
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Classical and quantum spin dynamics of the honeycomb Γ
model

Anjana M. Samarakoon, Gideon Wachtel, Youhei Yamaji, D. A. Tennant, Cristian D. Batista,
and Yong Baek Kim

Phys. Rev. B 98, 045121 — Published 16 July 2018
DOI: 10.1103/PhysRevB.98.045121

http://dx.doi.org/10.1103/PhysRevB.98.045121


Classical and quantum spin dynamics of the honeycomb � model

Anjana M. Samarakoon,1, 2 Gideon Wachtel,3, 4 Youhei Yamaji,5, 6

D. A. Tennant,7, 2 Cristian D. Batista,1, 2, 8 and Yong Baek Kim3, 9, 10

1Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, U.S.A.
2Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, U.S.A.

3Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
4Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

5Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
6JST PRESTO, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

7Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, U.S.A.
8Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, U.S.A.

9Canadian Institute for Advanced Research, Quantum Materials Program, Toronto, Ontario M5G 1M1, Canada
10School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

Quantum to classical crossover is a fundamental question in dynamics of quantum many-body
systems. In frustrated magnets, for example, it is highly non-trivial to describe the crossover from
the classical spin liquid with a macroscopically-degenerate ground-state manifold, to the quantum
spin liquid phase with fractionalized excitations. This is an important issue as we often encounter
the demand for a sharp distinction between the classical and quantum spin liquid behaviors in real
materials. Here we take the example of the classical spin liquid in a frustrated magnet with novel
bond-dependent interactions to investigate the classical dynamics, and critically compare it with
quantum dynamics in the same system. In particular, we focus on signatures in the dynamical spin
structure factor. Combining Landau-Lifshitz dynamics simulations and the analytical Martin-Siggia-
Rose (MSR) approach, we show that the low energy spectra are described by relaxational dynamics
and highly constrained by the zero mode structure of the underlying degenerate classical manifold.
Further, the higher energy spectra can be explained by precessional dynamics. Surprisingly, many
of these features can also be seen in the dynamical structure factor in the quantum model studied
by finite-temperature exact diagonalization. We discuss the implications of these results, and their
connection to recent experiments on frustrated magnets with strong spin-orbit coupling.

I. INTRODUCTION

The crossover between classical and quantum regimes
in frustrated magnets has been an important theoreti-
cal question in the last few decades. This issue is par-
ticularly important in understanding the nature of the
quantum spin liquid phases which may arise at low tem-
perature due to extreme quantum fluctuations. In the
classical regime, there may exist a window of tempera-
tures below the Curie-Weiss scale, where the correlated
spin moments are thermally fluctuating within the de-
generate manifold of classical ground states. This is the
cooperative paramagnetic state, or the so-called classi-
cal spin liquid. In the quantum regime, it is clearly not
possible to maintain such a state down to zero tempera-
ture as the quantum ground state should be unique (up
to a topological degeneracy in the case of quantum spin
liquids). An important question is how much informa-
tion about the degenerate manifold of classical ground
states is encoded in the emergent quantum spin liquid
at zero and low temperatures. Such a question may be
especially relevant for two dimensional spin liquid phases
which show no finite temperature phase transition, but
only crossovers.

One natural place to look for the clue for this question
is the dynamical spin correlation or the dynamical spin
structure factor. A recent work on the Kitaev model1 in
two dimensions investigates the dynamical spin correla-

tions of the classical Kitaev model via Landau-Lifshitz
(LL) dynamics2. The resulting dynamical structure fac-
tor was compared with that of the quantum model3–5,
which is exactly solvable and supports a quantum spin
liquid ground state with gapless Majorana fermion exci-
tations. There exist two crossover temperatures, Tv and
TQ, in the Kitaev model on the honeycomb lattice, as
seen in the specific heat.6 At T < Tv, the vison or flux
gap is larger than the temperature scale so that the sys-
tem is essentially characterized by the zero temperature
ground state. When Tv < T < TQ, the flux degree of free-
dom is thermally disordered, but the Majorana fermions
are still well defined. For T > TQ, the system crosses over
to the classical regime. It was found that the dynamical
spin correlations in the quantum model at T > Tv are
remarkably similar to those of the cooperative paramag-
netic regime of the classical model at finite temperature.
Moreover, the dynamical structure factor of the quantum
model knows about the zero mode structure of the classi-
cally degenerate manifold even when Tv < T < TQ. This
suggests that all the classically degenerate spin states
are participating in the quantum fluctuations down to
T ⇠ Tv, which eventually lead to the emergence of the
quantum spin liquid phase at low temperature T < Tv.
In principle, it is not necessary that the full degenerate

manifold of the classical states is involved in the forma-
tion of the quantum spin liquid at low temperature, since
thermal entropy or zero-point quantum fluctuations may
select a subset of the full degenerate manifold at some
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intermediate temperature. On the other hand, when the
full degenerate manifold is participating in quantum fluc-
tuations at low temperature, as the case of the Kitaev
model for Tv < T < TQ, and if the spin correlations re-
main short-ranged, it is highly suggestive that the zero
temperature ground state would indeed be a quantum
spin liquid. An alternative choice for the zero tempera-
ture ground state could be a magnetically ordered state
or a quantum critical point, which would show the de-
velopment of long-range dynamical spin fluctuations. In
the case of the Kitaev model, we already know that this
is not the case, and that the zero temperature ground
state is a quantum spin liquid. One may, however, be
able to use this lesson to infer the possible presence of
a quantum spin liquid in models which are not exactly
solvable.

In the current work, we investigate the dynamical spin
correlations in the classical and quantum � model7 (de-
fined below) on the honeycomb lattice, which is known to
possess macroscopically degenerate manifold of classical
ground states8, while the quantum model is not exactly
solvable. This model represents the bond-dependent
anisotropic and symmetric spin interactions on the hon-
eycomb lattice:

H = �
X

↵ 6=� 6=�

X

hr,r0i 2 �

(S�
rS

↵
r0+S↵

r S
�
r0), (1)

where S↵
r are spin operators at sites r of a honeycomb

lattice, and ↵,�, � = x, y, z. Such interactions (as well as
the Kitaev interaction mentioned above) arise in strongly
spin-orbit coupled Mott insulators such as Li2IrO3 and
↵-RuCl3, where Ir4+ or Ru3+ ions form e↵ective J = 1/2
local moments. Currently, the relative importance of the
Kitaev and � interactions is an important issue in the-
oretical and experimental investigations of this class of
Kitaev-like materials7,9–22. For instance, the dominance
of one of these interactions or the cooperation of these
two interactions may lead to possible emergence of quan-
tum spin liquid in these materials, especially in the pres-
ence of external pressure or magnetic field.

We first use the Landau-Lifshitz dynamics to compute
the dynamical structure factor in the classical model at
finite temperature. It is shown that the zero mode struc-
ture of the degenerate manifold of classical ground states
is reflected in the low frequency part of the dynamical
spin fluctuation spectra. For example, in the case of
the antiferro-sign of the � > 0 interaction, the structure
factor at low frequencies is suppressed at the � and X
points of the Brillouin zone, which we explain using the
constraints on the classical spin states which belong to
the degenerate manifold. Next, we employ the Martin-
Siggia-Rose (MSR) formulation of Langevin dynamics to
further understand the nature of the dynamical spin cor-
relations. These two di↵erent methods lead to essentially
the same dynamical spin correlations, leading to the con-
clusion that the system itself may be acting as an e↵ec-
tive thermal bath. Furthermore, it is shown that the low
frequency response is relaxational and reflects the zero

mode structure, while the higher frequency response is
mostly precessional, and some characteristic precessional
modes exist at finite frequencies. The evolution of dy-
namical spin correlations is also investigated as a func-
tion of temperature for the comparison with the quantum
model.

The dynamical spin structure factor in the quantum �
model is studied by exact diagonalization via the shifted
Krylov subspace method, which is combined with typical
quantum state approach at finite temperature. In previ-
ous studies23, it was shown that there exist two crossover
temperatures, T1 ⇠ 0.03� and T2 ⇠ 0.4�, in the spe-
cific heat, similar to the case of the Kitaev model. T2

marks the crossover from the high temperature classical
regime to the quantum regime. We find that the dynam-
ical spin correlations at low frequencies in the quantum
model show distinct signatures of the zero mode struc-
ture of the degenerate manifold of classical ground states
even when T1 < T < T2, which gradually crosses over to
the low temperature extreme quantum limit for T < T1.
This behavior is reminiscent of the dynamical spin cor-
relations in the Kitaev model, where correlations as a
function of temperature are remarkably similar to the
classical result. This means that the short-range spin
fluctuations from the degenerate manifold persist even
in the quantum regime of T1 < T < T2. On the other
hand, the dynamical spin correlations at zero tempera-
ture, while they remain short-ranged, show features that
are not present in the classical model. In the case of
� model, we currently do not know what the quantum
ground state is. One possibility is that below a certain
temperature a symmetry is broken due to order by quan-
tum disorder8. Interestingly, however, recent DMRG and
exact diagonalization studies suggest possible presence of
a quantum spin liquid ground state in the � model24.
Since we do not have an analytical understanding of the
underlying quasiparticles in the �model, we cannot make
a more precise connection to underlying quantum degrees
of freedom, which was possible in the case of the Ki-
taev model. Nonetheless, the phenomenological similar-
ity to the classical-quantum correspondence in the Kitaev
model is striking. We may speculate that the entire de-
generate manifold of classical states would participate in
quantum fluctuations that lead to the formation of the
quantum ground state at zero temperature, such as a
quantum spin liquid phase. Our findings will help under-
standing this outstanding issue and possible connection
to experiments on Kitaev-like materials.

The rest of the paper is organized as follows. In section
II, we present numerical results obtained from the LL dy-
namics of the classical model. Section III describes how
qualitatively similar results can be obtained analytically
within an MSR formalism. The dynamic correlations of
the corresponding quantum model are given in section
IV. We conclude with a discussion of our main findings
in light of recent experiments in section V, while details
of our calculations are relegated to the appendices.
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II. LANDAU-LIFSHITZ DYNAMICS

We study the dynamical spin correlations of the �
model, Eq. (1), whereby the spin operators are replaced
by classical vectors in the Heisenberg equation of motion.
The resulting Landau-Lifshitz (LL) equation of motion is

dSr

dt
=Sr⇥Br, (2)

where Br is the molecular field acting on the spin Sr.
This LL equation can be solved numerically by apply-
ing a fourth order Runge-Kutta algorithm with adaptive
step size. The average over configurations at a given tem-
perature T is obtained from the Metropolis Monte Carlo
sampling method. We note that a closed LL dynam-
ics is more appropriate than Langevin dynamics when
the experiment is much faster than the spin-lattice re-
laxation, which is the typical case in inelastic neutron-
scattering experiments. The simulations are performed
on a finite lattice of 30⇥30 unit-cells (1800 spins) with
periodic boundary conditions.

Fig. 1 shows the trace of the dynamical spin structure
factor, S (Q,!) =

P
↵ S↵↵ (Q,!), obtained for the an-

tiferromagnetic (AFM) (� > 0) and ferromagnetic (FM)
(� < 0) versions of the �-model. As expected for a
liquid state, S (Q,!) exhibits a continuum of low and
high-frequency modes. The low-frequency (zero) modes
arise from the very slow dynamics through di↵erent clas-
sical ground states. The number of zero modes is macro-
scopic because of the extensive residual entropy of the
ground state manifold. This dynamics is expected to be
relaxational because the average of the local field over
a period 2⇡/! is equal to zero. In contrast, the high-
frequency modes correspond to the much faster spin pre-
cession around the local fields produced by a given ground
state configuration. Accordingly, the average of the local
fields Br over a period 2⇡/! remains finite.

Both, the low and high-frequency modes, contain rele-
vant information about the liquid state. The momentum
distribution of the zero-energy modes is a direct conse-
quence of the set of constraints defining the ground state
manifold. Specifically, we show in Appendix A that the
fourier transform S↵(q) =

P
r S

↵
r e

iq·r of any state S↵
r

in the ground state manifold, vanishes for both q = �
and q = X. As a result, the low-energy spectral weight
of S↵↵(Q,!) is suppressed at the � and X points of the
Brillouin zone [see Fig. 2 (a)]. Correspondingly, as shown
in Fig. 2 (b)-(d), the missing low-energy spectral weight
at these two points is shifted to frequencies of order �.
In other words, magnetic excitations with wave vectors
� and X are purely precessional. Indeed, as shown in
Fig. 2, the precessional modes have highest intensity at
these two wave vectors. As we will see later, the low-
energy modes of the quantum S = 1/2 model inherit this
structure. The high-energy modes contain information
about the magnitude and spatial distribution of the in-
stantaneous local fields Br of a typical ground state spin
configuration. The dispersion of these modes contains

information about the magnetic correlation length of the
spin liquid state.

FIG. 1. Trace of the dynamical magnetic structure factor
S (Q,!) =

P
↵ S↵↵ (Q,!) for (a) AFM (� > 0) (b) FM

(� < 0) �-models along the Brillouin Zone path, K � � �

M � Y �X �K �M , as depicted in the inset.

FIG. 2. (a) Elastic component of the trace of the magnetic
structure factor S(Q,! = 0). (b-d) S(Q,!), integrated over
finite energy cuts: (b) !/� = [0.1, 0.3], (c) !/� = [0.8, 1.0]
and (d) !/� = [1.8, 2.0].

To gain more insight on the structure of the zero-
energy modes, we also present the real space spin-spin
correlation function, S(r,!), as a function of ! and T .
Fig. 3 shows the elastic contribution S(r,! = 0) for dif-
ferent distances up to fifth nearest neighbors (NN) and
T = 10�5� (calculations need to be done at finite T to
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FIG. 3. S(r,! = 0) as a function of |r|/a (where a is the
lattice parameter) at T = 10�5�.

have fluctuations and be able to exploit the fluctuation-
dissipation theorem). Remarkably, this is significant
only for the on-site and for the third-nearest-neighbor
(|r|/a = 2, where a is the lattice parameter) correlation
functions. The values obtained for other distances are
smaller than the statistical error of the MC calculation.
Therefore, the fast exponential decay of the elastic con-
tribution indicates that the magnetic correlation length
is of order 2a.

A similar behavior is observed in the static real space
spin-spin correlation function, S̃↵�(r) =

⌦
S↵
0S

�
r

↵
=R

S↵� (r,!) d!, shown in Fig. 4. This figure also includes
o↵-diagonal components of the spin-spin correlation func-
tion. In all the cases, the correlation function is signifi-
cant only for distances |r| equal or smaller than the sep-
aration between third nearest neighbors (opposite sites
of each hexagon). Moreover, a subset of the nine spin-
spin correlator components ↵� vanishes, for any given
r. The form of the real space correlations, as depicted
in Fig. 4, is well accounted for by considering the sym-
metries of the Hamiltonian, Eq. 1. To show this, we
begin by considering the three ways in which one can de-
compose the honeycomb lattice into hexagon plaquettes,
shown in Fig. 5. With each plaquette of a given decom-
position we associate six spin components, one from each
site around the plaquette. Specifically, a spin component
is associated with a neighboring hexagon plaquette if it
is of the same type as the bond connecting it with a
neighboring plaquette of the same decomposition. There
exist three symmetry operations8, one for each plaque-
tte decomposition, which correspond to ⇡ spin rotations
about an axis that depends on the sublattice which each
spin belongs to. For example, the symmetry operation
corresponding to the white plaquettes in Fig. 5, corre-
sponds to a ⇡-rotation about the x-axis for sublattices 1
and 4, about the y-axis for sublattices 2 and 5 and about
the z-axis for sublattices 3 and 6. This transformation
leaves the spin components {Sx

1 , S
y
2 , S

z
3 , S

x
4 , S

y
5 , S

z
6} in-

variant (the subscript is the six sublattice index), while
it changes the sign of the other ones. In appendix B, we
show that these symmetries, which are also symmetries
of the quantum model, result in vanishing correlations

between spin components which are associated with pla-
quette of di↵erent decompositions, according to the rule
we just described.
However, the spin-spin correlations are further re-

stricted in the classical limit. Classically, the three com-
ponents of each spin commute with each other, and as a
result, one can define a local transformation that flips
the sign of an individual spin component. The clas-
sical version of the � model is invariant under a lo-
cal symmetry transformation that changes the sign of
one spin component of each of the six spins in a single
hexagon plaquette. The spin component that changes
sign is the one corresponding to the only bond which
does not connect two spins in the same hexagon8. For
instance, the symmetry transformation changes the sign
of {Sx

1 , S
y
2 , S

z
3 , S

x
4 , S

y
5 , S

z
6} for a single white hexagon pla-

quette. This is the local symmetry that gives rise to
the macroscopic degeneracy of the classical ground state
manifold. Consequently, the correlation function

⌦
S↵
0S

�
r

↵

vanishes unless both S↵
0 and S�

r belong to the same sin-
gle hexagon. This restricts correlations to third neighbor
at most, and determines the specific components which
have non zero correlations, as seen in Fig. 4. For exam-
ple, only the diagonal components of the on-site correla-
tions are non-zero, since di↵erent components of a given
spin are associated with di↵erent plaquettes, and thus,
uncorrelated. Similarly, the only other non-vanishing di-
agonal components of the spin-spin correlation function
appears for third neighbors, e.g., for the white plaquette
mentioned earlier we have only a finite hSx

1S
x
4 i in ad-

dition to the on-site correlation. Similar considerations
restrict finite o↵-diagonal correlations to nearest and sec-
ond nearest neighbors around one plaquette.
Fig. 6 shows the temperature and frequency depen-

dence of S (r,!) for several values of r. In agreement
with the symmetry analysis given in Appendix B, S (r,!)
vanishes for any frequency when r connects second near-
est neighbor sites [see Figure 6 (b)]. The temperature
dependence of S (r,!) for other values of r indicates a
crossover from partially precessional to fully di↵usive be-
havior at a temperature of order �. The temperature
dependence of S (Q = �,!) shown in Figure 7 confirms
this crossover, indicating that the system evolves contin-
uously from a low-temperature (T < �) correlated liquid
(classical � liquid) to a high-temperature paramagnetic
state.

III. LANGEVIN DYNAMICS

Although, as noted in the previous section, neutron
scattering experiments are faster than spin-lattice relax-
ation, a Langevin approach may still be used to analyt-
ically understand dynamic correlations in LL dynamics.
The non-linear nature of Eq. (2) gives rise to strong
relaxation due to inelastic processes, in addition to the
more direct precessional dynamics. In other words, the
fluctuating spins act as their own heat bath – leading
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FIG. 4. Static spin-spin correlation function, S̃↵� =
⌦
S↵
oS

�
r

↵
=

R
S↵� (r,!) d! mapped on the real-space lattice with respect

to an arbitrary origin denoted by the cross (⇥). The temperature of the simulation is T = 10�5�.

to strong relaxation. At a phenomenological level, it is
possible to capture the two types of spin dynamics in a
generalized Langevin equation, where a linear term de-
scribes the spin relaxation, while precession is included in
a residual non-linear term. We thus propose to study the
stochastic dynamics of a system of soft classical spins25

S↵
i , given by

@S↵
i

@t
= g✏↵��S

�
i

@H

@S�
i

� �
@H

@S↵
i

+ ⌘↵i , (3)

where i, j denote a site on a honeycomb lattice, ↵,� =
x, y, z and the noise term ⌘↵i obeys

D
⌘↵i (t)⌘

�
j (t

0)
E
= 2�T �ij�↵��(t� t0). (4)

As described below, the unitless phenomenological pa-
rameters – � setting the relaxation rate and g the pre-
cession rate – are chosen by comparing the dynamical
correlations with the results of the LL simulation, while
T is simply the temperature. The spins are taken to be
soft with mass �, and with a general nearest neighbor

spin interaction, K↵�
ij , as given by the following Hamil-

tonian

H =
X

↵�

X

hiji

K↵�
ij S↵

i S
�
j +

�

2

X

i↵

(S↵
i )

2 , (5)

The mass � is an additional, temperature dependent,
phenomenological parameter which determines the aver-
age spin size hS2

i i. Quadratic Hamiltonians of this type
are suitable for studying spin dynamics in cases where
there is no long range order. We will apply this to the
classical � model, which has macroscopic degeneracy in
its ground state, preventing long range order even at low
temperatures. A similar treatment for the Kitaev model
is given in the Appendix. Following a path integral for-
mulation of the MSR approach26–28, we write a generat-
ing functional for dynamical correlations as

Z=

*Z
DS |M | �

 
@S↵

i

@t
�g✏↵��S

�
i

@H

@S�
i

+�
@H

@S↵
j

�⌘↵i

!+

⌘

,

(6)
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FIG. 5. Six sublattice decomposition of the honeycomb lat-
tice. We also show the three di↵erent decompositions of the
lattice into isolated hexagonal plaquettes.

where h· · ·i⌘ denotes averaging over the noise fluctuations
⌘, andM is a Jacobian matrix. For the model we consider
here we may take the determinant |M | = 1. Writing the
delta function as an integral over Ŝ↵

i , and averaging over
⌘, we obtain Z =

R
DŜ DS e�S where the MSR action is

given by

S = �
Z

dt
h
Ŝ↵
i

⇣
@tS

↵
i + �K↵�

ij S�
j + ��S↵

i

⌘

+�T (Ŝ↵
i )

2 � g✏↵�� Ŝ
↵
i S

�
i K

��
ij S

�
j

i
, (7)

Within this formalism it is possible to calculate dynam-
ical correlation functions, using perturbation theory in
g.

Zeroth order in g: When g = 0, the dynamics is purely
relaxational. The bare response Green’s function, defined
as

(G0(!))
↵�
ij ⌘

D
Ŝ↵
i (�!)S

�
j (!)

E

0
, (8)

is given by (its inverse)

�
G�1

0 (!)
�↵�
ij

= (�i! + ��)�↵��ij +K↵�
ij (9)

We will represent this diagrammatically using Fig. 8a.
Similarly, the bare correlation function is given by

(C0(!))
↵�
ij ⌘

D
S↵
i (�!)S

�
j (!)

E

0
= 2�T

⇣
G†

0(!)G0(!)
⌘↵�
ij

(10)

FIG. 6. S (r,!) as a function of temperature and energy
(~!)for AFM (� > 0) Gamma model. Panels (a), (d) and (e)
show �S (r,!) for r connecting 1st, 3rd and 5th nearest-
neighbor sites, respectively. Panel (b) shows S (r,!) for
r connecting nearest-neighbor sites. Panel (c) shows that
S (r,!) = 0 for r connecting second nearest neighbor sites.

Diagrammatically, this is represented in Fig. 8b where
the noise vertex is represented by a dot, • = 2�T .
In the pure � model, which is defined by

K↵�
ij =

⇢
� ↵ 6= � 6= hiji
0 otherwise

, (11)

the classical degrees of freedom can be divided into sec-
tors – one for each hexagon. For example, as discussed
in the previous section, going around one of the white
hexagons in fig. 5, we can identify six spin components
which interact only within themselves. Their dynamics
is independent of the rest of the system, manifesting the
macroscopic degeneracy of the classical system. We re-
name these degrees of freedom as follows,

{Sx
1 , S

y
2 , S

z
3 , S

x
4 , S

y
5 , S

z
6} ⌘ {�1,�2,�3,�4,�5,�6} . (12)

The Hamiltonian, restricted to this sector, is given by

Hhexagaon =
6X

l=1

✓
��l�l+1 +

�

2
�2
l

◆
. (13)
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FIG. 7. Temperature evolution of S(Q = �,!) for AFM
(� > 0) Gamma model.

The energy eigenvalues, which determine the relaxation
rate, are "m = 2� cos⇡m/3 +�, m = 1 . . . 6. Clearly,
the model is stable only for � > 2|�|. The g = 0 dynami-
cal correlation function within these six spin components
is given by

h�l(!)�l0(!0)i= 1

6

6X

m=1

cos

✓
⇡m(l � l0)

3

◆
2�T 2⇡�(! + !0)

!2 + �2"2m
,

(14)
while the correlation with spin components which do not
appear in Eq. (12) is identically zero. � may be chosen
so that h�2

l i is a constant; at the g = 0 level � should
obey h�2

l i =
P

m(T/6"m) = 1. Clearly, the dynamics

(a) (G0(!))
↵�
ij =

!
i↵ j�

(b) (C0(!))
↵�
ij =

!
i↵ j� =

!

!
i↵ j�

(c) i↵

j�

k�

= g✏↵���ijK
��
ik + g✏↵���ikK

��
ij

(d) ⌃(!) =

(e) C(!) = + ⌃

+ ⌃ + ⌃ ⌃

+ ⌃ ⌃ + ⌃ ⌃ + · · ·

FIG. 8. Feynman diagrams for the MSR formalism: (a) Bare
response function. (b) Bare correlation function. (c) Preces-
sion vertex. (d) Self-energy diagram. (e) Perturbative ex-
pansion of the dressed correlation function, in powers of the
self-energy ⌃, see Eq. (15).

�

!
/�

�

�

!
/�

�

FIG. 9. Dynamic structure factor as obtained from Eq. (15),
for (a) the AFM � > 0, and (b) the FM � < 0 models. Here
we have used � = 0.12, � = 2.05� and g2T = 0.04�.

for g = 0 is purely relaxational, with a peak at ! = 0.
Thus, � can be chosen such that Eq. (14) reproduces
the width of the low energy peak as obtained in the LL
simulations. Focusing on the dynamic structure factor
hS↵(q,!)S↵(�q,�!)i, we note that for each hexagon
hSx

l S
x
l0i 6= 0 only for l, l0 = 1, 4, hSy

l S
y
l0i 6= 0 only for

l, l0 = 2, 5 and hSz
l S

z
l0i 6= 0 only for l, l0 = 3, 6, in line

with the symmetry consideration of the previous section
and in Appendix B. In the anti-ferromagnetic � model,
the lowest eigenvalues is "3 = �2�+�. Noting that there
are non-zero correlations only for l�l0 = 0, 3, we find that
the contribution of this eigenvalue to the spectrum at �
vanishes, and one would expect only the higher energy
modes, i.e. faster relaxations, to contribute at this mo-
mentum. A similar argument holds for the low energy
correlations at X. Thus we find a depletion in the dy-
namic structure factor at � and X, echoing the analysis
of the zero modes in the previous section.
Perturbation theory in g. It is possible to treat the

precession term using diagrammatic perturbation theory.
We represent the symmetrized precession vertex by Fig.
8c. The dressed correlation function, C↵�

ij (!), can be
calculated approximately, by summing over a subset of
infinite diagrams, as shown in Fig. 8. Specifically, we
approximate C(!) by a product of two infinite series,

C(!) ⇡ 2�T

�����G0(!)
1X

n=0

(⌃(!)G0(!))
n

�����

2

, (15)

where the ‘self energy’ ⌃ is calculated to leading order in
g. The self energy term for the � model dynamics mixes
di↵erent sectors, and therefore its calculation must be
done in Fourier space. However, the procedure is no dif-
ferent than in quantum field theory, once the appropriate
Feynman rules are determined. Fig. 9 shows the result-
ing dynamic structure factor. Eq. (14), obtained for



8

g = 0, qualitatively accounts for the low frequency fea-
tures, including the depletion at � and X in the AFM
case. The main qualitative e↵ect of finite g > 0 on the
dynamic structure factor, is the addition of correlations
peaked at finite frequency, due to the precession of the
spins. In Appendix C we describe the calculation for the
Kitaev model, which is simpler, and can be done in real
space. Furthermore, the closed form result for the Kitaev
model shows that the self energy is larger for the mode
which is suppressed at low energies. Similar behavior is
observed in Fig. 9 for the � model, where the preces-
sion features appear at finite frequency at the same mo-
mentum positions with depleted low energy correlations.
Besides the qualitative e↵ect of precessional dynamics, a
finite g is also expected to renormalize the values of �
and � required to fit the numerical data obtained at a
given temperature.

IV. DYNAMICS OF THE SPIN- 12 MODEL

FIG. 10. (color online): Finite-size honeycomb clusters with
24 spins and periodic boundary conditions. Bonds along the
three di↵erent directions are labeled as the x, y, and z bond,
which are along -60�, 60�, and horizontal directions, respec-
tively.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.01  0.1  1  10

FIG. 11. (color online): Specific heat C/N of the AFM �
model on the N = 24 site cluster23, calculated by the typical
pure quantum states approach29,30. There are two maxima in
the temperature dependence of C/N . The error bars are the
standard errors estimated by 32 random initial vectors.

Using the exact-diagonalization method, described in
Ref. 31 and Appendix D, we study the finite-temperature

dynamical spin structure factors of the S = 1/2 AFM
� model. Here, we use a 24 site cluster with periodic
boundary conditions, illustrated in Fig. 10. As ex-
plained below, the dynamical spin structure factor of
the quantum model shows a gradual classical-to-quantum
crossover when the temperature is decreased.
Before going into details of the quantum spin dynam-

ics of the � model, we summarize the energy scale of
the quantum S = 1/2 � model. As shown in Ref. 23
and Fig. 11, there are two temperature scales given by
the peaks in the temperature dependence of the spe-
cific heat. The higher-temperature peak appears around
T2/� ⇠ 0.4 and the lower-temperature peak emerges be-
low T1/� . 0.03. The two peak structure in the tempera-
ture dependence of the specific heat has been found in the
Kitaev model6 and in the proximity of the Kitaev’s spin
liquid32, although the balance of the entropy released by
these two peaks is di↵erent from that of the � model.
In Fig. 12, the momentum dependence of the equi-

energy slices of S(Q,!) are shown by changing tempera-
ture and frequency. The equi-energy slices are prepared
by averaging the spectra within an energy window whose
width is 0.1. The momentum dependence is numerically
interpolated for visibility without changing the simula-
tion results at the discrete momenta Q compatible with
the finite size cluster. At T/� = 1 > T2/� ⇠ 0.4, al-
most momentum-independent behaviors of S(Q,!) are
found except around � point, where spectral weight is
suppressed for !/� < 1 and is shifted to the high energy
region !/� > 1. Below T/� = 0.5 ⇠ T2/�, the suppres-
sion of the low-energy spectral weight (or relaxational
dynamics) at � and X points becomes notable, which is
consistent with the classical dynamics.
To examine the temperature dependence of the low

energy spectral weight, we show the temperature evolu-
tion of S(Q = �,!) in comparison with S(Q = M ,!)
in Fig.13. Below the high temperature scale T/� ⇠ 0.4,
S(Q = �,!) shows reduced spectral weight in the low en-
ergy region below !/� ⇠ 0.5, while S(Q = M ,!) shows
substantial spectral weight in the low energy region. We
further note that the Fourier transformation of S(Q,!),
S(r`m,!), also satisfies the symmetry properties at finite
temperatures, as discussed in section II.
For closer comparison with the classical dynamics, we

show S(Q,!) at T/� = 0.5, 0.2, 0.1, and 0 along sym-
metry lines in Fig.14. In addition to the suppression of
the low-energy spectral weight at � and X points, which
is in common with the classical spin dynamics, the low-
energy spectral weight for !/� . 0.5 decreases at K and
Y upon cooling. This suppression at the K and Y points
is characteristic of the S = 1/2 � model.
To gain insight into the di↵erence between the quan-

tum and classical dynamics at the K and Y points, we
examine the static spin-spin correlation function at zero
temperature. In Fig.15, hS↵

0S
�
ri (↵,� = x, y, z) are

shown in the 24 site cluster with the periodic bound-
ary condition. These correlators in the quantum model
are very similar to the static correlation functions of the
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FIG. 12. (color online): Equi-energy slices of the dynamical spin structure factors of the � > 0 model. The momentum
dependence of the equi-energy slices is shown by changing temperature and frequency. From the top row to the bottom row,
the equi-energy slices of the dynamical spin structure factors are shown at T/� = 1, 0.5, 0.2, and 0.1. The equi-energy slices
are prepared by averaging the spectra within an energy window whose width is 0.1. For visibility, the dynamical spin structure
factors at discrete momenta obtained by the simulation are interpolated. Here, the broadening factor ⌘/� = 0.02 is used (see
Appendix D for the definition of ⌘).

 10-1  100  101 0

 1

 2

 3

 10-1  100  101 0

 1
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 3
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(b)  0

 0.5

 1

FIG. 13. (color online): Temperature evolution of S(Q =
�,!) and S(Q = M,!) for the � > 0 model.

classical model, as shown in Fig. 4. Due to the symme-
try of the � model, the static spin-spin correlation func-
tions are zero for many spin pairs. However, there are
di↵erences among them: For example, there exist finite
nearest-neighbor correlations hS↵

0S
�
ri (↵,� = x, y, z) for

↵ = � and the additional second nearest-neighbor corre-
lations for ↵ 6= �. The fact that these correlations are

finite, while they are absent in the classical limit, indi-
cates that quantum fluctuations are important even when
T > T1.

The most significant di↵erence is the nearest-neighbor
correlations for ↵ = �, which are zero in the classical
model due to the the local symmetry discussed in Sec. II.
The nearest-neighbor ferromagnetic correlations in the
real space hinder the antiferromagnetic low-energy fluc-
tuations at the Y and K points in the momentum space.
As a result, these correlations harden the spin fluctua-
tions at these momenta. In other words, these correla-
tions suppress the relaxational dynamics and introduce
the quasi-collective precessional dynamics at these mo-
menta.

A quantitative description of the classical-quantum
crossover is obtained by examining temperature depen-
dence of the typical static spin-spin correlation functions
shown in Fig. 16. While the o↵-diagonal nearest-neighbor
correlations hS↵

0S
�
ri on the � bond, where (↵,�, �) is a

permutation of (x, y, z), are dominant at temperatures
above and around T2/� ⇠ 0.4, the diagonal nearest-
neighbor correlations hS↵

0S
↵
ri start to saturate upon cool-

ing for T < T2. Therefore, the classical precessional
dynamics due to the o↵-diagonal nearest-neighbor cor-
relations governs the dynamics for T & T2. On the
other hand, the emergent quantum dynamics is gener-
ated by the diagonal nearest-neighbor correlations for
T < T2. Here, we note that dominance of the o↵-diagonal
nearest-neighbor correlations originates from their Curie-
like temperature dependence in the high temperature re-
gion, which is evident in the inset of Fig. 16, while tem-
perature dependence of the diagonal nearest-neighbor
and third nearest-neighbor correlations shows T�2 and
T�3 scaling, respectively. In Appendix E we show how
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FIG. 14. (color online): Dynamical spin structure factors of
the S = 1/2 AFM � model at (a) T = 0.5, (b) T = 0.2, (c)
T = 0.1, and (d) T = 0, along symmetry lines. For visibility,
the broadening factor ⌘/� = 0.02 is used (see Appendix D for
the definition of ⌘).

these power-law behaviors can be obtained using a high
temperature expansion.

V. DISCUSSION

In this work, we investigated classical and quantum
dynamics of the � model, the bond-dependent symmet-

ric and anisotropic spin interaction on the honeycomb
lattice. Such exchange interaction arises in strongly
spin-orbit-coupled Mott insulators, in addition to the
usual Heisenberg and Kitaev (the bond-dependent Ising)
interactions7,14. There exist a number of so-called “Ki-
taev materials” such as ↵,�, �-Li2IrO3 and ↵-RuCl3,
where the Kitaev interaction, if dominant, may lead to
a quantum spin liquid phase. However, the strength of
the � interaction can be as large as that of the Kitaev
interaction, especially in the case of ↵-RuCl3, according
to recent ab initio computations15. The presence of other
interactions has been regarded as an obstacle for realiz-
ing the quantum spin liquid ground state in this class of
materials.

On the other hand, the � interaction is also highly frus-
trated at the classical level, just like the Kitaev model.
Given that the strength of this interaction is significant
in some materials, the nature of the quantum ground
state of the � model is highly relevant for the inter-
pretation of the experiments. In the case of ↵-RuCl3,
for example, it has been speculated that the scatter-
ing continuum seen in recent neutron scattering exper-
iment may come from a nearby quantum spin liquid even
though the actual ground state is a magnetically ordered
state33,34. The magnetic order can be suppressed by ex-
ternal in-plane magnetic field and the resulting param-
agnetic state is speculated to be a field-induced quantum
spin liquid18,20,21. Currently it is highly debated whether
the Kitaev interaction or other interactions or both could
be responsible for the formation of a putative quantum
spin liquid ground state.

In the present work, we focused on the � interaction
and pointed out the similarity to the Kitaev model, in
the correspondence between classical and quantum dy-
namics. We showed that the zero mode structure of the
highly degenerate manifold of the classical ground states
is reflected in the classical dynamical spin structure fac-
tor. In addition, we clarified di↵erent roles of relaxational
and precessional dynamics in the dynamical spin struc-
ture factor of the classical model. Remarkably this fea-
ture survives in the quantum model down to very low
energy scales. This would imply that the full degener-
ate manifold of the classical states are participating in
quantum fluctuations down to very low energy scales.
This situation resembles the results of the Kitaev model,
obtained in a previous study2, where the quantum dy-
namical spin structure factor is qualitatively similar to
the classical results down to low energies above the small
flux gap in the underlying spin liquid ground state. This
correspondence in the Kitaev model was apparent even
in the temperature/energy window where the underlying
low energy degrees of freedom are Majorana fermions,
not the semiclassical spins. Since the quantum � model
is not exactly solvable, we do not know the true quantum
ground state at zero temperature. It has been suggested
that order by quantum disorder leads to a symmetry-
broken state8. The resemblance to the Kitaev model,
however, suggests that the quantum ground state of the
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FIG. 15. (color online): Real-space static spin-spin correlation function, hS↵
0S

�
ri (↵,� = x, y, z), of the S = 1/2 � > 0 model on

the 24 site cluster with periodic boundary condition, at T = 0. The location of the origin 0 is denoted by the open circle (�).
The radiuses of the closed circles at r represent the amplitude of |hS↵

0S
�
ri|, while the color of the closed circles shows hS↵

0S
�
ri.

Within numerical accuracy, there is no spin-spin correlation represented by a circle with a radius smaller than the width of the
solid lines representing the bonds.
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FIG. 16. (color online): Temperature dependence of static
spin-spin correlations of the AFM � model on the 24 site
cluster. Here, the error bars, which are smaller than or com-
parable to the symbol size, are the standard errors estimated
by several random initial vectors.

� model may also be a quantum spin liquid, which re-
sults from the “collapse” of the degenerate classical man-
ifold. Such conclusion may also be consistent with a re-
cent DMRG computation of the same model24, where the
ground seems to be a highly correlated quantum param-
agnet. If the � model can indeed support a quantum spin
liquid ground state, the presence of this interaction in

real materials may not necessarily be an obstruction for
the realization of the quantum spin liquid ground state.
The firm answer to this question would require further
studies of the quantum and classical models with both
the Kitaev and � interactions.
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FIG. 17. (a) Two-sublattice decomposition of the honeycomb
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Appendix A: Zero Modes Structure

The momentum space distribution of the zero modes
can be derived from the set of constraints satisfied by the
ground state manifold. As reported by Rousochatzakis
and Perkins8, the classical ground state of the AFM �
model satisfies the following constraints on each bond of
the lattice:

Sx
1 = �Sy

2 , and Sy
1 = �Sx

2 for z � bonds,

Sx
1 = �Sz

2 , and Sz
1 = �Sx

2 for y � bonds,

Sy
1 = �Sz

2 , and Sz
1 = �Sy

2 for x� bonds, (A1)

where 1 and 2 denote the two sites on the given bond.
Eq. A2 implies that the following identities hold for any
ground state configuration:

Sx
A = �Sy

B , Sy
A = �Sx

B , Sx
A = �Sz

B ,

Sz
A = �Sx

B , Sy
A = �Sz

B , Sz
A = �Sy

B , (A2)

where Sµ
A =

P
j2A Sµ

j and Sµ
B =

P
j2B Sµ

j and (A,
B) denote the two sublattices of the honeycomb lat-
tice shown in Fig. 17 (a). The conditions (A2) lead to
Sx
A = Sy

A = Sz
A, S

x
B = Sy

B = Sz
B and Sµ

A+Sµ
B = 0, imply-

ing that the ground states of the classical AFM �-model
have no zero momentum component. This simple analy-
sis proves the absence of elastic (! = 0) spectral weight
at the � point.

Our next goal is to demonstrate the absence of elastic
weight at the X points. For this purpose, we divide
the honeycomb lattice into four sublattices, as shown in
Fig. 17 (b). Without loss of generality, we prove the
statement for one of the three X points, say X1. The C6

symmetry of the honeycomb lattice guarantees that the

result is the same for X2 and X3. The X1 component
of a given spin configuration is:

Sµ
X1

=
2p
N

[Sµ
1 + Sµ

2 � Sµ
3 � Sµ

4 ] (A3)

where Sµ
r =

P
j2r S

µ
j and the integer index 1  r  4

denotes each of the six sublattices and N is the total
number of sites. From the general ground state condition
(A2), we obtain:

Sy
1 = �Sz

2 , Sz
1 = �Sy

2 , Sx
1 = �Sy

4 ,

Sy
1 = �Sx

4 , Sz
1 = �Sx

4 , Sx
1 = �Sz

4 ,

Sx
2 = �Sy

3 , Sy
2 = �Sx

3 , Sx
2 = �Sz

3 ,

Sz
2 = �Sx

3 , Sy
3 = �Sz

4 , Sz
3 = �Sy

4 . (A4)

These identities give Sx
1 = �Sy

4 = Sz
3 = Sx

2 , Sx
3 =

�Sy
2 = Sz

1 = �Sx
4 , implying that Sx

X1
= 0. Simi-

larly, Eq. A4 leads to Sy
1 = �Sz

2 = Sx
3 = �Sy

2 , S
z
1 =

�Sx
4 = Sy

1 = �Sz
2 , S

z
3 = �Sy

4 = Sx
1 = �Sz

4 , implying
that Sy

X1
= Sz

X1
= 0. In other words, the ground state

configurations of the AFM � model have no � or Xµ

(µ = 1, 2, 3) components, implying the absence of elastic
(! = 0) spectral weight at any of those wave vectors.

Appendix B: Symmetry analysis of S↵�(r, r0,!)

Here we derive selection rules of the real space dynam-
ical spin structure factor of H for arbitrary spin S. For
this purpose, we introduce the six sublattice decomposi-
tion of the honeycomb lattice that is depicted in Fig. 58.
We demonstrate that six out of the nine components of
the real space and real time magnetic structure factor,

S↵�(r, r0, t) = hS↵
r (0)S

�
r0(t)i, (B1)

always vanish as a consequence of the Hamiltonian sym-
metries that we discuss next.
It was noticed in Ref. 8 that the Gamma model (1) is

invariant under a set of three spin transformations acting
on each of the six sublattices depicted in Fig. 5.

• If we decompose the full lattice into the white
hexagons shown in Fig. 5, the Hamiltonian H is
invariant under the symmetry operation:

Ra =
Y

i2{1,4}

C2x(i)
Y

i02{2,5}

C2y(i
0)

Y

i002{3,6}

C2z(i
00). (B2)

• Similarly, a lattice decomposition into the dark grey
hexagons shown in Fig. 5 reveals the symmetry op-
eration:

Rb =
Y

i2{6,5}

C2x(i)
Y

i02{3,4}

C2y(i
0)

Y

i002{1,2}

C2z(i
00). (B3)

• Finally, a decomposition into the light grey
hexagons in Fig. 5 leads to the symmetry opera-
tion:

Rc =
Y

i2{2,3}

C2x(i)
Y

i02{1,6}

C2y(i
0)

Y

i002{4,5}

C2z(i
00). (B4)
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We will derive now selection rules based on these sym-
metries. Given that these selection rules are excatly the
same for any pair of sites r and r0 belonging to a given
pair of sublattices ⌫ and ⌫0, we will use the notation
hS↵

⌫ (0)S
�
⌫0(t)i instead of hS↵

r (0)S
�
r0(t)i. We start by con-

sidering spin-spin correlators between sites on the same
sublattice, i.e., both r and r0 belong to the same sublat-
tice ⌫ (1  ⌫  6). O↵-diagonal contributions involve
a product of two di↵erent spin components S↵

⌫ and S�
⌫

with ↵ 6= �. Because both spin operators belong to the
same sublattice, they rotate about the same axis under
the transformations Ra, Rb or Rc. We can always choose
the transformation R⌘ that corresponds to a ⇡ rotation
about the ↵-axis. Given that ↵ and � are di↵erent com-
ponents, we have:

R†

⌘S
↵
⌫ R⌘ = S↵

⌫ , and R†

⌘S
�
⌫R⌘ = �S�

⌫ , (B5)

implying that

hS↵
⌫ (0)S

�
⌫ (t)i = Tr[e�(H/kBT )S↵

⌫ (0)S
�
⌫ (t)]

= Tr[R†

⌘e
�(H/kBT )S↵

⌫ (0)S
�
⌫ (t)R⌘]

= Tr[e�(H/kBT )R†

⌘S
↵
⌫ (0)R⌘R†

⌘S
�
⌫ (t)R⌘]

= �hS↵
⌫ (0)S

�
⌫ (t)i = 0. (B6)

By using this result and and from the Hamiltonian sym-
metry under the product of a spin rotation by 2⇡/3 about
the [111] direction and an orbital rotation by the same
angle along the direction perpendicular to the plane of
the honeycomb lattice, we obtain:

hS↵
⌫ (0)S

�
⌫ (t)i = �↵�hSz

⌫ (0)S
z
⌫ (t)i (B7)

for general values of ↵ and �.
We consider now the spin-spin correlator (B1) for r and

r0 belonging to di↵erent sublattices with the same parity
(⌫ 6= ⌫0 and ⌫ + ⌫0 even). For any diagonal component
(µ = ⌫), it is easy to verify that at least one of the three
symmetry transformations, Ra, Rb or Rc changes the
sign of only one of the two spin operators:

R†

⌘S
↵
⌫ R⌘ = ±S↵

⌫ , and R†

⌘S
↵
⌫0R⌘ = ⌥S↵

⌫0 . (B8)

Here ⌘ = a, b or c denotes the transformation that satis-
fies (B8). Note that R†

⌘ = R⌘. Once again, following the
same procedure as in Eq. (B6), we obtain

hS↵
⌫ (0)S

↵
⌫0(t)i = 0. (B9)

By using a similar procedure, we can demonstrate that
three, out of the six, o↵-diagonal correlators between dif-
ferent sublattices with the same parity are also equal to
zero:

hSx
1 (0)S

y
3 (t)i = hSy

1 (0)S
z
3 (t)i = hSz

1 (0)S
x
3 (t)i = 0,

hSx
1 (0)S

z
5 (t)i = hSz

1 (0)S
y
5 (t)i = hSy

1 (0)S
x
5 (t)i = 0,

hSy
2 (0)S

z
4 (t)i = hSz

2 (0)S
x
4 (t)i = hSx

2 (0)S
y
4 (t)i = 0,

hSy
2 (0)S

x
6 (t)i = hSx

2 (0)S
z
6 (t)i = hSz

2 (0)S
y
6 (t)i = 0,

(B10)

We note that hS↵
r (0)S

�
r0(t)i = 0 implies hS�

r0(0)S↵
r (t)i =

0.
Similarly, using the symmetries Ra, Rb and Rc, we

can demonstrate that:

hSx
1 (0)S

x
6 (t)i = hSz

1 (0)S
z
6 (t)i = hSx

1 (0)S
y
6 (t)i

= hSy
1 (0)S

x
6 (t)i = hSz

1 (0)S
y
6 (t)i

= hSy
1 (0)S

z
6 (t)i = 0,

hSx
1 (0)S

x
2 (t)i = hSy

1 (0)S
y
2 (t)i = hSx

1 (0)S
z
2 (t)i

= hSz
1 (0)S

x
2 (t)i = hSz

1 (0)S
y
2 (t)i

= hSy
1 (0)S

z
2 (t)i = 0,

hSy
1 (0)S

y
4 (t)i = hSz

1 (0)S
z
4 (t)i = hSx

1 (0)S
z
4 (t)i

= hSz
1 (0)S

x
4 (t)i = hSx

1 (0)S
y
4 (t)i

= hSy
1 (0)S

x
4 (t)i = 0,

hSx
2 (0)S

x
1 (t)i = hSy

2 (0)S
y
1 (t)i = hSx

2 (0)S
z
1 (t)i

= hSz
2 (0)S

x
1 (t)i = hSz

2 (0)S
y
1 (t)i

= hSy
2 (0)S

z
1 (t)i = 0,

hSy
2 (0)S

y
3 (t)i = hSz

2 (0)S
z
3 (t)i = hSx

2 (0)S
z
3 (t)i

= hSz
2 (0)S

x
3 (t)i = hSx

2 (0)S
y
3 (t)i

= hSy
2 (0)S

x
3 (t)i = 0,

hSx
2 (0)S

x
5 (t)i = hSz

2 (0)S
z
5 (t)i = hSx

2 (0)S
y
5 (t)i

= hSy
2 (0)S

x
5 (t)i = hSz

2 (0)S
y
5 (t)i

= hSy
2 (0)S

z
5 (t)i = 0,

= hSz
6 (0)S

x
5 (t)i = hSx

6 (0)S
y
5 (t)i

= hSy
6 (0)S

x
5 (t)i = 0. (B11)

It is clear then that the symmetries Ra, Rb and Rc con-
strain six components of the real space spin structure
factor to be identically zero. The six components that
vanish depend on the two sublattices to which the vec-
tors r and r0 belong to.

Appendix C: MSR treatment of the classical Kitaev
model

In the honeycomb Kitaev model, defined by

K↵�
ij =

⇢
K ↵ = � = hiji
0 otherwise

, (C1)

each component of a given spin is correlated only with
one component of one neighboring spin – the one it in-
teracts with. Thus,

�
G�1

0

�↵�
ij

=

8
<

:

�i! + �� ↵ = �, i = j
�K ↵ = � = hiji
0 otherwise

(C2)

from which we find that C0 becomes a 2⇥2 matrix, given
by

C0(!) =
1

2

X

m=±

✓
1 m
m 1

◆
1

!2 + �2(�+mK)2
. (C3)
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Physically, this indicates that correlations decay at two
characteristic rates, as given by the two eigenvalues
�(� ± K). The dynamic structure factor is obtained
by taking the Fourier transform, S(q,!) = 3C11(!) +P

� e
iq·�C12(!), where � denotes the vectors connecting

nearest neighbors. Evidently, for the anti-ferromagnetic
Kitaev model, correlations at q = 0 decay only at the
fast rate, �(� + K), leading to a depletion in the dy-
namic structure factor at low frequencies.

At finite g > 0, the infinite series in Eq. (15), becomes
a 2⇥ 2 matrix equation, with

G0(!) =

✓
�i! + �� �K

�K �i! + ��

◆�1

, (C4)

while the self energy calculation yields

⌃(!) = �g2K2 1

�i! + 2��

T

�2 �K2

✓
� K
K �

◆
. (C5)

Using Eq. (15), we obtain

C(!) ⇡ 1

2

X

m=±1

✓
1 m
m 1

◆
(C6)

⇥ 2�T
����i! + �(�+mK) + g2K2T

�2�K2
�+mK

�i!+2��

���
2 .

We obtain the dynamic structure factor by Fourier trans-
forming this result, see Fig. 18. Note, for example, that
only them = 1 term contributes to the dynamic structure
factor at q = 0, which is suppressed at low frequencies
for the AFM Kitaev, K > 0. Evidently, the self-energy,
Eq. (C5), is larger for m = 1, producing a precession
peak at finite !, where the low frequency correlations
are suppressed.

�

!
/K

�

!
/K

FIG. 18. Dynamic structure factor as obtained in Eq. (C6),
for (a) the AFM Kitaev K > 0, and (b) the FM Kitaev K < 0
models. Here we used � = 0.25, � = 1.05K and g2T = 0.1K.

Appendix D: Details of the ED calculation

When every eigenvalue {E⌫} and eigenvector {|⌫i} of
the hamiltonian H are known, the Green’s function at a
finite temperature ��1 is given as

GAB
� (!) =

X

⌫,µ

e��E⌫

Z(�)

h⌫|A† |µi hµ|B |⌫i
! + i⌘ + E⌫ � Eµ

, (D1)

where Z is the partition function of the system defined

as Z(�) =
X

⌫

e��E⌫ . For later use, we rewrite the above

expression of GAB
� as

GAB
� (!) =

X

⌫

e��E⌫

Z(�)
h⌫|A†

1

! + i⌘ + E⌫ �HB |⌫i .

(D2)

Here, we reformulate Eq.(D2) with a typical pure
state29,30,37–41 | �i to avoid using the whole set of E⌫

and |⌫i. First, we note that the normalized typical state
is naively expected to behave as

| �i ⇠
X

⌫

ei'⌫
e�

�
2 E⌫

p
Z(�)

|⌫i , (D3)

where '⌫ 2 [0, 2⇡) are random numbers. By introducing
a projection operator,

P̂⌫ = |⌫i h⌫| , (D4)

we rewrite the formula based on canonical ensemble,
Eq.(D2), as

GAB
� (⇣) ⇠

X

⌫

h � | P̂⌫A
†

1

⇣ + E⌫ �HBP̂⌫ | �i . (D5)

Thus far, the exact projection operator P̂⌫ requires the
whole set of |⌫i.
The important step is to find an e�cient implementa-

tion of the projection operator P̂⌫ . Although there is no
O(NF) implementation of the exact P̂⌫ in the literature
as far as we know, where NF is the dimension of the Fock
space, there is a filter operator42–45 that constructs equi-
energy shells and is realizable with the numerical cost
of O(NF) by employing the shifted Krylov method46, as
follows.
The filter operator42 is defined by integrating the re-

solvent of Ĥ along a contour C�,⇢ defined by z = ⇢ei✓+�
with 0  ✓ < 2⇡ as

P̂�,⇢ =
1

2⇡i

I

C�,⇢

dz

z �H . (D6)

If the filter operator is applied to an arbitrary wave func-
tion |�i =

P
⌫ d⌫ |⌫i, the operator filters the eigenvectors

with the eigenvalues E⌫ 62 (��⇢, �+⇢). When a small �
limit is taken, the filter operator realizes a microcanonical
ensemble. The filter operator is practically implemented
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as a Reimann sum43,44: The discretized filter operator is
defined as

P̂�,⇢,M =
1

M

MX

j=1

⇢ei✓j

⇢ei✓j + � �H , (D7)

where ✓j = 2⇡(j�1/2)/M . Multiplication of P̂�,⇢,M to a
wave function is simply realized by the shifted Krylov
subspace method while it is hardly achievable by the
standard Lanczos algorithm.

By introducing an appropriate energy grid measured
from the low-energy onset Eb in energy axis,

Em = Eb + (2m+ 1)✏, (D8)

the set of the filter operators {P̂Em,✏,M} with the dis-
cretization parameters,

� = (Eb, ✏,M), (D9)

indeed replace the projection operators {P̂n}. The fil-
tered typical state given by

|�m
�,�i = P̂Em,✏,M |��i (D10)

is a random vector residing in an equi-energy shell
(Em � ✏, Em + ✏), which corresponds to a microcanoni-
cal ensemble.

A representation of the Green’s function is thus
achieved by employing the filtered typical pure states
{| m

�,�i} as

eGAB
�,�(⇣) =

L�1X

m=0

h m
�,� |A

†
1

⇣ + Em �HB | m
�,�i .(D11)

After taking appropriate limits and average over the dis-
tribution of the initial random vectors of the typical pure
states, we indeed replace the canonical ensemble pre-
scription by the typical pure state formula. By setting
⇣ = ! + i⌘ and

A = B = Ŝ↵
+Q ⌘ N�1/2

X

`

e+iQ·R`S↵
` , (D12)

in Eq.(D11), we obtain the dynamical spin structure fac-
tor at a momentum Q and a frequency ! as,

eS�,�(Q,!) = � 1

⇡
Im

X

↵=x,y,z

L�1X

m=0

h m
�,� |S

↵
�Q

⇥ 1

! + i⌘ + Em �HS↵
+Q | m

�,�i ,(D13)

where S↵
` (↵ = x, y, z) is an S=1/2 spin operator.

In the present paper, we set Eb in Eq.(D9) as Eb =
�8.6 (< E0 ' �8.57) for the 24 site cluster of the �
model. The distance among the energy grid points 2✏ is
set as (Ecut � Eb)/L, where L = 128 and Ecut is cho-
sen depending on T as Ecut = max{min{|Eb|, T ln 1014+
Eb}, 4}. A random vector is chosen as a typical pure
state | 0i at infinite temperature. Then, a typical pure
state at finite inverse temperature � is given by | �i =
e��H/2| 0i/h 0|e��H| 0i.

Appendix E: High temperature expansion

Here, high temperature expansion (small � expansion)
of static spin correlations is obtained up to third order of
�. Within the language of thermal pure quantum states30

one can write the finite temperature expectation value of
an operator O as

hOi =

E
" 
X

⌫

c⇤⌫ h⌫|
!
e��H/2Oe��H/2

 
X

µ

cµ |µi
!#

E
" 
X

⌫

c⇤⌫ h⌫|
!
e��H

 
X

µ

cµ |µi
!# ,

(E1)

where {c⌫} is a set of random complex numbers that
satisfy the normalization

P
⌫ |c⌫ |2 = 1 and the average

E[· · · ] is taken over the probability distribution of the
random complex numbers. The denominator is estimated
as

E
" 
X

⌫

c⇤⌫ h⌫|
!
e��H

 
X

µ

cµ |µi
!#

= 1 +
�2

2NF
tr[H2] +

�4

24NF
tr[H4] +O(�6), (E2)

where NF is the Fock space dimension and E[c⇤⌫cµ] =
�⌫,µ/NF is used. Then, the numerator is estimated by
expanding it with respect to �. The first term is

E
" 
X

⌫

c⇤⌫ h⌫|
!
O

 
X

µ

cµ |µi
!#

=
X

⌫,µ

E[c⇤⌫cµ] h⌫|O |µi

=
1

NF

X

⌫

h⌫|O |⌫i = 1

NF
tr[O]. (E3)

2

3

4 5

6

1z

yx

z

xy

FIG. 19. (color online): Site indices used in calculations of
spin correlations.
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The higher order terms are given by

(2nd term) = � �

2NF
tr[OH+HO], (E4)

(3rd term) =
�2

4NF
tr[

1

2
OH2 +HOH+

1

2
H2O], (E5)

(4th term) = � �3

8NF
tr[

1

6
OH3 +

1

2
HOH2

+
1

2
H2OH+

1

6
H3O]. (E6)

When O is a spin-spin correlation defined byQ
` (S

x
` )

n`x (Sz
` )

n`y (Sz
` )

n`z (n`↵ = 0, 1), tr[O] = 0 or, at
least, tr[O] ⌧ NF for

P
`,↵ n`↵ 6= 0, because tr[O]/NF

is the expectation value hOi at � = 0. Only if O is the
identity matrix, tr[O] = NF.

1. yx correlation for nearest neighbor z bond

The high temperature expansion of hSy

0S
x
ri for the

nearest neighbor z bonds is given as follows. The lowest
order of a finite tr[HmSy

2S
x
1Hn]/NF (see Fig. 19 for the

site indices) is given by

�Sy
2S

x
1 · Sy

2S
x
1 =

�

16
. (E7)

When we set O = Sy
2S

x
1 in Eq. (E4),

(2nd term) = ���
16

. (E8)

2. zz correlation for nearest neighbor z bond

The high temperature expansion of hSz
0S

z
ri for the

nearest neighbor z bonds is given as follows. The lowest
order of a finite tr[HmSz

2S
z
1Hn]/NF (see Fig. 19 for the

site indices) is, for example, given by

�2Sz
2S

z
1S

x
2S

y
1S

y
2S

x
1 =

�2

64
. (E9)

Then, if we set O = Sz
2S

z
1 in Eqs. (E4) and (E5),

(2nd term) = 0, (E10)

(3rd term) =
�2�2

64
. (E11)

3. zz correlation for third nearest neighbor

The high temperature expansion of hSz
0S

z
ri for the

third nearest neighbor pairs across hexagons is given as
follows. The lowest order of a finite tr[HmSz

3S
z
6Hn]/NF

(see Fig. 19 for the site indices) is, for example, given by

�3Sz
3S

z
6 · Sz

3S
y
2 · Sy

2S
x
1 · Sz

1S
z
6 =

�3

256
, (E12)

or

�3Sz
3S

z
6 · Sz

3S
x
4 · Sx

4S
y
5 · Sy

5S
z
6 =

�3

256
. (E13)

Then, if we set O = Sz
3S

z
6 in Eqs. (E4), (E5), and (E6),

(2nd term) = 0, (E14)

(3rd term) = 0, (E15)

(4th term) =
3�3�3

384
. (E16)
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