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The motion of electron wavepackets in the Dirac semimetals A3Bi (A=Na,K,Rb) is studied in
a semiclassical approximation. Because of the two-fold degeneracy of the Dirac points and a
momentum-dependent gap term in the low-energy Hamiltonian, the associated Berry curvature
is non-Abelian. In the presence of background electromagnetic fields, the latter leads to a splitting
of trajectories for the wavepackets that originate from different Dirac points and chiral sectors.
The nature of the splitting strongly depends on the background fields as well as the initial chiral
composition of the wavepackets. In parallel electric and magnetic fields, while a well-pronounced
valley splitting is achieved for any chirality composition, the chirality separation takes place pre-
dominantly for the initially polarized states. On the other hand, in perpendicular electric and
magnetic fields, there are clear deviations from the conventional Abelian trajectories, albeit without
a well-pronounced valley splitting.

I. INTRODUCTION

Dirac and Weyl semimetals are condensed matter materials whose low-energy excitations are described by the Dirac
and Weyl equations, respectively. Generically, the corresponding materials have a band structure where the valence
and conduction bands touch at isolated points (i.e., the Dirac points and Weyl nodes, respectively). Theoretically,
A3Bi (A=Na,K,Rb) and Cd3As2 were the first compounds predicted to be Dirac semimetals with topologically pro-
tected Dirac points1,2. The existence of Dirac points in Cd3As2 and Na3Bi was soon confirmed experimentally via
the angle-resolved photoemission spectroscopy (ARPES) in Refs.3–5. Weyl semimetals were first predicted in py-
rochlore iridates6, but they were discovered experimentally in TaAs, TaP, NbAs, and NbP7–16 (for recent reviews, see
Refs.17–19).
As it is well understood now, Weyl semimetals represent a topologically nontrivial phase of matter. Indeed, Weyl

nodes are the monopoles of the Berry curvature20 whose topological charges are directly connected with their chirality.
According to the Nielsen–Ninomiya theorem21,22, Weyl nodes in crystals always come in pairs of opposite chirality.
The corresponding nodes can be separated in momentum and/or energy. Such a nodal structure is also responsible
for the existence of topologically protected surface states, known as the Fermi arcs6,23,24.
Unlike the Weyl nodes, the Dirac points are usually assumed to be topologically trivial because they are composed

from pairs of overlapping Weyl nodes of opposite chirality. By using numerical calculations1,2, however, it was found
that the Dirac semimetals Cd3As2 and A3Bi (A=Na,K,Rb) possess the Fermi arcs too. This was later confirmed
experimentally by ARPES measurements25 and observation of special surface-bulk quantum oscillations in transport
measurements26,27. It can be argued28–34 that the physical reason for the nontrivial topological properties of A3Bi
(A=Na,K,Rb) is a Z2 symmetry that such materials possess. In the classification scheme proposed in Ref.28, such
Dirac semimetals belong to the second class in which pairs of Dirac points are created by the inversion of two bands.
This is in contrast to the Dirac semimetals in the first class that possess a single Dirac point at a time-reversal
(TR) invariant momentum. As noted in Ref.34, the presence of the Z2 symmetry leads to the Z2 anomaly that
could affects transport properties. The latter were recently discussed in Ref.35 using the hydrodynamic description.
A complimentary view at the Z2 symmetry in A3Bi (A=Na,K,Rb) was presented in Refs.29,30, where we argued
that these compounds are, in fact, hidden Z2 Weyl semimetals. The discrete symmetry of the low-energy effective
Hamiltonian allows one to split all quasiparticle states into two separate sectors, each describing a Weyl semimetal
with a pair of Weyl nodes and a broken TR symmetry. Since the Z2 symmetry interchanges states from these two
sectors, the TR symmetry is preserved in the complete theory.
The degeneracy of opposite chirality states in the Dirac semimetals and the presence of the Z2 symmetry are

expected to have profound consequences. The fact that the Berry curvature becomes a matrix with a non-Abelian
structure36 could manifest itself, for example, in unusual transport properties of the Dirac semimetals. The latter
could be studied, for example, by employing the chiral kinetic theory37–40 generalized to the case of degenerate
states41–44.
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The main motivation for this study is to investigate how the momentum-dependent gap term in the Hamiltonian
and the non-Abelian nature of the Berry curvature affect the quasiclassical properties of electron wavepackets in Z2

Weyl semimetals. In particular, we will investigate the propagation of wavepackets in external electric and magnetic
fields. Note that, in the absence of the non-Abelian corrections to the Berry curvature, the semiclassical motion of
chiral quasiparticles was already considered in Ref.45, where the (pseudo-)magnetic lens was proposed. It was found
that while the primary contribution to the spatial splitting of quasiparticles of different chirality is related to the
interplay of magnetic and strain-induced pseudomagnetic fields, the Abelian Berry curvature plays also an important,
albeit auxiliary, role. In this study, we investigate how the trajectories of the wavepackets change due to the presence
of the off-diagonal gap term and the non-Abelian nature of the Berry curvature. Of particular interest is the question
whether the splitting of the wavepackets from different Dirac points (or, equivalently, valleys) and different chiral
sectors can be achieved without a background pseudomagnetic field.
The paper is organized as follows. In Sec. II, the low-energy effective model of the Dirac semimetals A3Bi

(A=Na,K,Rb) and its linearized version are introduced. We present the semiclassical equations of motion with
the non-Abelian corrections in Sec. III. The motion of the electron wavepackets in external electric and magnetic
fields is investigated in Sec. IV. The results are discussed and summarized in Sec. V. The expressions for the Berry
connection, the Berry curvature, and the magnetic moment of wavepackets are given in Appendix A.

II. MODEL

In this section, we describe the low-energy model of the Dirac semimetals A3Bi (A=Na,K,Rb) as well as its linearized
version and underlying symmetries. The corresponding quasiparticle Hamiltonian derived in Ref.1 reads

H(k) = ǫ0(k)I4 +H4×4, (1)

where I4 is the 4× 4 unit matrix, ǫ0(k) = C0 + C1k
2
z + C2k

2
⊥, k⊥ =

√

k2x + k2y, and

H4×4 =







M(k) vF k+ 0 ∆∗(k)
vF k− −M(k) ∆∗(k) 0
0 ∆(k) M(k) −vFk−

∆(k) 0 −vFk+ −M(k)






. (2)

The matrix Hamiltonian H4×4 is naturally split into 2 × 2 blocks. The diagonal blocks are defined in terms of the
quadratic function M(k) = M0 − M1k

2
z − M2k

2
⊥ and vF k±, where k± = kx ± iky. The off-diagonal blocks are

determined by the function ∆(k) = αkzk
2
+ that plays a crucial role in this study and whose physical meaning will be

discussed later.
The numerical values of parameters in Hamiltonian (1) can be determined by fitting the energy spectrum obtained

in the first-principles calculations1 and equal

C0 = −0.06382 eV, C1 = 8.7536 eV Å
2
, C2 = −8.4008 eV Å

2
,

M0 = −0.08686 eV, M1 = −10.6424 eV Å
2
, M2 = −10.3610 eV Å

2
,

vF = 2.4598 eV Å.

(3)

Note that the Fermi velocity vF is given in energy units. Since no specific value for α, which determines the magnitude
of the off-diagonal terms, was quoted in Ref.1, we will treat it as a free, albeit small, parameter below. In addition
to the model parameters above, we will also need the transport scattering time τ . For the purposes of this study, we
use τ ≈ 10−10 s, which is an estimated value of the scattering time in Cd3As2

46.
The energy eigenvalues of Hamiltonian (1) are given by the following expression:

ǫ(k) = ǫ0(k) ±
√

M2(k) + v2F k
2
⊥ + |∆(k)|2. (4)

As is clear, a nonzero ǫ0(k) introduces an asymmetry between the positive (electrons) and negative (holes) energy

branches and, thus, breaks the particle-hole symmetry. The square root term vanishes at the two Dirac points, k
(±)
0 =

(0, 0,±√
m), where

√
m =

√

M0/M1. By using the low-energy parameters in Eq. (3), we find that
√
m ≈ 0.0903 Å

−1
.

The latter defines the characteristic momentum scale in the low-energy Hamiltonian. Thus, by equating the last
two terms under the square root in Eq. (4) and setting kz = k⊥ =

√
m, we can estimate the characteristic value of

parameter α, i.e.,

α∗ =
vF
m

≈ 301.384 eVÅ
3
. (5)
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In order to get a better insight into the role of the off-diagonal term in the low-energy Hamiltonian, we plot the
corresponding energy spectra for α = 0 and α = 10α∗ in the two panels of Fig. 1. As expected from Eq. (4), there
are two Dirac points well separated in kz. The term ∆(k) plays the role of a momentum-dependent gap function
that mixes eigenstates of opposite chirality. While ∆(k) can profoundly change the spectrum of quasiparticles for
sufficiently large k⊥, it vanishes at the Dirac points. Thus, the upper and lower 2× 2 blocks of Hamiltonian (2) still
describe quasiparticle states of opposite chirality in a sufficiently close vicinity of the Dirac points, although, strictly
speaking, the notion of chirality is rigorous only at α = 0.
As discussed in detail in Refs.29,30, the actual form of function ∆(k) is consistent with the discrete Z2 symme-

try, implying that the Dirac semimetals A3Bi (A=Na,K,Rb) are effectively the hidden Z2 Weyl semimetals. The
quasiparticle states of these materials can be naturally split by using the ud (up-down) symmetry29

Uχ = Πkz→−kz

(

I2 0
0 −I2

)

, (6)

where Πkz→−kz
is the operator that changes the sign of the z component of momentum and I2 is the 2×2 unit matrix.

The TR symmetry is broken in each of the Z2 sectors that signifies the presence of the Weyl semimetal phase with
the Weyl nodes separated by 2

√
m. Since the chirality of the nodes in different Z2 sectors is opposite, the complete

model preserves the TR symmetry and has two Dirac points.

FIG. 1: The energy spectrum of the low-energy model (1) at α = 0 (left panel) and α = 10α∗ (right panel), where α∗ is the
characteristic value defined in Eq. (5).

In order to simplify the calculations, we will omit the term ǫ0(k) and linearize Hamiltonian (1) in the vicinity of the

Dirac points k
(±)
0 . By expanding M(k) to the linear order in deviations δk = k − k

(±)
0 and performing the unitary

transformation with Ux = diag(σx, I2), we obtain

H
(+)
lin (k̃) =





vF

(

k̃xσx + k̃yσy − k̃zσz

)

α
(√

m+ k̃z

)

k̃2−

α
(√

m+ k̃z

)

k̃2+ −vF
(

k̃xσx + k̃yσy − k̃zσz

)



 (7)

for the Dirac point in the vicinity of k
(+)
0 and

H
(−)
lin (k̃) =





vF (k̃ · σ) −α
(√

m− k̃z

)

k̃2−

−α
(√

m− k̃z

)

k̃2+ −vF (k̃ · σ)



 (8)

for the Dirac point in the vicinity of k
(−)
0 . Here σ are the Pauli matrices and k̃ = (kx, ky, 2

√
M0M1δkz/vF ). In

the model at hand 2
√
M0M1 ≈ 0.78vF and, consequently, the quasiparticle energy spectra near the Dirac points can
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be approximately considered as isotropic k̃ = (kx, ky, δkz). The corresponding positive branches of the energies for
Hamiltonians (7) and (8) are given by

ǫ(±)(k̃) =

√

v2F k̃
2 + α2

(√
m± k̃z

)2

k4⊥, (9)

where the superscript labels the Dirac points at k
(±)
0 . Note that we keep the k̃z term in the off-diagonal components

in Eqs. (7) and (8) because, as will be clear below, it is relevant for the Berry connection and the magnetic moment,
which contain derivatives with respect to the z component of momentum. Also, this term plays an important role in
determining the wavepacket velocity.
Obviously, the dynamics of quasiparticles can be reliably described in terms of the two independent linearized

Hamiltonians (7) and (8) only for sufficiently small energies and deviations of momentum, |δkz | .
√
m. The constraint

|δkz | .
√
m also ensures that the internode transitions are negligible. In order to obtain the characteristic energy

scales of the low-energy region, we calculate the size of the energy “domes” in the full Hamiltonian (1) at k = 0, see
also Fig. 1. The corresponding values read

ǫ+d(0) = 23.0 meV, ǫ−d(0) = −150.7 meV (10)

for positive and negative energies, respectively. Without the term ǫ0(k), we have

ǫ+d(0)
∣

∣

ǫ0=0
= −ǫ−d(0)

∣

∣

ǫ0=0
= 86.9 meV. (11)

In order to simplify our notations, in the following we assume that the momentum k is measured from the corresponding
Dirac points, i.e., we replace δkz with kz.
The energy spectrum (9) at each Dirac point is doubly degenerate in energy with the corresponding wave functions

given by

ψ
(±)
+,k =

vFk⊥
√

[

ǫ(±)(k)± vF kz
]2

+ v2Fk
2
⊥ + α2 (kz ±

√
m)

2
k2⊥











1
ǫ(±)(k)±vF kz

vF k−

0
α(kz±

√
m)k2

+

vF k−











, (12)

ψ
(±)
−,k =

vFk⊥
√

[

ǫ(±)(k)∓ vF kz
]2

+ v2Fk
2
⊥ + α2 (kz ±

√
m)

2
k2⊥











0
α(kz±

√
m)k2

−

vF k−

1

− ǫ(±)(k)∓vF kz

vF k−











. (13)

Here the upper index corresponds to the Dirac points at k
(±)
0 , which are described by the linearized Hamiltonians (7)

and (8), respectively. As we will see below, this degeneracy is responsible for the non-Abelian nature of the Berry
curvature in the Dirac semimetals A3Bi (A=Na,K,Rb). It also implies that the semiclassical equations of motion for a
degenerate case41–44 should be used. In order to describe this degeneracy, we introduce the following transformation
that can be viewed as an analogue of the discrete chiral symmetry:

Γ5 = Πα→−α

(

I2 0
0 −I2

)

. (14)

Note that Γ5 is not a true symmetry because it does not commute with the linearized Hamiltonians (7) and (8). The

wave functions ψ
(±)
+,k and ψ

(±)
−,k are eigenstates of Γ5, i.e., Γ5ψ

(±)
+,k = ψ

(±)
+,k and Γ5ψ

(±)
−,k = −ψ(±)

−,k and describe the states
with the positive and negative chirality, respectively, in the limit α → 0. In addition, the positive branch of the band
energy for the linearized Hamiltonians (7) and (8) is

ǫ(±)(k) =

√

v2Fk
2 + α2

(√
m± kz

)2
k4⊥ ≈ vF k +O(α2). (15)

Henceforth, we will consider only the electron wavepackets corresponding to positive energies.
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III. NON-ABELIAN CORRECTIONS TO THE EQUATIONS OF MOTION

In this section, we consider the electron wavepackets in the Z2 Weyl semimetals and present the corresponding
equations of motion. Since we treat the Dirac points as independent and, consequently, there are no internode mixing
terms, the superscript ± for all quantities will be omitted in this section. An electron wavepacket centered at r(t)
and q(t) is defined as a superposition of the Bloch states φn,k = eikrψn,k, i.e.,

W =
∑

n=±

∫

dk

(2π)3
a(t,k)ηn(t,k)φn,k. (16)

Here n = ± denotes the degenerate chiral states, a(t,k) is a normalized distribution centered at r(t) and q(t). Finally,
ηn(t,k) denotes the partial contributions or weights of the degenerate states, satisfying the normalization condition
∑

n=± |ηn(t,k)|2 = 1.
As is well known, the nontrivial topological properties of Weyl semimetals are captured by the monopole-like Berry

curvature20 at the Weyl nodes. Because of the additional Γ5-chirality degree of freedom at each Dirac point in the
A3Bi (A=Na,K,Rb) semimetals, the corresponding Berry connection is a 2× 2 matrix. Its elements are defined by

Anm(q) = − i

2

(

ψ†
n∂qψm,q − ψ†

m∂qψn,q

)

. (17)

The explicit expressions for Anm are given by Eqs. (A1)–(A4) in Appendix A. (Note that the off-diagonal components
of Anm vanish when α = 0.) The Berry curvature has a non-Abelian structure, i.e.,

Ωnm(q) = − i

~

∑

l=±
[(Dq)nl × (Dq)lm] =

1

~
[∂q ×Anm(q)] +

i

~

∑

l=±
[Anl(q) ×Alm(q)] , (18)

where (Dq)nl = ∂qδnl + iAnl(q) is the covariant derivative. The components of Ωnm(q) are given by Eqs. (A5)–(A8)
in Appendix A. The semiclassical Hamiltonian is defined by

Hlm(r,q) = [ǫ(q)− eϕ(r)] δlm + (Mlm(q) ·B) (19)

and contains the band, electrostatic, as well as the magnetization energy determined by the magnetic moment of the
wavepacket, i.e.,

Mnm(q) = i
e

2~c

[

(∂qψ
†
n,q)× {H(q)− ǫ(q)I2} (∂qψm,q)

]

. (20)

Here H(q) is given by H
(±)
lin (q) in Eqs. (7) and (8) for the Dirac points at k

(±)
0 , respectively, and the band energy

ǫ(q) is defined by Eq. (9). The explicit expressions for the components of the magnetic moment (20) are given by
Eqs. (A9)–(A12) in Appendix A.
The equations of motion for the non-Abelian wavepacket in constant external electric E and magnetic B fields are

given by42

ṙ = v(q) + ~ [q̇×Ω(q)] , (21)

~q̇ = −eE− e

c
[ṙ×B]− ~q

τ
, (22)

i~ η̇n = [(Mnm(q) ·B) + ~ (q̇ ·Anm(q))] ηm, (23)

where the wavepacket’s velocity is defined by

v(q) =
1

~

∑

n,m,l=±
η†n [(Dq)nl,Hlm(r,q)] ηm =

1

~
∂qǫ(q)

+
1

~

∑

n,m,l=±
η†n {δln [∂q (Mnm(q) ·B)] + i [Anl(q) (Mlm(q) ·B)− (Mnl(q) ·B)Alm(q)]} ηm (24)

and the Berry curvature reads

Ω(q) =
∑

n,m=±
η†nΩnm(q)ηm. (25)
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It is worth noting that the non-Abelian equations of motion (21)–(23) differ from those for Abelian wavepackets by
the presence of an additional equation for the weights of the degenerate states ηn, i.e., Eq. (23). Note also that a
phenomenological dissipative term ~q/τ was introduced in Eq. (22). Physically, it captures the effects of scattering
of the electrons on impurities, defects, and phonons in the relaxation time approximation.
The system of equations (21)–(23) can be rewritten in a more convenient form where all derivatives are grouped on

the left-hand sides, i.e.,

ṙ
[

1− e

c
(Ω ·B)

]

= v − e [E×Ω]− e

c
B (Ω · v) − ~ [q×Ω]

τ
, (26)

~q̇
[

1− e

c
(Ω ·B)

]

= F, (27)

i~ η̇n

[

1− e

c
(Ω ·B)

]

=
∑

m=±

{

(F ·Anm) + (Mnm ·B)
[

1− e

c
(Ω ·B)

]}

ηm, (28)

where we used the following the short-hand notation:

F = −eE− e

c
[v ×B] +

e2

c
Ω (E ·B)− ~q

τ

[

1 +
e

c
(Ω ·B)

]

+
e~Ω

cτ
(q ·B) . (29)

For simplicity of presentation, here we omitted the arguments of Ω, v, Mnm, and Anm. As is easy to see, the presence
of the non-Abelian corrections complicates significantly the equations of motion. As a result, the latter can be solved
only numerically. The corresponding solutions for the cases of perpendicular and parallel electric and magnetic fields
are discussed in the next section.

IV. WAVEPACKETS MOTION

As discussed in the previous section, the time evolution of the coordinates, momenta, and partial weights of the
wavepackets is described by Eqs. (26), (27), and (28). The corresponding equations should be also supplemented by
the initial conditions. In view of the translation invariance of the problem, we can set without the loss of generality
the initial coordinates of the wavepacket to be at the origin of the coordinate system, i.e.,

r(t = 0) = 0. (30)

As for the initial value of the wavepacket’s momentum, it is convenient to match it with the steady-state value
determined by the electric field in the relaxation time approximation, i.e.,

q(t = 0) = −eτE
~
. (31)

Concerning the initial conditions for the partial weights η±, it is natural to assume that the wavepackets are non-chiral
with respect to the Γ5 transformation (i.e., the probabilities to find an electron in the positive or negative Γ5-chirality
states are equal), i.e.,

η+(t = 0) = η−(t = 0) =
1√
2
. (32)

For the sake of completeness, however, in Subsec. IVC we will also consider the case of the initially polarized
wavepackets with

η+(t = 0) = 1, η−(t = 0) = 0, (33)

η+(t = 0) = 0, η−(t = 0) = 1. (34)

Let us begin our consideration with the case when the background magnetic field is absent, B = 0. As is easy to
see, the structure of the equations of motion (26), (27), and (28) drastically simplifies, i.e.,

ṙ = v − e [E×Ω]− ~ [q×Ω]

τ
, (35)

~q̇ = −eE− ~q

τ
, (36)

i~ η̇n = −
∑

m=±

([

eE+
~q

τ

]

·Anm

)

ηm. (37)
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FIG. 2: The positions r(±) of the wavepackets as a function of time t (left panel) and the splitting ∆r = r(+)−r(−) between the
coordinates of the wavepackets from different Dirac points (right panel). The red, blue, and green lines correspond to the x, y,
and z components, respectively. The solid and dashed lines represent the results for the wavepackets described by Hamiltonians
(7) and (8), respectively. We used α = 0.5α∗, E = Eŷ, and B = Bŷ, where E = 200 V/m and B = 10 G.

For the initial boundary conditions in Eqs. (30) and (31), we obtain the following analytical solution:

r(t) = vt, (38)

q(t) = −τeE
~
, (39)

ηn(t) = ηn(0), (40)

which describes the inertial motion of wavepackets with no mixing of the Γ5-chirality states. It is worth noting that
this result is valid for both full and linearized Hamiltonians given in Eqs. (1) and (7)–(8), respectively.
As we will see in the next two subsections, the dynamics of wavepackets becomes considerably more complicated

when an external magnetic field is present. The cases of parallel and perpendicular electromagnetic fields are studied
in the next two subsections.

A. Parallel electric and magnetic fields

In this subsection, we study the motion of wavepackets in parallel electric and magnetic fields when the initial chiral
weights are equal, i.e., η+(t = 0) = η−(t = 0) = 1/

√
2. In order to solve the equations of motion numerically, we set

E = Eŷ and B = Bŷ, where E = 200 V/m and B = 10 G.
The position vectors r(±) of the wavepackets from different valleys are shown in Fig. 2. We find that the momentum-

dependent chirality-mixing leads to a noticeable splitting of the wavepackets in the x and z directions that increases
with time. At the same time, the splitting in the y direction is negligible. We also find that the non-Abelian terms
give rise to periodic oscillations of the wavepackets around their overall linear trajectories. As we argue below, the
physical origin of such oscillations is connected with the precession of the magnetic moment.
Further, we find that the momenta of wavepackets q(±) evolve similarly to the coordinates. In particular, there is a

negligible relative splitting in the y components of momenta, but the x and z components of q(±) oscillate with time.
Unlike the coordinates, however, the average splitting of the x and z components of momenta does not increase with
time. In this connection, we should remark that the wavepacket energies never exceed the threshold value (10) and,
thus, the numerical analysis remains within the range of applicability of the low-energy theory.
The trajectories of the wavepackets and the probabilities |η±|2 for the wavepackets from different valleys to be

in certain Γ5-chirality states are presented in the left and right panels of Fig. 3, respectively. The projections of
trajectories onto the x-y, x-z, and y-z planes are shown in the three panels of Fig. 4. The timescale is set to
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FIG. 3: Left panel: The trajectories of the wavepackets from different Dirac points for t ≤ tmax = 5 ns. The red and blue
lines represent the wavepackets described by Hamiltonians (7) and (8) at α = 0.5α∗, respectively. The black line corresponds
to the case α = 0, where the wavepackets do not split. Right panel: The time dependence of the probabilities |η±|2 to
find the wavepackets in certain Γ5-chirality states. The red and blue lines correspond to the the wavepackets described by
Hamiltonians (7) and (8). The solid and dashed lines describe |η+|

2 and |η−|2, respectively. We used E = Eŷ and B = Bŷ,
where E = 200 V/m and B = 10 G.

t ≤ tmax = 5 ns. In agreement with the results in Fig. 2, the trajectories for the wavepackets from different Dirac
points are clearly separated. The origin of the splitting of the wavepackets from different valleys in the x and z
directions, seen Figs. 3 and 4, can be traced back to the nontrivial structure of the low-energy Hamiltonians (7) and
(8). It is remarkable that the magnitude of the average splitting linearly increases with time. By making use of this
fact, we estimate that the spatial separation can reach a few micrometers for a centimeter-size crystal, provided the
latter is sufficiently clean and the quasiparticle mean free path is sufficiently long. Such a splitting could provide an
observational signature for the nontrivial wavepackets dynamics in the Dirac semimetals A3Bi (A=Na,K,Rb). One
should note, however, that the splitting is largely washed away in strong magnetic fields (e.g., B = 100 G) when the
Lorentz force starts to dominate and causes the trajectories to overlap. [Note that the separation of the wavepackets
can be resolved experimentally only on the spatial scales larger than wavepacket’s characteristic sizes, i.e., λ & 2π/k.]
The small spiral-like features on top of the linear separation in Fig. 4 (see also the left panel in Fig. 3) can be traced

back to the oscillation of the partial weights η±. This is also confirmed by the results for |η±|2 in the right panel of
Fig. 3, which demonstrate that the propagation of the wavepackets is accompanied by a weakly oscillating splitting of
the Γ5-chirality. From a physics viewpoint, these oscillations are related to the precession of the magnetic moment of
the wavepacket. They are determined by the non-Abelian nature of the Berry curvature and the nontrivial structure
of the magnetic moment. From the observational viewpoint, however, these could be very difficult to detect. Indeed,
while the oscillations could be made larger by increasing the magnetic field, the valley separation becomes weak in
such a regime.
Before proceeding to the case of the perpendicular electric and magnetic fields, let us provide some underlying

reasons for the spatial valley separation of wavepackets. Because of a rather complicated structure of Eqs. (26), (27),
and (28), we present only a very rough qualitative description. To start with, we assume that the changes of the
partial weights are negligible, i.e., η±(t) = const. In such a case, the spiral-like motion on top of the mostly linear
splitting disappears. Then, it is easy to check that the remaining spatial separation is driven primarily by the velocity
term in Eq. (26), i.e., the first term on the right-hand side. In fact, the separation in both x and z directions is related
to the same z component of velocity v. While the effect of vz on the motion in the z direction is obvious, the splitting
in the x direction is achieved indirectly. In particular, the x component of the velocity is mainly determined the
corresponding component of the momentum, which, in turn, is generated by the Lorentz force evzBy/c in Eq. (27),
i.e., the second term in expression (29). Obviously, such a splitting is induced only when B 6= 0. However, the
presence of nonzero α in the energy dispersion relation (9) plays a key role as well: it gives a nonzero vz everywhere
away from the Dirac points and makes an efficient spatial separation of the wavepackets possible. Thus, the valley
splitting of wavepackets is in large part connected with the special form of the momentum-dependent chirality-mixing
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FIG. 4: The projections of the wavepacket trajectories onto the following planes: x-y (panel a), x-z (panel b), and y-z (panel
c). The red and blue lines correspond to the wavepackets described by Hamiltonians (7) and (8), respectively. We used
t ≤ tmax = 5 ns, α = 0.5α∗, E = Eŷ, and B = Bŷ, where E = 200 V/m and B = 10 G.

term B(q) in the low-energy Hamiltonian.

B. Perpendicular electric and magnetic fields

In this subsection, we consider the motion of the wavepackets in perpendicular electric and magnetic fields. We use
the same magnitudes of the electric and magnetic fields as in the previous subsection, but the magnetic field is now
in the z direction, i.e., B = Bẑ. Again, α = 0.5α∗, which is sufficiently small to ensure that the relative contribution
of the off-diagonal terms, quantified by B(q)/(vF q), would remains small for the timescales used in our numerical
calculations.
Let us note in passing also that, because of the off-diagonal gap term ∝ α

√
mk2±, the dynamics for the two possible

orientations of the magnetic field, i.e., B = Bẑ and B = Bx̂, are not equivalent. In fact, for sufficiently large
timescales, the semiclassical approximation fails in the latter case. Thus, in the present study, we will not discuss it.
The evolution of the positions r(±) for the wavepackets from different Dirac points (valleys) is shown in Fig. 5.

As expected in the perpendicular electric and magnetic fields, the coordinates of the wavepackets oscillate in the
plane normal to B (i.e., the x and y coordinates), albeit have a nonharmonic pattern. We also find that the non-
Abelian terms lead to the oscillation-like motion of the wavepackets along the z axis, as well as to a small splitting
of the trajectories of the wavepackets from different Dirac points (see the right panel in Fig. 5). We checked that the
wavepacket momenta oscillate too and split slightly when α 6= 0. Remarkably, however, the z components of momenta
vanish. We conclude, therefore, that the slow motion of the wavepackets in the z direction is caused exclusively by
the non-Abelian effects. In all cases presented, we verified that the energies of the wavepackets remain sufficiently
small to justify the use of the linearized model.
We present the trajectories of the wavepackets and the probabilities |η±|2 to find the wavepackets from different

valleys in certain chiral states in the left and right panels of Fig. 6, respectively. The projections of the wavepacket
trajectories onto the x-y, x-z, and y-z planes are shown in the three panels of Fig. 7. The timescale is set to
t ≤ tmax = 0.35 ns.
As is clear from the results in the left panel of Fig. 6, the non-Abelian corrections lead to rapid oscillations of the

wavepackets in the z direction. Note that while the amplitude of oscillations increases, their period decreases with
time. Such a behavior suggests that the quasiclassical approximation gradually breaks down. The spatial oscillations
of the wavepackets can be traced back to an oscillatory time dependence of the partial weights and disappear if one
enforces constant η±(t). In general, the trajectories of the wavepackets from different Dirac points are asymmetric
with respect to the x-y plane. On the other hand, by taking into account their substantial overlap, see the left
panel of Fig. 6, we think that the valley separation cannot be easily achieved in this case. We checked, however,
that trajectories change qualitatively at sufficiently large magnetic fields and the valley separation in the z direction
becomes possible at least in principle, although its magnitude is estimated to be rather small.
It is interesting to point that, according to the right panel in Fig. 6, the wavepackets from different Dirac points

develop nonzero and opposite in sign Γ5-chirality polarizations. Such polarizations have an interesting oscillatory
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FIG. 5: The positions r(±) of the wavepackets as a function of time t (left panel) and the splitting ∆r = r(+) − r(−) of the
coordinates of the wavepackets from different Dirac points (right panel). The red, blue, and green lines correspond to the x, y,
and z components, respectively. The solid and dashed lines represent the results for the wavepackets described by Hamiltonians
(7) and (8), respectively. We used α = 0.5α∗, E = Eŷ and B = Bẑ, where E = 200 V/m and B = 10 G.

pattern with the absolute values of the partial weights reaching almost constant values at sufficiently large timescales.
In summary, while the valley separation is weak, the deviation of the wavepackets from the x-y plane clearly provides
an evidence for the non-Abelian effects.

C. Motion of wavepackets for chirally polarized initial states

In this subsection, for completeness, we investigate the motion of wavepackets when the initial states are chirally
polarized. We limit ourselves to the two limiting cases given by Eqs. (33) and (34).
For the sake of brevity, we investigate only the most interesting case of parallel electric and magnetic fields. The

corresponding results are shown in Fig. 8 with the projections onto the x-y, x-z, and y-z planes presented in the three
panels of Fig. 9. The timescale is limited to t ≤ tmax = 1 ns. While the probabilities to find wavepackets in states with
fixed chirality are not shown, we checked that they weakly oscillate around their initial values. Just like in the case of
the non-chiral wavepackets discussed in Subsec. IVA, the physical origin of this subdominant oscillating motion can
be traced to the precession of the magnetic moment. As one can easily see from Figs. 8 and 9, the trajectories of the
wavepackets corresponding to different Dirac points but with the same initial Γ5 weights are completely split and the
amplitude of the splitting increases with time. On the other hand, the wavepackets with different initial Γ5 weights
are weakly separated. Therefore, in the case of the nonequal initial weights (33) and (34), there is a sufficiently weak
splitting of the chiral wavepackets on top of the relatively large valley splitting.

V. SUMMARY AND DISCUSSIONS

In this paper, we investigated the dynamics of the electron wavepackets in the Dirac semimetals A3Bi (A=Na,K,Rb).
We showed that due to the hidden Z2 Weyl nature of these materials29, the semiclassical motion of the wavepackets
is qualitatively affected by the non-Abelian contributions when external electric E and magnetic B fields are applied
to the system. These contributions arise due to the degeneracy of the electron states and the chirality-mixing from
∆(k) in the effective Hamiltonian. Unlike the usual mass (gap) term in the Dirac Hamiltonian, ∆(k) is momentum-
dependent and vanishes at the Dirac points. As a result, the gapless energy spectrum is preserved and the chirality
remains well defined in the close vicinity of the Dirac points. The doubly degenerate states near each Dirac point can
be classified with respect to the Γ5 transformation. [Since at small ∆(k) the latter is approximately the same as the
chiral transformation, we use the term chirality to classify the corresponding states.]
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FIG. 7: The projections of the wavepackets trajectories onto the following planes: x-y (panel a), x-z (panel b), and y-z (panel
c). The red solid and blue dashed lines correspond to the wavepackets described by Hamiltonians (7) and (8), respectively. We
used t ≤ tmax = 0.35 ns, α = 0.5α∗, E = Eŷ, and B = Bẑ, where E = 200 V/m and B = 10 G.

It is found that when E ‖ B and the magnetic field is sufficiently small, the trajectories of wavepackets from
different valleys (or, equivalently, Dirac points) are spatially split in the plane perpendicular to the fields. What is
more important, the magnitude of the valley separation grows linearly with time. One might speculate, therefore, that
a substantial splitting could be achieved in macroscopic systems when the quasiparticle mean free path is sufficiently
large. (Note that the propagation of wavepackets depends on the relative phase of the weights whose values, however,
would be difficult to control in experiments.) Interestingly, the non-Abelian corrections allow for a spiral-like motion
of the wavepackets on top of the almost linear separation. As is clear, the physical origin of such spiraling is connected
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FIG. 8: The trajectories of the wavepackets in parallel electric and magnetic fields. The red and blue lines correspond to
the wavepackets for the initial weights (33) described by Hamiltonians (7) and (8), respectively. The green and brown lines
correspond to the wavepackets for the initial weights (34) described by Hamiltonians (7) and (8), respectively. We used
α = 0.5α∗, E = Eŷ and B = Bŷ, where E = 200 V/m and B = 10 G.
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FIG. 9: The projections of the wavepacket trajectories onto the following planes: x-y (panel a), x-z (panel b), and y-z (panel
c). The red solid and blue dashed lines correspond to the wavepackets for the initial weights (33) described by Hamiltonians
(7) and (8), respectively. The green and brown lines correspond to their counterparts with the initial weights (34). We used
α = 0.5α∗, E = Eŷ and B = Bŷ, where E = 200 V/m and B = 10 G.

with the precession of the magnetic moment. The same effect allows also for a small oscillating chirality polarization
of the wavepackets. While the amplitude of the spirals is estimated to be relatively small, the linear splitting of
the trajectories due to the momentum-dependent chirality-mixing term could reach micrometers for centimeter-size
crystals. When the wavepackets are initially chirality polarized, there is a weak splitting of the chiral wavepackets on
top of the well-pronounced valley separation. The former has the same origin as for the nonpolarized wavepackets.
In the case of a strong magnetic field, the Lorentz force dominates that leads to weakly separated trajectories of the
wavepackets from different Dirac points. Therefore, we believe that the setup with the parallel electric and magnetic
fields allows for a spatial splitting of the wavepackets that can be, in principle, tested experimentally.
When the electric and sufficiently weak magnetic fields are perpendicular, the valley separation is negligible for

the equal initial weights of the degenerate chirality states. On the other hand, the non-Abelian corrections lead to a
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well-pronounced oscillating motion of the wavepackets in the direction parallel to the magnetic field. If detected, such
deviations from the usual in-plane motion could provide another signature of the non-Abelian effects. In addition,
there is also a weak chirality polarization of the states from different Dirac points, which, however, is not easily
accessible because the trajectories from different valleys are not well-split. The situation changes at sufficiently large
magnetic fields, when the trajectories from different valleys are separated along the direction of the magnetic field.
However, the separation is nonmonotonic and is estimated to be relatively weak. Therefore, while the case of the
perpendicular electric and magnetic fields contains interesting physics, it might be difficult to realize experimentally.
It is instructive to compare the obtained results with those in Ref.45, where the valley and chirality splitting was

shown to be possible by applying a superposition of magnetic and strain-induced pseudomagnetic fields. In the absence
of the chirality-mixing term ∆(k) and the non-Abelian corrections to the Berry curvature, however, it was critical
to include a pseudomagnetic field. Without the latter, the right- and left-handed beams from different valleys would
overlap and form nonchiral beams that do not correspond to a certain valley. In contrast, as we showed in the study
here, the non-Abelian effects and the gap term can lead to both valley and chirality splittings even in the absence of
a pseudomagnetic field. While the effects are estimated to be rather small, they can be experimentally accessible via
certain local probes.
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Appendix A: Explicit expressions for the Berry connection, the Berry curvature, and the magnetic moment

In this Appendix, we present the explicit expressions for the Berry connection, the Berry curvature, and the
magnetic moment defined in the main text by Eqs. (17), (18), and (20), respectively. Unfortunately, the general form
of the corresponding results is bulky. Therefore, we consider only the linear in α approximation.

Let us start from the Berry connection A
(±)
mn given by Eq. (17). Here the upper index corresponds to the linearized

Hamiltonian given either by Eq. (7) or Eq. (8) in the main text and n,m = ± correspond to the wave functions
defined in the main text by Eqs. (12) and (13), respectively. The explicit expressions for the Berry connection matrix
components are

A
(±)
++ =

(k ± kz)

2k2⊥k
{−ky, kx, 0} , (A1)

A
(±)
+− =

iα (
√
m± kz) k−

2vFk+k⊥k

{

kxkz + 2iky (kz ∓ k) , kykz − 2ikx (kz ∓ k) ,± k2⊥kz
(
√
m± kz)

}

, (A2)

A
(±)
−+ =

(

A
(±)
+−

)†
, (A3)

A
(±)
−− =

(k ∓ kz)

2k2⊥k
{−ky, kx, 0} , (A4)

where k =
√

k2⊥ + k2z , k⊥ =
√

k2x + k2y, vF is the Fermi velocity measured in the energy units,
√
m determines the

separation of the Dirac points in the momentum space, and the parameter α defines the strength of the off-diagonal
terms in Hamiltonians (7) and (8) in the main text. It is worth noting that the z component of the Berry connection

matrix A
(±)
nm vanishes when the dependence on kz is ignored in ∆(k).

Further, we present the results for the Berry curvature matrix Ω
(±)
mn given by Eq. (18) in the main text. Its
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components are

Ω
(±)
++ = ∓ k

2~k3
, (A5)

Ω
(±)
+− =

αk−
2vF~k⊥k+k3

{

−
√
mk2⊥(2kx + iky)∓ 2k2⊥k+kz + kxk(2k

2
⊥ + k2z),

−
√
mk2⊥(2ky − ikx)± 2ik2⊥k+kz + kyk(2k

2
⊥ + k2z),

∓ (
√
m± kz)

2k4x + 2k4y + k4z + k2ykz(3kz ± 2k) + k2x
[

4k2y + kz(3kz ± 2k)
]

k

}

, (A6)

Ω
(±)
−+ =

(

Ω
(±)
+−

)†
, (A7)

Ω
(±)
−− = ± k

2~k3
, (A8)

where ~ is the Planck constant. Finally, the components of the magnetic moment matrix M
(±)
mn given by Eq. (20) in

the main text read

M
(±)
++ = ∓ evFk

2~ck2
=
evFk

c
Ω±

++, (A9)

M
(±)
+− =

eαk−k⊥
2~ck+k2

{

kx
[

k − 2(
√
m± kz)

]

− iky(
√
m± 2kz), ky

[

k − 2(
√
m± kz)

]

+ ikx(
√
m± 2kz),

∓ (
√
m± kz)(k ± 2kz)

}

, (A10)

M
(±)
−+ =

(

M
(±)
+−

)†
, (A11)

M
(±)
−− = ± evFk

2~ck2
=
evFk

c
Ω±

−−. (A12)

Here c denotes the speed of light and e is the absolute value of the electron charge.
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