1

}
(2q‖ε0εb − χ2) ,

Dd3(q‖, ω) = χ2

(
ε1(ω)ε2(ω)− εb2

) {
q‖ε0(ε1(ω) + 1)− χ1

}
,

Dd4(q‖, ω) = χ2

(
ε1(ω)ε2(ω) + εb

2
) {
q‖ε0(ε1(ω)− 1) + χ1

}
,

Dd5(q‖, ω) = (ε1(ω)− εb)(ε2(ω)− εb)
{
q‖ε0(ε1(ω) + 1)− χ1

}
(2q‖ε0εb + χ2) ,

Dd6(q‖, ω) = (ε1(ω) + εb)(ε2(ω)− εb)
{
q‖ε0(ε1(ω)− 1) + χ1

}
(2q‖ε0εb + χ2) , (16)

where the (q‖, ω)-dependence of the layer susceptibilities χ1 and χ2 has been suppressed for

convenience. Additionally, the surface response function is expressed as:
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g(q‖, ω) =
N (q‖, ω)

D(q‖, ω)
(17)

with

N (q‖, ω) =
{
q‖ε0 [ε1(ω)− 1]− χ1(q‖, ω)

}
[A1 + A3 + A5] +

{
q‖ε0 [ε1(ω) + 1] + χ1(q‖, ω)

}
×[−A2 − A4 + A6] , (18)

D(q‖, ω) =
{
q‖ε0 [ε1(ω) + 1]− χ1(q‖, ω)

}
[A1 + A3 + A5] +

{
q‖ε0 [ε1(ω)− 1] + χ1(q‖, ω)

}
×[−A2 − A4 + A6] (19)

we have

A1(q‖, ω) = e8(d1+d)q‖ [ε1(ω) + εb] [ε2(ω) + εb]
[
2q‖ε0εb − χ2(q‖, ω)

]
,

A2(q‖, ω) = e2(3d1+4d)q‖ [ε1(ω)− εb] [ε2(ω) + εb]
[
2q‖ε0εb − χ2(q‖, ω)

]
,

A3(q‖, ω) = 2e2(4d1+3d)q‖
[
ε1(ω)ε2(ω)− ε2b

]
χ2(q‖, ω) ,

A4(q‖, ω) = 2e6(d1+d)q‖
[
ε1(ω)ε2(ω) + ε2b

]
χ2(q‖, ω) ,

A5(q‖, ω) = e4(2d1+d)q‖ [ε1(ω)− εb] [−ε2(ω) + εb]
[
2q‖ε0εb + χ2(q‖, ω)

]
,

A6(q‖, ω) = e2(3d1+2d)q‖ [ε2(ω)− εb] [ε1(ω) + εb]
[
2q‖ε0εb + χ2(q‖, ω)

]
. (20)

In this notation, ε0 is the permittivity of free space, for the upper 2D layer, we write

for convenience χ1(q‖, ω) = e2Π1(q‖, ω) and, similarly, for the lower layer, χ2(q‖, ω) =

e2Π2(q‖, ω). Here, e is the electron charge and, for convenience, we have introduced the

polarization functions Π1(q‖, ω), Π2(q‖, ω). As a matter of fact, we have

Π(q, ω) =

∫
dω′dk

i(2π)3
Tr
[
G0(k, ω′)G0(k + q, ω + ω′)

]
, (21)

where G0(k, ω) is a single-particle Green’s function which is a 2 × 2 matrix due to the

underlying A and B sublattices.

The low-energy model Hamiltonian for unstrained graphene is well known and given by

H(0) = ~vFσ · q where vF is the Fermi velocity, σ = {σx, σy} in terms of Pauli matrices.

When strain is applied, the low-energy Hamiltonian can be written as
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H = ~vFσ · q′ (22)

with q′ =
↔
R(θ)S

↔
(ζ)
↔
R(−θ)q = (I

↔
− 2κζ

↔
)q,

ζ
↔

= ζ

 cos2 θ − ν sin2 θ (1 + ν) cos θ sin θ

(1 + ν) cos θ sin θ sin2 θ − ν cos2 θ

 , (23)

and I
↔

is the unit 2× 2 matrix, S
↔

(ζ) = diag(c‖, c⊥), κ = a
2t
| ∂t
∂a
| − 1

2
≈ 1.1, the carbon carbon

bond length is a = 1.42A◦, R(θ) as the rotation matrix in the direction of the applied strain

and θ as the angle of the applied strain with respect to the x-axis, the known value for

Poisson’s ratio for graphite is ν = 0.165 and for monolayer graphene it is ν as 0.14. The

difference between the two values for the Poisson ratio is negligible compared with other

parameters in our calculation. However, we chose the former value because the graphene

sheet is part of a multi-layer structure. We have

q′x

q′y

 =

qx − 2κζxxqx − 2κζxyqy

qy − 2κζyxqx − 2κζyyqy

 . (24)

Defining the eigenvalues and eigenvectors in the pseudospin space of the Hamiltonian

without and with applied strain, asH(0)|q′,± >(0)= E
(0)
±q′|q′,± >(0) andH|q,± >= E|q,± >,

respectively, with ± as a pseudospin index, it follows that both E±q and |q,± > under

applied strain are mapped onto E
(0)
±q′ and |q′,± >. The polarization function of strained

graphene would then be mapped onto the polarization function of unstrained graphene by37

Π(q, ω) =
1

Det S(ζ)
Π(0)(q′, ω) , (25)

where Π(0)(q′, ω) is the polarizability of unstrained monolayer graphene. For small values of

strain on graphene, the generalized polarization function45,55 may be obtained from a Taylor

series expansion in ζ and expressed approximately as
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Π(q‖, ω) = [1 + 2κ(1− ν)ζ] Π(0)(q‖, ω)− 2κ
∂Π(0)(q‖, ω)

∂qh
ζhkqk

+ 2κ2[1 + 2κζ(1− ν)]

[
∂2

∂q2x
Π0(qx, qy, ω)

(
ζxxqx + ζxyqy

)2
+ 2

∂2

∂qx∂qy
Π0(qx, qy, ω)(ζxxqx + ζxyqy)(ζyxqx + ζyyqy)

+
∂2

∂q2y
Π0(qx, qy, ω)(ζyxqx + ζyyqy)

2

]
. (26)

The subindex h, k denotes x and y and the summation convention is adopted here. With

the aid of the expression for the polarization of unstrained monolayer graphene in Ref. [37]

one could proceed to calculate plasmon excitations in dimensionally mismatched Coulomb

coupled 2D systems using the obtained surface response function. However, before we do

so, we will examine from a numerical point of view the effect of strain on the polarization

function.

Making use of the expression for the polarization function given in Eq. (26), by including

or neglecting the second-order correction term, we obtain the behavior of the real part

of the static polarization as shown in Fig. 2 . The upper panels of the figure show the

polarizability when only the first-order correction term is included and the bottom panels

correspond to the polarization when both first and second-order terms contribute. Figure

2(a) shows the polarization for three values of strain. For chosen strain, the polarization

remains constant in the range 0 ≤ q‖ < 2kF . At q‖ = 2kF , we see a dip due to the strain

which monotonically increases afterwards. The magnitude of the polarization and the size

of dip increases with increasing value of strain. Figure 2(b) in the top right panel shows

the variation of polarization due to change in wave vector direction. There, we see the

polarization remaining constant in the range 0 ≤ q‖ < 2kF and has the same value for any

direction of the wave vector. However, the value changes when the wave vector exceeds

twice the Fermi wave vector. The polarization value increases monotonically outside this

range of wave vector. We could see similar behavior in the bottom panel figures when the

second-order correction terms are considered. The main difference that we see there is the

discontinuity at q‖ = 2kF when strain is applied. This is due to the indeterminate nature of

polarization at q‖ = 2kF .
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FIG. 2: (Color online) Plots showing the real part of the polarization for (a) various values of

strain and (b) various direction of wave vector when only the first order correction term in strain is

included. Panels (c) and (d) show the polarization for strained graphene for various strain and wave

vector directions, respectively, when both first and second order corrections terms are included.

The values for the other parameters are shown in the figures.

IV. DISPERSION RELATION FOR STRAINED 2D LAYER-DIELECTRIC-

CONDUCTING SUBSTRATE HETEROSTRUCTURE

We now turn our attention to a detailed study when a 2D layer is at a distance d1 from a

semi-infinite conducting substrate with a dielectric function ε2(ω) with the space in between

them filled with a medium of dielectric constant εb. For this case, we replace ε1(ω) in Eq.

(17) by εb, set χ2 and d equal to zero. The resulting surface response function becomes

gHybrid(q‖, ω) =
NHybrid(q‖, ω)

DHybrid(q‖, ω)
, (27)

where

NHybrid(q‖, ω) = (εb − 1){1 +
(ε2 − εb)
(ε2 + εb)

(εb + 1)

(εb − 1)
e−2q‖d1} − 2

χ1

2q‖ε0
{1− ε2 − εb

ε2 + εb
e−2q‖d1} , (28)
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DHybrid(q‖, ω) = (εb + 1){1 +
(ε2 − εb)
(ε2 + εb)

(εb − 1)

(εb + 1)
e−2q‖d1} − 2

χ1

2q‖ε0
{1− (ε2 − εb)

(ε2 + εb)
e−2q‖d1} (29)

and we shall set χ1 = e2Π(q‖, ω).

At long wavelengths, we have

Π(q‖, ω) ≈ 2EF
π~2

B(θ, φ)
q2‖
ω2

. (30)

Making use of this approximation for the polarizability in Eq. (29) and then setting the

resulting equation equal to zero, we obtain the dispersion equation for plasma excitations as

(εb + 1)

{
e−2q‖d1

(εb − 1)(ε2 − εb)
(εb + 1)(ε2 + εb)

+ 1

}
−

Kq‖B(θ, φ)
{

(εb−ε2)e−2d1q‖

ε2+εb
+ 1
}

ω2
= 0 , (31)

where K = 2EF e
2/(πε0~2) and B(θ, φ) = 1 − 2κ(1 + ν)ζcos2(θ − φ) with φ, indicating the

direction of the wave vector. What remains to be specified for solving Eq. (31) is the form

for ε2(ω). In accounting for coupling between the plasmons in the 2D layer with those with

frequency ωp in the conducting substrate as well as the longitudinal and transverse optical

phonons with frequency ωLO and ωTO, respectively, in this case, we have

ε2(ω) = 1 +
ω2
LO − ω2

TO

ω2
TO − ω2

−
ω2
p

ω2
. (32)

The analytic solution of Eq. (31) in conjunction with Eq. (32) for ω is unwieldy and is not

suitable for presentation. Consequently, we present numerical results for the plasmon dis-

persion relations in Figs. 3(a) and 3(b) where we compare strained and unstrained graphene.

In Fig. 3(a), there is no separation between the 2D layer and the surface (d1 = 0), whereas

in Fig. 3(b), there is a separation (d1 = 5.0k−1F ). This difference leads to a semi-linear

plasmon branch originating from the origin in Fig. 3(b). In both panels, there is a plasmon

branch close to 0.5ωp and another near 1.0ωp when q‖ → 0. These two plasmon branches

are a direct consequence of the plasmon-phonon interaction. Finite separation of 2D layer

and the conducting substrate generates new plasmon branch from the origin called Acoustic

plasmon branch. Also, for all branches in strained graphene, the slope of the uppermost

dispersion curve increases the most as the strain is increased whereas, in contrast, the effect
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FIG. 3: (Color online) Plasmon mode dispersion relation for gapless graphene in the long wave-

length limit in the presence(solid curve) and absence(dashed curve) of strain (ζ = 0.2). These

results demonstrate the effect due to plasmon-phonon interaction. In (a), there is no separation

between the 2D layer and the substrate. In (b), this separation is finite.

on the two other lower branches is small. This indicates how the plasmon frequency and its

group velocity may be tuned for device applications.

The algebra involved in solving Eq. (31) is considerably simplified if we neglect the

plasmon-phonon coupling and instead use ε2(ω) = 1 − ω2
p/ω

2. After a straightforward

calculation, we obtain

ω±(q‖, θ, φ) =

{
A1(q‖, θ, φ)±

√
A1(q‖, θ, φ)2 − 4N1(q, θ, φ)

−2(−1 + εb)2 + 2eq‖d1(1 + εb)2

}1/2

, (33)

where

A1(q‖, θ, φ) =
{
B(θ, φ)Kq‖ + ω2

p

}{
− 1 + εb + e2q‖d1(1 + εb)

}
, (34)

N1(q‖, θ, φ) = B(θ, φ)Kq‖ω
2
p(−1 + e2q‖d1)

{
− 1 + εb + e2q‖d1(1 + εb)

}
. (35)
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As a special case that is of interest to experimentalists, we consider SiO2 as the dielectric

background which has dielectric constant, εb = 3.8.60 The corresponding dispersion relations

for this structure in the long wavelength limit are given by

ω1(q‖, θ, φ) ≈ ωp√
2

+
1√
2ωp

{
KB(θ, φ)

2
−

84d1ω
2
p

95

}
q‖ , (36)

and

ω2(q‖, θ, φ) ≈
{

5

19
B(θ, φ)d1K

}1/2

q‖ . (37)

When the plasmon-phonon interaction is turned off, the spectrum of plasmon branches

is changed drastically. In Fig. 4, we present results for the plasmon mode dispersion for

a structure consisting of a graphene layer separated from the conducting substrate by a

distance d1. The space in between them is filled with a dielectric having background constant

εb = 2.4, the known value for bulk graphite.61 This separation gives rise to a linear low-

frequency “acoustic” mode similar to the one in Fig. 3(b) for which there is also a spacer-

layer in the structure. In Fig. 3(a), there is also a plasmon branch which is a hybrid with

the surface plasmon with frequency ωp/
√

2 in accordance with Eq. (36). A previous paper59

for unstrained graphene interacting with a conducting substrate has also demonstrated the

existence of two modes similar to those appearing in Fig. 4(a). However, our main goal

in presenting Figs. 3 and 4 is to show the influence of strain as well as plasmon-phonon

interaction for the described structure we are investigating. To present the matter in more

detail, we have displayed the variation of the plasmon frequency with change in the direction

of the applied strain in Fig. 4(b). The plots show that for chosen wave vector and a

specified direction of the applied strain, we have two plasmon frequencies. The one with

a lower frequency corresponds to acoustic plasmon whereas the higher frequency branch

corresponds to hybrid plasmon mode. The plots also illustrate that the range of variation

of both plasmon mode frequencies, keeping the magnitude and direction of the strain fixed

and for chosen small q‖. In Fig. 4(b), the intersection of two plasmon branches implies that

for different directions of applied strain we can have the same resonating frequency for a

same direction of the wave vector. We also show in Fig. 5 how the plasmon spectrum in

Fig. 4 gets affected when the separation between the 2D layer and the surface reduced to

zero. In any case, we still keep the interaction between the 2D layer and plasmons in the
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FIG. 4: (Color online) Plasmon mode dispersion relation for gapless graphene in the long wave-

length approximation. (a) The plasmon modes dispersion for strained and unstrained graphene

and (b) polar plots showing the variation of the plasmon modes for chosen wave vector. The

electron-phonon coupling is neglected.

substrate. The resulting spectrum consists of only one branch originating near the surface

plasmon frequency, ωp/
√

2, as is well known.58 The figure demonstrates the significant role

in modification of the plasmon branch slope due to the application of strain although the
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FIG. 5: (Color online) Plasmon mode dispersion for graphene sheet lying in contact with the

conducting substrate.

linearity of the dispersion curve in the long wavelength limit is still preserved. We also

observe only one plasmon branch which in comparison to Fig. 3(a) shows the disappearance

of plasmon mode rooted from ωp/2 as an important effect of absence of plasmon phonon

interaction.

V. PLASMON EXCITATIONS FOR A GRAPHENE-2DEG DOUBLE LAYER

In a recent paper, Politano, et al.62 reported some interesting results for the plasmon

excitations when graphene weakly interacts with a Cu(111) substrate. Momentum-resolved

electron-energy-loss spectroscopy used in their experiments revealed multiple “acoustic”

surface plasmons. These authors accounted for this occurrence of low-frequency plasma

modes as arising from both the graphene overlayer and the Cu(111) substrate If we follow

the paper of Ahn, et al.63 and treat the Cu(111) substrate as a 2DEG, this means that we

may adopt our model as follows. There is a graphene overlayer with vacuum on one side and

a semi-infinite dielectric with constant εb on the other. We have embedded in this dielectric

a 2DEG at a distance d1 from the graphene layer. A straightforward calculation renders the
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surface response function for this arrangement as

g(q‖, ω) =

[
(εb − 1)− χ1

q‖ε0

] [
2εb − χ2

q‖ε0

]
− e−2q‖d1

[
χ1

q‖ε0
+ (εb + 1)

]
χ2

q‖ε0[
(εb + 1)− χ1

q‖ε0

] [
2εb − χ2

q‖ε0

]
− e−2q‖d1

[
χ1

q‖ε0
+ (εb − 1)

]
χ2

q‖ε0

, (38)

Where χj(q‖, ω)/(q‖ε0) ≈ Cjq‖/ω
2, Cj (j = 1, 2) is constant in the long wavelength limit. AS

a result, one can show that the poles of the surface response function in Eq. (38) correspond

to the plasmon frequencies

ω±(q‖) =
1

2

[
1

εb(εb + 1)
e−2q‖d1{C2q‖(εb − 1) + e2q‖d1q‖(C2 + 2C1εb + C2εb)±R(q‖)}

]1/2
,

(39)

where

R(q‖) = q‖

[
−8C1C2e

2q‖d1(e2q‖d1−1)εb(εb+1)+

{
C2(εb−1)+e2q‖d1

(
C2+2C1εb+C2εb

)}2]1/2
.

(40)

The dispersion relation in Eq. (39) is interesting and needs to be analyzed in some detail.

If C1 6= C2, as is most likely the case for a graphene-2DEG double layer, then both modes

have a
√
q‖ behavior at long wavelengths. However, if C1 = C2 = C and both layers are

embedded in a medium with uniform background dielectric constant, as was the case in Ref.

[64], then the frequencies are given by

ω2
±(q‖) ≈

Cq‖
2εb

(
1± e−q‖d1

)
(41)

so that one mode has a
√
q‖ dependence while the other is linear in q‖. All of this is

incumbent on the appearance of the 2D Fourier transform of the Coulomb interaction as

2πe2/(4πε0q‖) which appears naturally in the procedure used for calculating the surface

response function. In the paper of Ahn, et al.63, a screening parameter is introduced into

the 2D Fourier transform of the Coulomb potential, which has no place in our calculations.

In summary, the fundamental differences in the plasmon dispersion relations stemming from

Eq. (39) arise from the nonlocal screening by the background as well as the hybridization of

the underlying 2D modes.
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FIG. 6: (Color online) Plasmon excitation spectra for gapless graphene. In (a), the plasmon-phonon

coupling is neglected. In (b), the plasmon-phonon interaction is included.

VI. NUMERICAL RESULTS AND DISCUSSION

A. Plasma Excitations for gapless graphene

By making use of the expression for the surface response function in Eq. (17), we have

carried out numerical calculations to obtain the plasmon dispersion relation for the hybrid

structure shown in Fig. 1. The plasmon modes can be clearly seen in Fig. 6 where our

results are presented as density plots. These results illustrate the plasmon mode for a pair

of gapless graphene layers with one of them serving as a protective layer on top and the other

embedded within a medium of dielectric constant εb = 2.4. We have chosen an encapsulating

dielectric material with dielectric function ε1(ω). The plot in the left panel of Fig. 6 shows

the plasmon spectrum in the absence of phonon effects. In this case, we observe four plasmon
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modes in Fig. 6(a), two of which originate from the origin and are due to the 2D plasmon

modes (ω ∼ q
1/2
‖ ) of free-standing graphene. The remaining two have frequencies which are

shifted by a depolarization from the bulk plasma frequency ωp of the pair of encapsulating

dielectric materials. However, Fig. 6(b) shows the plasmon excitations due to plasmon

phonon interaction. In Fig. 6(b), we observe two additional plasmon branches along with

the four plasmon modes in Fig. 6(a). These two new plasmon modes are the result of

longitudinal and transverse optical phonon modes which couple with the graphene plasmon

mode. In both Figs. 6(a) and (b), the plasmon modes get Landau damped as soon as

they enter the single-particle excitation region(light blue). Sharp boundaries could be seen

defining these regions in the figure.

B. Plasma Excitations for gapped graphene

In Fig. 7, we present our results which show the influence on the plasmon mode dis-

persion arising from lattice vibrations in the substrate for the structure shown in Fig.

1 when the used graphene layers have an energy band gap described by the parameter

∆ = 0.3, 0.6, 0.9~ωp. The figures in the left panel show two pairs of plasmon modes: one

pair arising from the origin and the other pair near the bulk plasmon frequency whereas the

figures on the right panel show three pairs of plasmon modes. This additional pair which

lies in between the other upper and lower plasmon modes is a direct result of the plasmon

phonon coupling. For comparison with Fig. 6, we chose the same values of parameters for

the transverse and longitudinal optical phonon frequencies ωLO and ωTO, the static back-

ground dielectric constant εb, the doping level as well as the thickness of the encapsulating

materials. The density plots in both left and right panels show that due to the introduction

of the band gap, the particle-hole excitation region splits into two parts creating a region

where plasmon mode can be excited as damping- free self-sustained charge density oscilla-

tions. This region widens with the increase of the band gap leading to expanded regions

for the charge density to oscillate without Landau damping. Due to increasing band gap,

the members from each pair of plasmon mode group begin to merge at larger wave vector

corresponding to short-range coupling.
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FIG. 7: (Color online) Plasmon excitation spectra for gapped graphene. In the left panel Fig (a),

(c) and (e), the plasmon-phonon coupling is neglected. In right panel, Fig. (b), (d) and (f), the

plasmon-phonon interaction is included.

C. Plasma Excitations for strained graphene

We have carried out additional calculations to examine the effect due to strain on the

plasmon mode dispersion of graphene layers. In Fig. 8, we have presented our numerical
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FIG. 8: (Color online) Plasmon excitation spectra for graphene showing the effect of strain and

phonon vibration on the plasmon dispersion with one layer of graphene as a protective layer and

the other layer of graphene sheet encapsulated in between dielectric materials. Panel (a) shows the

effect due to coupling of plasmons with phonons when gapless graphene is considered. Panel (b)

shows the coupling of plasmon with phonon when the gapless graphene is under strain.

results to illustrate the strain effect in the presence of plasmon phonon coupling for the given

heterostructure shown in Fig. 1. The left panel of Fig. 8 shows the plasmon mode in the

absence of strain whereas the right panel displays cases in the presence of strain. No great

difference can be observed between these two panels because the application of a small strain
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does not affect the energy band structure noticeably. A small distinction between them is on

the upper most pair of plasmon modes. Here, we see the two modes are not in contact with

each other under no strain but they come closer under a finite strain. In a recent paper,65 a

generalization of the early surface plasmon theory [see Ref. 66], was presented by including

a surface current67 flowing within either a graphene or a Boron-Nitride monolayer on the

surface of a bulk dielectric. Although the retarded interaction between the incident light

and electrons in a monolayer was employed for calculating surface confinement of the TE

mode of light and its propagation loss, the important nonlocal dynamics involved in optical

response of electrons68 was neglected. Under strain, we anticipate that this mode will be

affected.

D. Contributions to Energy Loss

In Sec. II, we demonstrated that the power loss for a beam of charged particles

moving with velocity v at a distance z0 from a surface may be expressed in terms of

Im g
(
q‖, ω = q‖ · v

)
as given in Eq. (8). Then, subsequently, in Eq. (17), we expressed

the surface response function in fractional form as g(q‖, ω) = N (q‖, ω)/D(q‖, ω). We may

separate N = NR + iNI and D = DR + iDI into their real and imaginary parts so that

Im g
(
q‖, ω

)
= NI

(
DR

D2
R +D2

I

)
−NR

(
DI

D2
R +D2

I

)
. (42)

Given the form in Eq. (42), there is a contribution to the integrand in Eq. (8) whenever we

have either (a) DI(q‖, ω = q‖ · v) 6= 0 or (b) both DI(q‖, ω = q‖ · v) and DR(q‖, ω = q‖ · v)

are simultaneously equal to zero. When case (a) holds, we have Landau damping and the

particle-hole region contributes to the energy loss. In case (b), the dispersion equation for

plasmon excitations is satisfied in the hybrid structure and the plasmon modes contribute.

In this case, we use the Dirac identity so that

Im g
(
q‖,Ωp

)
= πNI

δ(Ωp − q‖ · v)

|∂DI/∂ω|
− πNR

δ(Ωp − q‖ · v)

|∂DR/∂ω|
(43)

where the derivative here is to be evaluated at the plasmon frequency Ωp. In the case, when

a graphene layer is free-standing and embedded in a dielectric medium, the power loss is

simplified for a high-speed charged particle and given by
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FIG. 9: (Color online) The plots show the energy loss rate in units of Z∗e2k2F vF /(8ε0) due to (a)

paricle hole mode and (b) the plasmon excitations for a freely suspended strained and unstrained

graphene.

dW

dt
=
Z∗e2

8ε0

∫ ∞
0

dq‖

∫ π/2

0

dα e−2q‖z0

√
KB(θ, φ)

∣∣√KB(θ, φ)q‖ + q‖v cosα
∣∣

√
q‖v cosα

δ

(
1− KB(θ, φ)

q‖v2 cos2 α

)
.

(44)

Making use of Eq.(̇8) and the surface response function in Eq. (17) for free-standing

graphene, we have numerically calculated the contributions to the rate of loss of energy

for a charged particle, moving parallel over the graphene sheet, due separately to single-

particle excitations and the plasmon modes. Our results shown in Fig. 9 simply present

the variation of the rate of loss of energy as a function of the impinging particle velocity

for a chosen height z0 = 0.5k−1F . Comparison of plots for strained and unstrained graphene

shows that the results are qualitatively similar over the exhibited velocity range. However,

a distinct difference is observed in their magnitudes. At low velocities of a charged particle,

the energy loss rates for both strained and unstrained graphene are almost equal. But, at

high velocities of an incoming charged particle, the energy loss rate due to particle-holes

and plasmon modes is enhanced for strained than for unstrained graphene. The energy loss

24



0.2

0
0.2

0

6

3
0.165

6

3
0.165

Vsc

z0kF r||kF

(a) (b)
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function of (a) height z0 and (b) r‖ respectively for strained and unstrained graphene monolayers

for the chosen parameters in the figure.

rate due to particle-hole modes is increased first and eventually levels off as the value of the

charged particle velocity is raised. On the other hand, the energy loss rate due to plasmon

excitations for either strained or unstrained graphene remains negligible at small velocity

and beyond a critical value it increases rapidly to a maximum after which it starts decreasing

continuously as the particle velocity becomes larger and larger. Overall, the energy loss rate

for strained graphene is greater than for unstrained graphene.

E. Screened Impurity potential

Starting with Eq. (5), we obtain the static screening of the potential on the surface at

z = 0 due to an impurity with charge Z∗0e located at distance z0 above the surface of the

hybrid structure shown in Fig. 1. We have

φ(r‖, ω = 0) =
Z∗0e

2πε0

∫ ∞
0

dq‖

∫ 2π

0

dθ eiq‖r‖ cos θ
[
1− g(q‖, ω = 0)

]
e−q‖z0 . (45)
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By employing Eq. (45), we have computed the screened impurity potential Vsc for both

strained and unstrained monolayer graphene. In Fig. 10(a), the screened potential decays

exponentially with increasing height z0. This behavior applies for both strained and un-

strained graphene. However, we note that there is a significant variation in the screened

potential when the charge is put closer to the graphene sheet. In Fig. 10(b), we have calcu-

lated the screened potential as a function of the in-plane variable r‖ in units of the inverse

Fermi wave number for both strained and unstrained graphene. The plot shows the occur-

rence of Friedel oscillations with the potential being shifted upward when strain is applied.

We also notice that there is no significant change in the screened potential for strained and

unstrained graphene as long as the value of r‖ is large.

VII. CONCLUDING REMARKS

We have determined an expression for the rate of loss of energy for a beam of charged

particles traveling parallel to the surface of a hybrid structure explicitly in terms of its surface

response function. The formalism covers the case when the dependence of the response

function on the in-plane wave vector is anisotropic. Specifically, we apply our formalism to

investigate uniformly strained graphene both analytically and numerically. We report on

the low-energy plasma excitations using an effective Dirac Hamiltonian which reveals the

absence of graphene trigonal symmetry at the lowest order for weak strain. In particular,

we investigate and report results for the effect due to the deformation of the Dirac cone,

the band gap, doping level, thickness of the substrate, screening due to dielectric material

and the effect of plasmon-phonon coupling on the plasmon modes, energy loss and static

shielding of an impurity located either just outside the surface of the hybrid structure or

embedded inside it. The versatility of our calculated results is that it governs an extended

range of applications for investigating impurity shielding, power loss of impinging charged

particles as well as the charge density oscillations for a hybrid structure such as the one

depicted in Fig. 1. Strained graphene may be successfully substituted by alternative 2D

materials having planar or buckled structures with lattice asymmetry. With the use of our

procedure, a wide variety of stacking arrangements may also be adapted.
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