
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum signature of exciton condensation
Shiva Safaei and David A. Mazziotti

Phys. Rev. B 98, 045122 — Published 16 July 2018
DOI: 10.1103/PhysRevB.98.045122

http://dx.doi.org/10.1103/PhysRevB.98.045122


Quantum Signature of Exciton Condensation

Shiva Safaei and David A. Mazziotti∗

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, IL 60637

(Dated: Submitted March 13, 2018; revised June 27, 2018)

Exciton condensation, a Bose-Einstein-like condensation of excitons, was recently reported in an
electronic double layer (EDL) of graphene. We show that a universal quantum signature for exciton
condensation can be used to both identity and quantify exciton condensation in molecular systems
from direct calculations of the two-electron reduced density matrix. Computed large eigenvalues in
the particle-hole reduced density matrices of pentacene and hexacene EDLs reveal the beginnings
of condensation, suggesting the potential for exciton condensation in smaller scale molecular EDLs.

Exciton condensation is a Bose-Einstein-like conden-
sation of particle-hole pairs (or excitons) into the same
quantum state. It has been realized in optical traps
with polaritons1–4, semiconductor electronic double lay-
ers (EDLs) like gallium arsenide (GaAs)5–10, and most
recently, EDLs of graphene11, proving that condensation
is possible in atom-thin bilayers bound by Van der Waals
forces12–23, as well as the transition metal dichalcogenide
1T -TiSe2

24. Importantly, the graphene-based experi-
ment demonstrated that the condensation is stable upon
creating an imbalance up-to 30% in the electrons (and
holes) between the two graphene layers11; this result re-
veals the potential richness of the quantum many-body
states and phases associated with exciton condensation.
Like superconductivity, exciton condensation has poten-
tial applications to dissipationless energy transfer.
In this paper we examine a theoretically definitive and

yet computationally practical signature of exciton con-
densation. While a variety of both experimental and
theoretical signatures of exciton condensation exist, they
are typically not definitive indicators of exciton conden-
sation. The quantum signature developed here, the large
eigenvalue of the (modified) particle-hole matrix25–29, is
present if and only if the fermion system exhibits con-
densation of particle-hole pairs (excitons) into a global
state—exciton condensation. It allows us to predict
the existence and extent of exciton condensation in any
quantum system from only an electronic structure cal-
culation of the two-electron reduced density matrix (2-
RDM)30–44. While this definition includes various phase
transitions involving condensates of soft phonons that are
not conventionally viewed in these terms, such disruptive
transitions, as explained by Kohn and Sherrington45, can
be relevantly viewed in the context of exciton condensa-
tion.
The large eigenvalue of the particle-hole RDM was first

presented in 1969 by Garrod and Rosina in the context
of collective excitations25. This result provides the ana-
logue for exciton condensation of Yang and Sasaki’s gen-
eral definition of fermion condensation in terms of the
large eigenvalue of the 2-RDM26–28. Jérome, Rice, and
Kohn46 discussed exciton condensates, also called exciton
insulators, in terms of the 2-RDM in 1967, but they did
not discuss the particle-hole RDM or extend Yang and
Sasaki’s large eigenvalue to the particle-hole RDM. While
the paper of Jérome, Rice, and Kohn46 and related early

work47–49 are well known in the study of exciton insula-
tors, the equally important result of Garrod and Rosina25

has been largely neglected. The large eigenvalue opens
new possibilities for using electronic-structure computa-
tions to detect and study exciton condensation. It can be
used for exploring potential experimental enhancements
through the tuning of chemical composition and external
fields.
The paper computationally employs the large eigen-

value to show evidence for the beginnings of exciton con-
densation in pentacene and hexacene EDLs. This result
provides evidence for the formation of an exciton conden-
sate in a molecular-scale system without the application
of external fields. Varsano et al.50 recently predicted the
formation of an exciton insulator (condensate) in car-
bon nanotubes, sharing some of the characteristics of
the acene EDLs. Non-trivial direct calculations of the
two-electron reduced density matrix (2-RDM) capture
strong electron correlation including the long-range order
of the exciton condensation. Such calculations, cited by
the National Research Council in 1995 as one of the top
outstanding problems in physical science, have only be-
come possible recently30–44 and correspond to wavefunc-
tion calculations where the wavefunction, if constructible
as a combination of determinants, would require a billion
times the degrees of freedom treatable today by state-
of-the-art supercomputers. Molecular-scale condensates,
screened by electronic structure calculations, may be use-
ful for the development of dissipationless molecular cir-
cuits and devices, especially in the context of molecular
electronics.
In Bose-Einstein condensation bosons condense upon

cooling into the same lowest-energy orbital. For example,
in the alkali-metal Bose-Einstein experiments51–53 nearly
a mole of alkali-metal bosons condense into the lowest
Gaussian orbital of a harmonic magnetic trap. Signature
of Bose-Einstein condensation is a large eigenvalue in the
one-boson RDM given by

1D(1; 1̄) = 〈Ψ|ψ̂†(1)ψ̂(1̄)|Ψ〉 (1)

where Ψ is the N -boson wave function, each roman num-
ber represents the spatial coordinates and spin compo-

nent of a boson, and the quantum-field operators ψ̂†(1)

and ψ̂(1̄) create or annihilate a boson26,54. Unlike either
fermion or exciton condensation Bose-Einstein condensa-
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tion is not driven by electron correlation; the wave func-
tion of a noninteracting pure-state Bose-Einstein conden-
sate is a product of the single orbital φ(1) in which the
bosons condense.
In fermion condensation pairs of fermions condense

into a single two-electron function known as a gemi-
nal26–29. In superconductivity, for example, electrons
pair to form Cooper pairs that condense into a single
geminal with long-range order55. As shown by Yang26

and Sasaki27,28 independently, the signature of a fermion
condensation is a large eigenvalue in the 2-RDM given
by

2D(12; 1̄2̄) = 〈Ψ|ψ̂†(1)ψ̂†(2)ψ̂(2̄)ψ̂(1̄)|Ψ〉 (2)

where Ψ is the N -fermion wavefunction and the
quantum-field operators ψ̂†(1) and ψ̂(1) create and an-
nihilate a fermion at position 1. Even though Pauli ex-
clusion principle shows that the maximum fermion oc-
cupation of an orbital is bounded from above by one,
Yang26 and Sasaki27,28 proved that the maximum eigen-
value of the 2-RDM can be proportional to the number
N of fermions in the limit of strong correlation.
Exciton condensation, distinct from both Bose-

Einstein and fermion condensations, is the condensation
of particle-hole pairs (excitons) into a single particle-
hole function. By analogy with the well-known cases of
Bose-Einstein and fermion condensations, the signature
of exciton condensation is two large eigenvalues in the
particle-hole RDM25 given by

2G(11̄; 22̄) = 〈Ψ|ψ̂†(1)ψ̂(1̄)ψ̂†(2̄)ψ̂(2)|Ψ〉 (3)

where Ψ is the N -fermion wavefunction and ψ̂†(1) and

ψ̂(1) are fermion quantum-field operators. There are two
large eigenvalues in the case of exciton condensation be-
cause the particle-hole RDM, even in the noninteracting
limit, always has one large eigenvalue corresponding to a
ground-state-to-ground-state projection rather than an
excitation. This eigenvalue, which might be viewed as
spurious as it is unrelated to exciton condensation, can
be removed by subtraction of its ground-state resolution
to generate a modified particle-hole matrix, having a sin-
gle large eigenvalue upon condensation

2G̃(11̄; 22̄) =2 G(11̄; 22̄)−1 D(1; 1̄)1D(2; 2̄). (4)

In the noninteracting limit all of the eigenvalues of the
modified particle-hole RDM are equal to zero or one; fur-
thermore, in typical molecular systems the largest eigen-
value is very nearly one. In early work on reduced
density matrices Garrod and Rosina showed that the
largest eigenvalue of the modified particle-hole matrix,
or the maximum number of excitons in the condensate,
is bounded from above by N/225.
Formation of the exciton condensate requires particle-

hole pairs that can occupy the same particle-hole func-
tion. This type of pairing can be achieved through spatial
symmetry56–58. Exciton condensation has been achieved
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FIG. 1. (a) A schematic of the hydrogen-chain EDL shows
the distance ℓ between hydrogen atoms in each chain and the
distance d between the two chains. (b) The largest eigenvalue
of the modified particle-hole RDM is shown as a function of
the parameter d in Å for ℓ = 6 Å.

in EDLs of GaAs5–9 and graphene11–17. The double lay-
ers allow the particles in one layer to pair with the holes
in the opposite layer and vice versa. Conceptually, we
can picture a checkerboard of particles (black) and holes
(white) in one layer paired with an inverted checkerboard
of holes (white) and particles (black) in the other layer58.
Such a pairing requires that the particles and holes be-
come strongly entangled In contrast, Bose-Einstein con-
densation requires neither pairing nor entangling of the
bosons. As a consequence, exciton condensation has
more in common with fermion condensation where the
fermions form a strongly correlated Cooper pair that par-
ticipates in the condensation.
Nonetheless, fermions exploit a different symmetry to

achieve pairing than the particles and holes which pair to
form excitons. Due to their exchange symmetry, fermions
occupy a two-fermion function g(12) that is antisymmet-
ric in the exchange of the coordinates of particles 1 and
2, that is g(21) = −g(12). The function g(12) can be
viewed as an antisymmetric matrix whose trace is zero
and whose imaginary eigenvalues are paired59:

∫
g(12)φ±i(2)d2 = ±ǫiφ±i(1). (5)

Although this pairing is present in all systems of
fermions, it can lead to fermion condensation when the
occupations ǫi become degenerate for multiple pairs of
orbitals, i.e. φ+i and φ−i for a range of i. Fermion
condensation, whether induced by phonons as in BCS
superconductivity55 or another mechanism, exploits the
antisymmetry of fermions to support the condensation of
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multiple fermion pairs into the same two-fermion state
g(12). In contrast, the particle-hole function f(12) oc-
cupied by excitons in exciton condensation lacks an in-
trinsic pairing due to antisymmetry. The pairing of the
particle and the hole must be accomplished by another
symmetry such as the spatial symmetry created by the
electron double layer (EDL). The EDL symmetry satis-
fies the fundamental symmetry requirement for the pair-
ing of particles and holes, and consequently, molecules
and materials in EDL formation are likely candidates for
exciton condensation.
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FIG. 2. For the hydrogen-chain EDL the particle-hole pairing
in the eigenstate associated with the largest eigenvalue of the
modified particle-hole RDM is shown. In (a), (b), and (c) the
probability density of the hole is shown for the particle placed
at the position of the red dot. Coordinates z and x are shown
in atomic units (a.u.) where 1 a.u. = 0.529 Å.

Using the large eigenvalue of the particle-hole RDM
as a quantum signature of the exciton condensation, we
examined two molecular-scale bilayers: (1) a stretched
hydrogen-chain EDL and (2) face-to-face pentacene and
hexacene EDLs. For each system the 2-RDM was directly
determined without computation of the many-electron
wave function. The energy was computed as a varia-
tional functional of the 2-RDM30–44,60 which was con-
strained by N -representability conditions32,41,44,61 that
are necessary for it to represent an N -electron quantum
system. Because the N -representability conditions are
non-perturbative with polynomial computational scaling,
the variational 2-RDM method is able to catpture strong
correlation in molecules that are too correlated to treat
by density functional theory or single-reference ab ini-

tio methods and yet too large to treat by either full or
partial configuration-interaction calculations. Applica-
tions have recently been made to studying strong correla-
tion in transition-metal complexes43 and the nitrogenase
catalyst FeMoco62 as well as computing molecular con-
ductivity in benzenedithiol63. Finally, the particle-hole
RDM, containing the signature of exciton condensation,
was computed by a linear mapping of the 2-RDM. Addi-
tional details are provided under Methods in the Supple-
mental Information64.

A sketch of the hydrogen-chain EDL is shown in Fig. 1a
As shown, each chain was chosen to have 5 hydrogen
atoms. Two geometric parameters in the EDL are the
distance ℓ between hydrogen atoms in each chain and the
distance d between the two chains. The two-dimensional
parameter space defined by d and ℓ was explored to max-
imize the largest eigenvalue of the particle-hole RDM.
We found that the optimal ℓ is approximately 6 Å corre-
sponding to a highly stretched geometry. With ℓ = 6 Å
the plot in Fig. 1b shows the largest eigenvalue of the
modified particle-hole RDM as a function of the parame-
ter d. As d increases from 2 Å to 2.6 Å we observe a rapid
increase in the largest eigenvalue indicating the formation
of a condensate with approximately two excitons. For d
less than 2 Å covalent bonds form between the layers,
quenching the possibility for condensation as electrons
pair in the bonding orbital. Furthermore, for d greater
than a certain distance (3 Å in this case) the particles and
holes of the two layers become too independent to form
excitons. Table 1 in the Supplemental Information64 also
shows a second large eigenvalue in the modified particle-
hole RDM, indicating some exciton condensate in a sec-
ond particle-hole eigenstate. The second large eigenvalue
is important because it reveals the potential richness of
possible condensate states and phases. Table 2 in the
Supplemental Information64 further shows that the mag-
nitude of the largest eigenvalue generally increases with
the length of the hydrogen EDLs.

For the hydrogen-chain EDL Fig. 2 shows the particle-
hole pairing in the eigenstate associated with the largest
eigenvalue of the modified particle-hole RDM. In each
panel the probability density of the hole is shown for
the particle placed at the position of the red dot. The
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probability of finding a particle on a hydrogen atom in
one layer, we observe, is paired with the probability of
finding the hole on the opposite hydrogen atom in the
other layer. This pairing occurs at each site along the
chain, revealing the off-diagonal long-range order of the
exciton condensate.
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FIG. 3. (a) A schematic picture of the hexacene EDL is
shown. (b) The largest eigenvalue of the modified particle-
hole RDM of the hexacene EDL reaches a maximum of 1.8
around d = 2.5 Å.

A schematic picture of the hexacene EDL is shown in
Fig. 3a. The two hexacene chains, each consisting of six
fused benzene rings, are stacked on top of each other to
form a face-to-face EDL, providing a molecular quasi-
analog of the graphene EDL. While the hydrogen-chain
EDL has two parameters d and ℓ, the hexacene EDL
has only one adjustable parameter d, the distance be-
tween the layers. For the hexacene EDL Fig. 3b shows
the largest eigenvalue of the modified particle-hole RDM
as a function of the distance d. The largest eigenvalue
begins to increase from one around 1 Å reaching a max-
imum value of approximately 1.8 around 2.5 Å before
decreasing as d increases further. As in the case of the
hydrogen-chain EDL, there is a sweet spot in the distance
d at which the chains are sufficiently separated to prevent
bonding and yet sufficiently close to enable particle-hole
entanglement to form the exciton. Figure 1 in the Supple-
mental Information64 shows a similar plot of the largest
eigenvalue for a pentacene EDL with a structure simi-
lar to the hexacene EDL. We observe that the largest
eigenvalue peaks at 1.6 around 2.5 Å indicating that the
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FIG. 4. For the hexacene EDL the particle-hole pairing in the
eigenstate associated with the largest eigenvalue of the mod-
ified particle-hole RDM is shown. In each graph the proba-
bility density of the hole is shown for the particle placed on
the layer at z = -2.36 a.u. at the position of the red dot. In
(a), (b), and (c) the red dot is center, right of center, and far
right of center, respectively. Coordinates z and x are shown
in atomic units (a.u.) where 1 a.u. = 0.529 Å.

degree of exciton condensation is increasing with increas-
ing chain length. The largest eigenvalue of the benzene
EDL is only 1.195 at a separation of 2.5 ÅṪable 3 in
the Supplemental Information64 reveals that, as in the
case of the hydrogen-chain EDL, some exciton conden-
sate forms in the second and third largest eigenvalues of
the modified particle-hole matrix for both the pentacene
and hexacene EDLs.
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For the hexacene EDL Fig. 4 shows the particle-hole
pairing in the eigenstate associated with the largest
eigenvalue of the modified particle-hole RDM. As for the
hydrogen-chain in Fig. 2 the probability density of the
hole is displayed with the red dot representing the posi-
tion of the particle. Significantly, the Dirac-delta proba-
bility distribution of a particle on a benzene ring in one
layer is paired with a probability distribution of a hole
that is highly localized on the opposite benzene ring of
the adjacent layer. The three panels reveal that this pair-
ing of a particle and a hole is present at all sites along the
chain, indicating the presence of off-diagonal long-range
order in the eigenstate associated with the largest eigen-
value. Analogous plots for the eigenstates of the modified
particle-hole RDM that are not associated with exciton
condensation show a highly delocalized hole probability
density that is not consistent with condensation.
The large eigenvalue of the modified particle-hole RDM

is a definitive, universal quantum signature of exciton
condensation. Unlike the pairing of fermions in super-
conductivity that is driven by anti-symmetry, the pairing
of particles and holes in exciton condensation is driven
by a more system-specific symmetry such as the geomet-
ric symmetry in the EDLs of GaAs5–9 and graphene12–23.
Computations of molecular EDLs including a stretched

hydrogen-chain EDL as well as pentacene and hexacene
EDLs reveal large eigenvalues of the particle-hole matrix
for a range of suitable interlayer distances. These results
may indicate that exciton condensation is experimentally
realizable in smaller scale molecular EDLs and that it is
present in a potentially richer array of systems, states,
and phases than previously conjectured. Such potential
richness, also observed in the results of recent graphene-
EDL experiments, is critical to achieving practical appli-
cations of exciton condensation such as dissipation-free
energy transfer.
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