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A higher order topological insulator (HOTI) is an extended notion of the conventional topological insulator.
It belongs to a special class of topological insulators to which the conventional bulk-boundary correspondence
is not applicable. Provided the mirror symmetries are present, the bulk topological number is described by the
quantized Wannier center located at a high symmetry point of the crystal. The emergence of corner states is
a manifestation of nontrivial topology in the bulk. In this paper we propose minimal models for the Wannier-
type second-order topological insulator in two dimensions and the third-order topological insulator in three
dimensions. They are anisotropic chiral-symmetric two-band models. It is explicitly shown that the Wannier
center is identical to the winding number in the present model, demonstrating that it is indeed a topological
quantum number. Finally we point out that the essential physics of phosphorene near the Fermi energy is
described by making a perturbation of the Wannier-type HOTI. We predict that these corner states will be
observed in the thombus structure of phosphorene near the Fermi energy around —0.16eV.

A topological insulator (TI) is characterized by the bulk
topological number together with the emergence of topologi-
cal boundary states'?>. The gap must close along the bound-
ary since the topological number cannot change its value con-
tinuously across the boundary, which is known as the bulk-
boundary correspondence. The typical bulk topological num-
ber is the Chern number, which is the genuine one. Another
typical one is the Zy index, which is protected by the time-
reversal symmetry. Recently, the concept of the TI has been
generalized to include the higher-order TT (HOTI)*'2. Let us
consider a j-dimensional (jD) bulk system. For instance, a
second-order TI is an insulator which has (j — 2)D topolog-
ical boundary states but no (j — 1)D topological boundary
states. Similarly, a third-order TI is an insulator which has
(j — 3)D topological boundary states but no (j — 1)D and
(j — 2)D topological boundary states. Namely, the boundary
of the third-order TI is the second-order TI. In spite of these
properties, the HOTI is also characterized by the bulk topolog-
ical number*®>!12. Tt belongs to a special class of TIs where
the bulk-boundary correspondence is appropriately general-
ized. Accordingly, a new possibility has arisen that an insula-
tor previously considered trivial can be a HOTL

Recent studies have revealed a crucial role that the Wannier
center (WC) plays in a certain type of HOTIs**!2, The WC
is defined by the expectation value of the position in the unit
cell of a crystal. It had been considered'>!* that the system
is trivial when Wannier functions are constructed for all filled
bands. However, it was pointed out® that the system can be
somewhat nontrivial if there is a mismatch between the WC
and the lattice sites. In this paper, by taking instances of mir-
ror symmetric models, we show that the WC is quantized and
fixed at a high-symmetry point with respect to the mirror sym-
metries. It can be used as a new type of the topological quan-
tum number*®!? because it is quantized and cannot change
its value without gap closing. We conclude that the system
is second-order topological when the Wannier center is away
from the lattice sites.

We propose the minimal models of Wannier-type HOTIs
in two and three dimensions. They are given by chiral-
symmetric two-band models. We demonstrate the topological
nature of the WC explicitly by showing that it is equivalent
to a set of the winding numbers. We first analyze a 2D crys-

tal (anisotropic honeycomb lattice) as the minimal model. We
calculate the energy spectra for the bulk, a nanoribbon'> and a
nanodisk'® to search for boundary states. Topological bound-
ary states emerge as corner states when the WC is nontrivial.
It is also possible to construct a 3D crystal (anisotropic di-
amond lattice) so that its boundary is the above 2D crystal
(anisotropic honeycomb lattice) when we cut it along a plane.
Then, it is a third-order TI by definition. These anisotropic
lattice models are higher-dimensional extensions of the Su-
Schrieffer-Heeger (SSH) model'”.

We then investigate the physics of phosphorene in the vicin-
ity of the Fermi energy, where it is well described by a two-
band model. Although it is not chiral symmetric, we can an-
alyze it by making a perturbation of a Wannier-type HOTL.
In particular, a rhombus structure has two topological corner
states near the Fermi energy around —0.16eV.

Minimal two-band models: HOTIs were originally pro-
posed on square lattices with the use of the four-band
model*>~!!, and subsequently studied on the breathing Kagome
and pyrochlore lattices with the use of the three-band and four-
band models'?, respectively. The minimal model to describe
insulators is obviously the two-band model. We propose a
two-band model to reveal the essence of HOTTs.

We consider lattice models which have two atoms in the
unit cell. We take the two-band Hamiltonian,

Hz(ﬁf*?)szfL M
where I is the 2 x 2 identity matrix. The Hamiltonian H has
the mirror symmetry,

MG H (ko) Mo = H (=ka), 2
with M, = io,. The term Hj, is chiral symmetric,

C™ Hy (ko) C = —Ho (ko) 3)

with C = 0. The diagonal element f breaks the chiral sym-
metry.

The energy spectrum reads E = f £ | F|. As typical exam-
ples of F', we take the following functions: (i) In the case of
one dimension, we consider the SSH chain with!’

F =t, + tye™. “4)
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FIG. 1: Illustration of rhombuses with (a) t, = 0, (b) |to| < t, and
(c) ty» = 0. The size L is defined by the number of Benzene rings
on one side in (b). Here, L = 5. There are two isolated atoms at
the top and bottom corners of the thombus for ¢, = 0 in (a). (d)
The square root of the local density of states ,/p; for the rhombus.
The amplitude is represented by the radius of the spheres. (¢) Energy
spectrum of the rhombus made of the anisotropic honeycomb lattice.
There emerge topological corner states (marked in red) at the Fermi
energy for |ta| < t»/2. (f) Energy spectrum of the rhombus made
of phosphorene. The horizontal axis is t,. We have chosen the pa-
rameters as t, = 3.665eV, t. = —0.105eV and ¢, = —1.220eV for
phosphorene.

(ii) In the case of two dimensions, we consider the anisotropic
honeycomb lattice with!8-22

_ 3k _
F =2t e %v/2 cos % + tyetty. (3)

(iii) In the case of three dimensions, we consider the
anisotropic diamond lattice with??

F = ta (eik-X2 4 eik*Xg 4 eik<X4) 4 tbeik-xl, (6)

with the four lattice vectors pointing the tetrahedron directions
X; =(1,1,1), Xy = (1,-1,-1), X3 = (-1,1,—1) and
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FIG. 2: Illustration and band structure of (al,a2) a normal-zigzag
nanoribbon and (bl,b2) a skew-zigzag nanoribbon, where t, =
—1.220eV, t, = 3.665eV and t. = —0.105eV. Star symbols repre-
sent WCs in (al,bl). The horizontal axis is k in (a2,b2). (a2) When
the edge cuts through WCs as in (al), perfect flat bands emerge at
the Fermi energy (red line). These perfect flat bands do not represent
topological edge states. (b2) When the edge cuts through no WCs as
in (bl), no edge states emerge at the Fermi energy.

X4 = (—1,—-1,1). We take t;, > 0 without loss of generality.
The function f is arbitrary. Later we take an example in two
dimensions to describe phosphorene: See (10).

In the case of the SSH model (f = 0), the WC is given by
the polarization P, along the z axis, which is the bulk topo-
logical number protected by the mirror symmetry along the x
direction. It has been generalized to higher dimensions*3-12,

Actually, the WC is well defined in the models even for
f # 0. It is given by the set of the j polarization P, in the
7 dimensions, which is the average of the position in the unit
cell. The polarization P, is formulated as

1

Py=—— [ dkA,, 7
v @)

BZ

where A, = —i (| Ok, |¢) is the Berry connection, V is the
volume of the Brillouin zone, and the integration is carried out
over the Brillouin zone. It is easy to check that the Berry con-
nection is independent of f. Now, due to the gauge invariance
of the polarization4, P, is defined mod 1. Furthermore, due to
the mirror symmetry (2), the polarization is odd*, P, » —P,,
with respect to k, — —k,. Combining these two properties,
we find*3%!2 that P, is quantized to be 0 or 1/2. As we shall
show, the WC is located at 1/2 for the SSH chain, (0,1/2)
for the anisotropic honeycomb lattice and (1/2,1/2,1/2) for
the anisotropic diamond lattice. They are the centers of the
dimerized bonds, representing the high-symmetry points with
respect to the mirror symmetry.

The WC is quantized as long as the system remains to be
an insulator since the integration is taken over the whole the
Brillouin zone. The WC cannot change its value unless the
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FIG. 3: The Fermi surface of the bulk anisotropic diamond lattice
with (al) to = b, (b1) ta = /2, (cl) ta = tp/3 and (d1) t, =
ty /4. (a2)-(d2) The corresponding band structure of a thin film. (a3)-
(d3) The corresponding band structure of a diamond prism. The size
of the diamond is L = 3.

bulk band gap closes as a function of ¢, /t,. The WC may be
used as the bulk topological number.

We are able to make manifest the topological nature of the
polarization by relating it with the winding number. Using
the Hamiltonian (1) explicitly, we may solve for the eigen

function of the ground state as ¢ = (—e~'®, 1)t /\/2 with
© = ilog(F/|F|). The connection reads

R ) ®)

and hence the formula (7) represents the winding number.

Anisotropic honneycomb lattice as a HOTI: We now show
that the chiral symmetric two-band model H, describes a
second-order TI in the range of parameters |t,| < /2 by
making four-step arguments. We calculate the energy spectra
for the bulk, the nanoribbon and the nanodisk in the first three
steps. Finally we make the topological arguments.

(i) First, we examine the bulk band spectrum. The disper-
sion relation reads

k
E=x+,[t2+4 (tﬁ + tytp COS \ggk£> cos ?‘y 9)

The system becomes an insulator for [t,| < tp/2.

ii) Second, we study the energy spectrum of the 1D bound-
ary (edges) by calculating the band structure of a normal-
zigzag nanoribbon??, where the edge passes through the WCs,
as in Fig.2(al). There exist perfect flat bands near the Fermi
energy for |t,| < t3/2, as depicted in red in Fig.2(a2). How-
ever, they are not topological edge states implied by the con-
ventional bulk-edge correspondence, since they are entirely
detached from the bulk band.

The emergence of these edge states is understood as fol-
lows. The WC exists at the middle of the bond connecting
the A and B sites, as illustrated in Fig.2(al). The charge dis-
tributes in the vicinity of the WCs. The charge is separated
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FIG. 4: Illustration of a rhombohedron made of the diamond lattice
with (a) to = 0, (b) to = tp and (c) t, = 0. (d) Energy spectrum
of the rhombohedron made of the anisotropic diamond lattice with
L = 3. The horizontal axis is t /t,. There emerge zero-energy states
(marked in red) for |to/ts] < 1/3. They are topological boundary
states. (e) The square root of the local density of states ,/p; for the
rhombohedron with L = 3 and t./t, = 1/4. The amplitude is
represented by the radius of the spheres.

into two pieces by the boundary on the WCs, yielding a half
charge at the boundary to form edge states as in Fig.2(a2).

On the other hand, there are no edge states in a skew-zigzag
nanoribbon?: See Fig.2(b2). This is because the edges pass
through no WCs when we cut a crystal along a line to create a
edge, as illustrated in Fig.2(b1).

iii) Third, we study the energy spectrum of the 0D boundary
(corners) by calculating the band structure of a nanodisk re-
specting the mirror symmetries. The simplest one is the rhom-
bus structure with four skew-zigzag edges as in Fig.1(e). In
contrast to the 1D boundary, zero-energy topological bound-
ary states emerge at the corners of a nanodisk protected by
both the mirror symmetries and the chiral symmetry. Corner
states emerge at the top and bottom lattice sites for |¢,| < ¢;/2
[Fig.1(d)]. When we put one electron into the corner states,
the 1/2 fractional charge appears at each of the two corners
of the rhombus. They are absorbed in metallic phase for
[ta| > tb/2.

(iv) Finally, we study the WC, which is the bulk topologi-
cal number characterizing the HOTI. We first investigate the
extreme case of ¢, = 0. The eigen function for the valence
band is given by ¥ = (feiky, 1) /+/2. The Berry connections
are obtained as A, = 0 and A, = 1/2, which yields the WC
as (0,1/2). Since the position of the WC is fixed within one
topological phase, we obtain the same result for |¢,| < ¢;/2.
The gap closes at |t,| = t;/2, and the system becomes metal-
lic for |t,| > ¢»/2 as shown in Fig.1(e).

Phosphorene: The anisotropic honeycomb lattice is real-
ized in phosphorene??, which is a monolayer material of black
phosphorus. Phosphorene is well described in the vicinity of



the Fermi energy by the two-band Hamiltonian H given by
(1) with (5) and

=4t cos@l@rj Cos 1k:y (10)
2 2

Three hopping parameters ¢, t; and t. are shown in Fig.1(b),
which are t, = —1.220eV, t;, = 3.665eV, t. = —0.105eV ac-
cording to Ref.?*. The Hamiltonian H is not chiral symmetric
due to the diagonal term f. Since |f| < 4|t.] = 0.42eV,
we may treat the term by way of a perturbation. We calcu-
late numerically the band structure to find that the modifica-
tion is negligible from its chiral-symmetric limit: See Fig.1(f).
In particular, we predict that the corner states emerge around
—0.16eV.

Anisotropic diamond lattice as a HOTI: We proceed to in-
vestigate the anisotropic diamond lattice in three dimensions.
We make the five-step arguments based on the chiral symmet-
ric model by setting f = 0 in the Hamiltonian (1) with (6).

i) The bulk band spectrum reads

E? =t2 + 3t} + 2t} cos 2 (ky — ky) + 2t7 cos 2 (ky, — k)
+ 2t cos 2 (k, — ky) + 2t oty cos 2 (kg + k)

+ 2tgtp cos2 (ky + k) + 2t4tp cos2 (ky + ky) -
(11)

We show the Fermi surface in Fig.3(al)-(d1). The Fermi sur-
face becomes a loop node for ¢,/3 < |t,] < t, whose ra-
dius shrinks as the ration |, /tp| decreases as in Fig.3(b1) and
(c1). The system becomes an insulator for |t,| < #,/3 as in
Fig.3(d1).

ii) We calculate the surface band structure of a thin film
in the [111] direction corresponding to the (5 — 1)D geome-
try with j = 3. Zero-energy partial flat bands appear whose
boundary is the projection of the loop node onto the [111]
direction for ¢,/3 < |to| < tp: See Fig.3(b2) and (c2). It be-
comes a perfect flat band for |t,| < t;/3 corresponding to the
fact that the the system becomes an insulator: See Fig.3(d2).

iii) We next calculate the band structure of a diamond prism
corresponding to the (j — 2)D geometry with 7 = 3. As in the

case of the thin film, we find partial flat bands at zero-energy
for t5/3 < |ta| < tp [Fig.3(b3), (c3)], and perfect flat bands
at zero-energy for |t,| < t,/3 [Fig.3(d3)].

iv) We investigate the energy spectrum of the rhombohe-
dron made of the diamond lattice, which corresponds to the
(7 — 3)D geometry with j = 3: See Fig.4. The energy spec-
trum as a function of ¢, /t; is shown in Fig.4(d). The zero-
energy states emerge for |t,| < t5/3. The emergence of the
zero-energy states are naturally understood by considering the
extreme case with ¢, = 0. In this case the two atoms at the
top and bottom of the rhombohedron are perfectly isolated as
shown in Fig.4(a). The 1/2 fractional charge appears at each
of the two corners of the rhombohedron as shown in Fig.4(e).
These zero-energy states are protected by the chiral symmetry
and remain as they are as long as the bulk band gap does not
close.

v) We finally analyze the WC. It is easy to derive this at
t, = 0, where the eigen function for the valence band is given
by 1) = (—e'lkathytka) 1) /\/2. The WC is calculated as
(1/2,1/2,1/2) for |t,| < t3/3. The gap closes at [t,| =
ty/3, and the system becomes semimetallic for |¢,| > ¢;/3, as
shown in 4(d).

Conclusion: We have proposed minimal models for
Wannier-type HOTIs. They are given by chiral-symmetric
two-band models. We have demonstrated that the WC is iden-
tical to the winding number in these models. The construc-
tion of a Wannier-type HOTI based on a nontrivial WC will
be applicable to other lattices with dimerizations. We have
also discussed the physics of phosphorene in the vicinity of
the Fermi energy by making a perturbation of a Wannier-type
HOTI. We have predicted the emergence of two corner states
in a rhombus structure around —0.16eV.

The author is very grateful to N. Nagaosa for helpful discus-
sions on the subject. This work is supported by the Grants-in-
Aid for Scientific Research from MEXT KAKENHI (Grants
No. JP15H05854, No. JP17K05490 and No. JP18H03676).
This work is also supported by CREST, JST (JPMJCR16F1).

! M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

2 X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

3 F Zhang, C.L. Kane and E.J. Mele, Phys. Rev. Lett. 110, 046404
(2013).

4 W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, 10.1126/sci-
ence.aah6442.

3> F. Schindler, A. Cook, M. G. Vergniory, and T. Neupert, in APS
March Meeting (2017).

%Y. Peng, Y. Bao, and F. von Oppen, Phys. Rev. B 95, 235143
(2017).

7 J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Phys. Rev. Lett. 119, 246401 (2017).

87 Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402
(2017).

® W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev.
B 96, 245115 (2017).

10 F Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Science Advances 4,
eaat0346 (2018).

"""M. Lin and T. L. Hughes, arXiv:1708.08457.

12 M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018).

H. C. Po, A. Vishwanath, and H. Watanabe, Nature Communica-

tions 8, 50 (2017).

14 B, Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Nature 547, 298 (2017).

15 M. Ezawa, Phys. Rev. B, 73, 045432 (2006).

16 M. Ezawa, Phys. Rev. B 76, 245415 (2007).

7 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
1698 (1979).

'8 B. Wunsch, F. Guinea and F. Sols, New J. of Phys., 10, 103027
(2008).

' G. Montambaux, F. Piechon, J.-N. Fuchs, and M. O. Goerbig,



Phys. Rev. B 80, 153412 (2009).

0 VM. Pereira,A.H. Castro Neto and N.M.R. Peres, Phys. Rev. B
80, 045401 (2009).

2l G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig,
Phys. Rev. B 80, 153412 (2009).

22 M. Ezawa, New J. Phys. 16, 115004 (2014).

2 R. Takahashi and S. Murakami, Phys. Rev. B 88, 235303 (2013).

2% A. N. Rudenko and M.I. Katsnelson, Phys. Rev. B 89, 201408
(2014).

% M. M. Grujic, M. Ezawa, M. Z. Tadic, F. M. Peeters, Phys. Rev.
B 93, 245413 (2016).



