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Using first-principles calculations and effective model analysis, we demonstrate that the strained
WC-type YN can host an ideal topological semimetal state with an ultra-flat nodal ring in the
absence of spin-orbit coupling. Distinguished from previous nodal line semimetals, the nodal ring in
YN lies in a single plane of the Brillouin zone with an energy variation less than 0.3 meV, i.e., the
nodal ring is flat in both momentum and energy space. Interestingly, by applying a uniaxial strain
along the c axis, one can effectively tune the size of the nodal-ring and even realize a topological phase
transition from nodal-ring semimetals to normal insulators. The nodal ring here is topologically
nontrivial as confirmed by directly calculating the topological invariant and topological drumhead
surface state. Moreover, due to an anisotropic torus Fermi surface and the nontrivial topology, exotic
magnetoresponse effects including anomalous Landau level structures and direction-dependent phase
shifts of quantum oscillations with/without a Berry phase of π can be probed experimentally.

I. INTRODUCTION

Since the remarkable discovery of topological
insulators,1,2 the study of electronic structure topology
of crystalline materials has emerged as a major new
theme in condensed matter physics and material sci-
ence. Recently the focus has shifted towards topological
semimetals. The topological semimetallic states are char-
acterized by band crossing (BC) points or lines between
conduction and valence bands in three-dimensional (3D)
momentum space. The Weyl (Dirac) semimetals have
isolated twofold (fourfold) degenerate BC points near the
Fermi level. While the nodal-line semimetals possess 1D
lines of BC points around the Fermi level. Consequently,
the Fermi surfaces of topological semimetals are distinct
from conventional metals. The topological semimetals
can be further classified into different types by fermi-
ology. For example, type-I Dirac/Weyl semimetals
have a pointlike Fermi surface,3–7 type-II Dirac/Weyl
semimetals possess both electron and hole pockets that
contact at the type-II Dirac/Weyl point.8–12, and type-
III Dirac/Weyl semimetals have a unique line-like Fermi
surface.13 For nodal line semimetals, the classification
is much more complicated. Nodal line semimetals have
been classified into type-I/II based on the band tilting
around the nodal line,14–18 or type-A/B according to the
position and shape of nodal lines.19,20 Due to different
number, distribution and/or connection of nodal lines,
even more complicated nodal structures are formed in
momentum space which lead to various new types of
nodal-line semimetals including nodal net,21–24 nodal
chain,25–27 nodal-link,28–30 nodal knot,31 and nodal
sphere semimetals.32

On the other hand, because of the energy variation
along the nodal line, nodal line semimetals with similar
nodal structures can have different Fermi surface which
leads to distinctive physical properties. When a nodal
line semimetal is protected by a mirror symmetry, the
nodal line lies in a mirror plane of the Brillouin zone

EHPC

FIG. 1. Schematic illustration of the energetically
flat/dispersive nodal line semimetals without/with energy
variation along the nodal line.

(BZ) which means it is flat in momentum space. How-
ever, the nodal line is not constrained to occur on a
constant energy contour. An energy variation along the
nodal line has no effect to the topological character of
the nodal line. But it generally drives the system into
a semimetallic state with coexisting electron and hole
pockets which makes some nodes in the nodal line be-
come electron and hole pocket contacting (EHPC) points.
More importantly, the resultant unconventional Fermi
surface geometry would significantly change the optical
and magnetic response of the nodal-line semimetals. For
example, the optical conductivity of such nodal line ex-
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hibits new spectral features that occur as a result of the
Dupin cyclide geometry of the Fermi surface manifesting
the energy dispersion along the nodal line.33–36 Differ-
ent Fermi surfaces also lead to distinguished features in
the Landau level distribution which affect the behaviors
of magnetic quantum oscillations.37–40 We therefore pro-
pose a further classification of the nodal line semimetals
into two types, i.e., energetically flat versus dispersive
nodal line by fermiology, which can be realized by count-
ing the number of EHPC points in the nodal line. As
shown in Fig. 1, the flat nodal line semimetals have no
EHPC points in the entire nodal line, meaning that the
whole nodal line is encapsulated by either an electron or
a hole pocket. The dispersive nodal line semimetals have
discrete EPHC points in the nodal line which means the
Fermi surface composed of both electron and hole pock-
ets contacting at some nodes of the nodal line. Of course,
the number of EHPC points depends on the relative posi-
tion of the chemical potential µ and the energy variation
of nodal line. Therefore, by doping or gating, one can
tune the Fermi surface geometry (the so-called Lifishitz
transition) and even realize the transition between an
energetically flat nodal line without EHPC points and
a dispersive nodal line with discrete EHPC points, re-
sulting in physically observable quantities in optical and
magnetic response experiments.
In this work, we discover that the WC-type YN is an

ideal topological semimetal with an ultra-flat nodal ring
around the center of the BZ when spin-orbit coupling
(SOC) is absent. The nodal ring lies in a mirror plane
in momentum space with a negligible energy variation
along the ring. The radius of the nodal ring can be tuned
and a topological phase transition can be realized by an
external uniaxial strain along the c axis. The nontriv-
ial topological nature of the nodal ring is demonstrated
by calculating the topological invariant and topological
drumhead surface state. Moreover, we further studied
the magnetoresponse effect of YN and found anomalous
Landau level structures and direction-dependent phase
shifts of quantum oscillations. Our finding provides a
prototype material candidate to investigate novel mag-
netoresponse properties solely induced by nodal ring as-
sociated with unconventional Fermi surfaces.

II. MODEL AND METHODS

YN belongs to a large family of transition metal ni-
trides, which have different structures.41 The YN stud-
ied here has a WC-type hexagonal crystal structure with
space group P 6̄m2 (D1

3h, No. 187), as shown in Fig. 2.42

Y and N atoms are located at the 1d (1/3, 2/3, 1/2) and
1a (0, 0, 0) Wyckoff positions, respectively. The calcu-
lated lattice constants are a = b = 3.337 Å and c = 3.040
Å. The basic symmetries of this structure are listed in
Table. I. The calculated total energy of the WC-type
YN is just tens to few hundreds of millielectron volts per
atom higher than that of other allotropes, indicating that
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FIG. 2. (a) Atomic structure of YN with P 6̄m2 (No. 187)
symmetry. (b) The first BZ of YN where the high-symmetry
points and lines are highlighted in red. The semitransparent
green planes indicate the projected surface BZ of the (001)
and (100) surfaces.

TABLE I. Symmetry generators of the space group P 6̄m2
(No. 187) for YN.

symmetry (x, y, z) form operation

Identify (x, y, z) {1|0}

rotation (−y, x− y, z) {3+001|0}

Mirror (x, y,−z) {M001|0}

Mirror (−y,−x, z) {M110|0}

the WC-type YN is metastable but likely experimentally
accessible.
The first-principles calculations are performed within

the framework of density functional theory using the pro-
jector augmented wave method43 as implemented in the
Vienna ab initio simulation package.44 Generalized gradi-
ent approximation was adopted with the Perdew-Burke-
Ernzerhof-type (PBE) exchange correlation functional.45

All the calculations are carried out using the kinetic en-
ergy cutoff of 400 eV on the 10 × 10 × 10 Γ-centered
k-point mesh. The surface state is calculated using a
tight-binding Hamiltonian based on Wannier functions,
which are constructed by projecting bulk Bloch wave-
functions into Y d and N p orbitals.46

III. RESULTS AND DISCUSSION

A. Band structure

The band structures calculated without SOC are pre-
sented in Fig. 3(a). It clearly shows that two band cross-
ings along Γ-M and Γ-K exist exactly at the Fermi level.
Further orbital-character analysis reveals that these two
crossing bands in Fig. 3(a) around the Fermi level are
mainly contributed from Y dz2 and N pz orbitals, which
are symmetric and antisymmetric under M001 mirror re-
flection, respectively. Since the conduction and valence
bands have opposite parities with respect to the M001

mirror symmetry, the band crossing between these two
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FIG. 3. (a) Band structure of YN along the high-symmetry lines of the Brillouin zone without SOC. Red and green dots in
band structures indicate the projection onto the N pz and Y dz2 orbitals, respectively. (b) The 3D plot of the band structure
around the Fermi level. The bottom projection shows the isoenergy contour of the energy difference between the conduction
and the valence bands. (c) The radius of the nodal ring and the Energy gap at Γ (∆EΓ) as a function of uniaxial strain along
the c axis. (d) The 3D isoenergy surface of YN at EF+15 meV where a torus electron pocket locates around the center of the
BZ.

bands does not just appear at two discrete points on the
Γ-M and Γ-K lines, but also persists along a closed loop
on the kz = 0 plane forming a nodal ring around the Γ
point. The radius of the nodal ring is about 0.15 Å−1,
which can be observed by angle-resolved photoemission
spectroscopy. Moreover, the band crossings also show a
clear signature of band inversion at Γ, implying the non-
trivial band topology of this system, as discussed later.

Interestingly, we found that the nodal ring lies exactly
at the Fermi level without energy variation. Therefore,
the Fermi surface is just a circle coinciding with the nodal
ring. The shape of the nodal ring can also be easily in-
ferred from an isoenergy contour at an energy slightly de-
parting from the Fermi energyEF . As shown in Fig. 3(d),
one isoenergy contour is plotted at 15 meV above the
Fermi surface of YN, which would shrink exactly to the
nodal ring in the kz = 0 plane, forming a perfect torus
winding around the Γ point. To reveal the energy dis-
persion of the nodal ring, we calculated the 3D band

structure around the Γ point, as shown in Fig. 3(b). We
found that the whole ring lies almost in the same energy
within an energy variation less than 0.3 meV, indicating
that the nodal ring is ultra-flat in both energy and mo-
mentum space. Further fine calculations show that the
linearly dispersive conduction and valence bands around
the nodal ring are symmetric with respect to the Fermi
level, exhibiting a perfect low-energy particle-hole sym-
metry of the electronic structure. This is because the
systems are bipartite with two interpenetrating sublat-
tices of Y and N, so the band structures are symmetric
about the Fermi level.

We next studied the effect of uniaxial strains along the
c axis on the nodal ring of YN. As shown in Fig. 3(c),
It found that the size of the nodal ring can be effec-
tively enlarged by applying a compressive uniaxial strain.
More interestingly, a topological phase transition from
a topological nodal-ring semimetal to a normal insula-
tor can be realized by a tensile strain. The energy gap
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at Γ (∆EΓ) first decreases rapidly with the increasing
tensile strain and then increases after a critical strain
of about 2.8 %. This indicates that a band inversion
occurs at the phase transition point. The system then
becomes a normal insulator without nodal ring at the
Fermi level. Such a strong effect of c-axis strains on
the electronic structure of YN is due to the fact that
two crossing bands are composed of Y dz2 and N pz or-
bitals, which have a strong response to the c-axis strain.
With the c-axis strains, the relative energy level of the
two orbitals changes which leads to the variation of
the band crossing between the conduction and valence
bands. We also checked the strain effect using the nonlo-
cal Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional
calculation47,48 and found that the phase transition oc-
curs under a compressive strain of about -7.5%. Addi-
tionally, the unique ultra-flat nodal ring still exists in
the semimetal phase (See Appendix A). We, therefore,
expected that the exact strain of the critical transition
point can be determined by experiments. We also stud-
ied the effect of uniaxial strains along the a or b axis on
the nodal ring of YN. It is found that the nodal ring,
although becomes elliptical, persists under in-plane uni-
axial strain. This is because the a- or b-axis strain does
not break the M001 mirror symmetry which protects the
existence of nodal ring in the kx-ky plane.

B. Effective k · p Hamiltonian

We construct an effective model to describe the nodal
ring aroung the Γ point by considering the symmetry
constraints of the Hamiltonian. A minimal k ·p Hamilto-
nian for the two crossing bands around Γ can be written
as

H(k) = d0(k)σ0 + d(k) · σ, (1)

where the 2×2 identity matrix σ0 and Pauli matrices σ =
(σx, σy, σz) operate in the pseudospin space of the two
crossing bands, d0(k) and d(k) = (dx(k), dy(k), dz(k))
are real functions of k = (kx, ky, kz). We ignore d0(k),
which represents an insignificantly small overall energy
shift, because the nodal line is ultra-flat in YN so that
it is irrelevant in studying the band crossing. The sym-
metry at Γ is characterized by the D3h symmetry group,
which contains a threefold rotation C3, about kz, mir-
ror reflections M001 and M110 (see Table I), and time-
reversal symmetry T . These symmetries impose the fol-
lowing constraints on the Hamiltonian:

C3H(k)C−1
3 = H(−kx+

√
3ky

2 ,
√
3kx−ky

2 , kz), (2)

M001H(k)M−1
001 = H(kx, ky,−kz), (3)

M110H(k)M−1
110 = H(kx,−ky, kz), (4)

TH(k)T−1 = H(−kx,−ky,−kz). (5)

The bands around the Fermi level are mainly con-
tributed from Y-dz2 and N-pz. If we choose the two

basis vectors as |dz2〉 and |pz〉, the symmetry operations
take the form: C3 = σ0, M001 = σz, M110 = σ0 and
T = Kσ0, where K is the complex conjugation opera-
tor. Then these symmetry constraints allow the following
form of d(k):

C3 : dx,y,z(k) = dx,y,z(−kx+
√
3ky

2 ,
√
3kx−ky

2 , kz), (6)

M001 : −dx,y(k) = dx,y(kx, ky,−kz), (7)

dz(k) = dz(kx, ky,−kz), (8)

M110 : dx,y,z(k) = dx,y,z(kx,−ky, kz), (9)

T : dx,z(k) = dx,z(−kx,−ky,−kz), (10)

dy(k) = −dy(−kx,−ky,−kz). (11)

Thus we can obtain the symmetry-allowed expressions
for d(k):

dx(k) = 0, (12)

dy(k) = a1kz + a2kz(k
2
x + k2y) + a3k

3
z , (13)

dz(k) = m0 +m1(k
2
x + k2y) +m2k

2
z , (14)

up to the third order of k. The parameters ai and mi

in the above Hamiltonian can be determined by fitting
the energy spectrum of the effective Hamiltonian ǫ± =

d0(k) ±
√

dy(k)2 + dz(k)2 to that of the first-principles
calculations. Since there is a band inversion around Γ in
the kx-ky plane, m0m1 < 0 is satisfied, which is nothing
but the condition for the existence of nodal ring, as shown
as follows.
It is noted that the above Hamiltonian is expressed

only in terms of two out of the three Pauli matrices.
Hence the codimension of a band crossing problem is two,
one less than the number of independent variables (i.e.,
kx, ky and kz), and then a nodal ring should be stable
in this system.49 The band crossing points can be ob-
tained by solving dy(k) = 0 and dz(k) = 0. According to
Eq. (12)-(14), dy vanishes on the kz = 0 plane. There-
fore, the solution dz(kx, ky, 0) = m0 + m1(k

2
x + k2y) = 0

determines the band crossing points which form a ring in
the kz = 0 plane with a radius of

√

−m0/m1.

C. Topological invariant and drumhead surface

state

To identify the nontrivial topology of YN, we calcu-
lated the topological invariant ζ1 which is defined on a
closed path C wrapping around the nodal ring.50 The
expression of ζ1 is given by

ζ1 =
φB

π
=

1

π

∮

C

dk · A(k), (15)

where A(k) = i
∑

n〈un(k)|∇k|un(k)〉 is the Berry con-
nection. Having the effective Hamiltonian in Eq. (12)-
(14), we obtained the topological invariant ζ1 = 1 for
any path in the BZ that goes around the nodal ring (See
Appendix B). This indicates that the nodal ring is topo-
logically stable against perturbations.
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FIG. 4. (a) Calculated (001) surface spectrum for Y-terminated semi-infinite YN system. The nontrivial topological surface
states connect the surface projection of bulk nodal points are clearly visible. (b) The Fermi surface of (001) surface. (c) The
Fermi surface of (100) surface.

One of the characteristic signatures of a topological
nodal line semimetal is the existence of drumhead sur-
face states.49,51 To further reveal the nontrivial topolog-
ical nature of YN, we calculated the (001) surface states
for a Y-terminated semi-infinite system using an itera-
tive surface Green’s function method52–54 based on the
tight-binding model. As shown in Fig 4(a), the surface
states connect two gapless points, which are the projec-
tions of the nodal points. Such a surface state is the
so-called drumhead surface state, which is nestled inside
of the projected nodal ring with a bandwidth of about 55
meV. Interestingly, when the (001) surface is terminated
on the N atomic layer, the topological surface state oc-
cupies a region outside the projected nodal ring, exactly
the opposite as for the Y-terminated surface. The Fermi
surface of the (001) surface shows a clear circular pat-
tern which is just the projection of the bulk nodal ring
[Fig. 4(b)]. Also, the projected Fermi surface on the side
surface, i.e., the (100) surface, is a piece of straight line
[see Fig. 4(c)], implying that the bulk nodal ring lies flat
in the kx-ky plane.

D. Effect of spin-orbit coupling

The spin-orbit coupling (SOC) effect can drive
the nodal line semimetal into different topologi-
cal states,55–57 including topological insulators,49,51

Dirac semimetals,22,23 and different kinds of nodal-line
semimetals.58–60 When SOC is considered here, the nodal
ring is gapped and the system becomes a topological in-
sulator with a topological invariant Z2 = (1; 000). More
detailed band-structure calculations using the Wannier
interpolation indicate that the SOC induced gap along
the nodal ring is only about 4.0 meV (see Fig. 5), which
is much smaller than the bandwidth of the surface state.
Therefore, although SOC would lift the degenerate drum-
head surface state slightly, the SOC-induced splitting of

FIG. 5. (a) Band structure of YN along the high-symmetry
lines of the Brillouin zone in the presence of SOC. The in-
sets show the zoomed-in plot of band structures around the
gapped nodal ring (blue box) and triple points (green box),
respectively. The triply degenerate points are denoted by the
black circles in the inset.

TABLE II. Position kz (in unit of 2π/c) and energy ET (eV)
of triply degenerate points along Γ-A.

kz(2π/c) 0.1361 0.2533 0.1488 0.2878 0.2978 0.2763

ET (eV) -1.598 -1.378 -1.570 3.449 3.467 3.587

surface state is effectively negligible.

Another effect of SOC is that the conduction and va-
lence bands along Γ-A are split and several triple degen-
erate points appear, as shown in inset of Fig. 5. This is
similar to the case of recently found topological triple-
point metals with the same crystal symmetry.61–67 The
position and energy of all the triply degenerate points are
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FIG. 6. (a) The Landau levels for the nodal-ring semimetal
in a perpendicular magnetic field B⊥. The parameters are
m0 = −0.072 eV, m1 = 3.386 eVÅ2, m2 = −7.282 eVÅ2,
a1 = 4.543 eVÅ and B = 60 T. The upper magnetic Lan-
dau levels go downward first (red arrow) and then go up-
ward (green arrow) with the increase of Landau index n. The
black line represents the critical Landau level n̄. The red
solid lines (green dashed lines) indicate Landau levels with
n < n̄ (n > n̄). (b) Schematic illustration of the extremal cy-
clotron orbits on the torus Fermi surface (green). The white
dashed line stands for the nodal ring. The red and blue circle
represent maximum and minimum cross sections of the torus
Fermi surface in a perpendicular magnetic field B⊥. The yel-
low rings represent extremal cross sections of the torus Fermi
surface in a parallel magnetic field B‖.

listed in Table II. It is worth noting that the triple points
in the valence bands are mainly composed of p orbitals
while those on conduction bands are contributed from
d orbitals. Therefore, both p- and d -electron-mediated
triple-point fermions can be realized in YN. However, as
these triply degenerate points are about -1.5 eV below or
3.5 eV above the Fermi level, they can hardly be detected
experimentally.

E. Magnetoresponse effect

Topological semimetals show interesting magnetore-
sponse effects. For example, Weyl and Dirac semimetals
exhibit chiral anomaly effect68 which manifest as a large
negative longitudinal magnetoresistance.69–73 A nontriv-
ial Berry phase of π can be probed by the quantum oscil-
lation in two-dimensional (2D) and 3D Dirac materials
such as graphene74,75 and Cd3As2.

76,77 Given the ideal
nodal ring of YN, interesting features of magnetoresponse
effects can be observed, to manifest its anisotropic torus
Fermi surface and nontrivial topology.37

As an example, we apply a magnetic field along the
z axis, B⊥ = (0, 0, B) and choose the Landau gauge
so that the vector potential is A = (−yB, 0, 0). Us-
ing the Peierls substitution method, we calculated the
Hamiltonian under the magnetic field by replacing k with
(kx − eyB/~,−i∂y, kz). Neglecting the insignificant tiny

third-order terms, the effective magnetic Hamiltonian is
written as

HB⊥
= [~ω(b†b+ 1/2) +m2k

2
z +m0]σz + a1kzσy, (16)

where ω = 2eBm1/~
2 is the cyclotron frequency, b =

−[(y− l2Bkx)/lB + lB∂y]/
√
2 and b† = −[(y− l2Bkx)/lB −

lB∂y]/
√
2 are the ladder operators with the magnetic

length lB =
√

~/eB. The eigenvalues of the system in
the presence of magnetic field B⊥ are given by

E±(n, kz) = ±
√

[~ω(n+ 1/2) +m2k2z +m0]2 + a21k
2
z .

(17)
Let us focus on the bottom parts of the electron Lan-
dau bands where kz = 0. Then the Landau levels are
simplified to

E±(n, 0) = ±|~ω(n+ 1/2) +m0|. (18)

Because of the band inversion around Γ, m0 and ~ω =
2m1/l

2
B have opposite signs. For a magnetic field B <

−m0m1~/e, the upper magnetic subbands go downward
first and then go upward with the increase of Landau in-
dex n, as shown in Fig. 6(a). The critical Landau level is
around n̄ = Int[−(m0/hω + 1/2)] where Int[] represents
the integer portion. All these characteristics, in sharp
contrast to conventional metals and other kinds of topo-
logical semimetals, should be experimentally observable.
Apart from the anomalous behavior of Landau level

distribution, the Shubnikov-de-Haas (SdH) oscillation of
magnetic resistivity is another interesting magnetore-
sponse phenomenon in nodal line semimetals, where
the magnetoresistance oscillates periodically in reciprocal
magnetic field (1/B). Analysis of the SdH oscillations of
magnetoresistance gives a nontrivial Berry phase, which
is a distinguished feature of nodal line semimetal.74–77

The oscillation of resistivity ρ under a magnetic field can
be characterized by the Lifshitz-Kosevich formula

ρ ∼ cos[2π(
F

B
+ γ)], (19)

where B is the magnetic field. The frequency of oscilla-
tion F = A~/2πe is proportional to the extremal cross
section area A on the Fermi surface that is normal to
B.78 The phase shift of the quantum oscillation is given
by79

2πγ = −π + φB ± π

8
, (20)

which depends on the Berry phase φB acquired by wind-
ing along the extremal cyclotron orbit.
In a nodal line semimetal, an electron can pick up a

nontrivial π Berry phase around a loop that encloses the
nodal line, while along the nodal ring the Berry phase is
trivial. If the Fermi level is slightly away from the en-
ergy of the nodal ring, the Fermi surface becomes a torus
[see Fig. 3(d)]. Therefore, there are multiple extremal
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cyclotron orbits which depend on the direction of mag-
netic field. As shown in Fig. 6(b), the outer (red) and
inner (blue) orbits have maximum and minimum cross
sections, respectively, in a perpendicular magnetic field
B⊥. The Berry phase of the two orbits are zero. The
nontrivial Berry phase of π appears when a parallel mag-
netic field B‖ is applied. Because there are two extremal
orbits [yellow rings in Fig. 6(b)] that interlock with the
nodal rings under B‖, a strong signature of jump of phase
shift would be observed in the SdH oscillation if one tunes
the magnetic field from B⊥ to B‖. In addition, due to
the anisotropy of the torus Fermi surface, the extremal
cross section area A varies with the direction of mag-
netic field. Hence, a gradual modification of oscillatory
frequency (F = A~/2πe) would be measured when ad-
justing the direction of the magnetic field. As the nodal
ring semimetal state can be effectively tuned by a uni-
axial strain, the Landau levels as well as quantum os-
cillation would also be significantly modified by external
strains.

IV. CONCLUSION

In summary, based on first-principles calculations and
effective k · p model analysis, we discover that strained
WC-type YN is an ideal topological semimetal with an
ultra-flat nodal ring when SOC is neglected. By applying
a uniaxial strain, we can enlarge, shrink and even annihi-
late the nodal ring, driving the system from a topological
semimetal to a normal insulator. The tunability of nodal
ring in YN provides an alternative route for studying
the topological phase transition of nodal-line semimet-
als. Furthermore, due to the ultra-flat nodal ring struc-
ture and a torus Fermi surface, YN exhibits anomalous
Landau level structures and direction-dependent phase
shifts of quantum oscillations. In addition, other novel
physical features, such as an optical gap in the frequency-
dependent conductivity due to Pauli blocking, are also
expected to be observed in strained YN.34 Therefore, our
proposed YN with an ultra-flat nodal ring also provides
a prototype material to investigate the exotic physical
properties of nodal ring semimetals.
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Appendix A: Hybrid functional calculations of the

strain effect on YN

We checked the strain effect using the nonlo-
cal Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional
calculation.47,48 As shown in Fig. 7, the phase transition

FIG. 7. The radius of the nodal ring and the Energy gap
at Γ(∆EΓ) as a function of uniaxial strain along the c axis.
The calculations are carried out using the HSE06 hybrid func-
tional.
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FIG. 8. Evolution of the total WCC of YN in the absence of
SOC. The total WCC z(kx, ky) jumps by a step of 0.5 when
passing through the projected nodal ring from the outside to
the inside around the Γ̄ point. This jump corresponds to a
Berry phase of π and a nontrivial topological invariant ζ1 = 1.

occurs under a compressive strain of about -7.5%. It is
noted that the tunability of electronic structures of YN
can still be controlled by external strains, and the unique
ultra-flat feature of nodal ring remains in the semimetal
region. Therefore, the anomalous Landau level distri-
bution and direction-dependent phase shifts of quantum
oscillation are also observable in this phase.

Appendix B: Calculation of topological invariant ζ1

To understand the nontrivial topological nature of YN,
thus elucidating the structure of the topological surface
states, the topological invariant ζ1 in Eq. (15) is com-
puted fromWannier-based tight-binding Hamiltonian ob-
tained from the first-principles calculation. Instead of di-
rectly calculating the Berry connection A(k), we adopt
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an equivalent but more effective way to calculate the
topological invariant, i.e., tracing the evolution of 1D hy-
brid Wannierr charge centers (WCC)80 during a “time-
reversal pumping” process.81

In the following, we are going to review the method
that enables us to calculate the topological invariant of
a general 2D insulator or 2D plane in 3D Brillouin zone.
The 1D hybrid Wannier functions (WFs) localized in the
z direction are constructed as

|WnRz
(kx, ky)〉 =

1

2π

∫ 2π

0

dkze
ikz(rz−Rz)|un(k)〉, (B1)

where Rz is the z component of a lattice vector R and
|un(k)〉 is the cell-periodic part of the Bloch wavefunc-
tion. The hybrid WCC 〈zn〉(kx, ky) is then defined as the
expectation value of ẑ for the hybrid WFs in the “home”
unit cell Rz = 0, i.e., 〈zn〉(kx, ky) = 〈Wn0|ẑ|Wn0〉. For
the nodal-line semimetal states in the absence of SOC,
the sum z(kx, ky) =

∑

n〈zn〉(kx, ky) over occupied bands
would jump by a step of 1/2 when passing through the

projected nodal ring in the kx-ky plane, which corre-
sponds to a Berry phase φB = π for any loops winding
around this nodal line in momentum space. Therefore,
this method gives a simple and direct way to comprehend
the topology of the whole occupied subspace.

For a spinless system respecting both time-reversal and
inversion symmetries, the Berry phase has to be either
0 or π for an arbitrary loop in the BZ. Therefore, we
expect that the total hybrid WCC z(kx, ky) would be
quantized as either 0 or 1/2 at any (kx, ky), and that
z(kx, ky) would jump by 1/2 when passing through a
projected nodal point. As YN does not possess inver-
sion symmetry, z(kx, ky) is no longer quantized as either
0 or 1/2. However, the sudden jump of 1/2 would still ap-
pear when going through the projected nodal ring, which
indicates that the topological invariant ζ1 = 1 is nontriv-
ial, as shown in Fig. 8. Our calculation of topological
invariant indicates the nontrivial electronic topology of
the bulk bands and the existence of topological surface
states on the surfaces of the nodal line semimetal.
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43 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
44 G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15

(1996).
45 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.

Lett. 77, 3865 (1996).
46 A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vander-

bilt, and N. Marzari, Comput. Phys. Commun. 178, 685
(2008).

47 J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys.
118, 8207 (2003).

48 J. Heyd and G. E. Scuseria, J. Chem. Phys. 120, 7274
(2004).

49 H. Huang, J. Liu, D. Vanderbilt, and W. Duan, Phys.
Rev. B 93, 201114 (2016).

50 C. Fang, H. Weng, X. Dai, and Z. Fang, Chin. Phys. B
25, 117106 (2016).

51 H. Huang, K.-H. Jin, and F. Liu, Phys. Rev. B 96, 115106
(2017).
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