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Employing the self-learning quantum Monte Carlo algorithm, we investigate the frustrated transverse-field
triangle-lattice Isingmodel coupled to a Fermi surface. Without fermions, the spin degrees of freedom undergoes
a second-order quantum phase transition between paramagnetic and clock-ordered phases. This quantum critical
point (QCP) has an emergent U(1) symmetry and thus belongs to the (2+1)D XY universality class. In the
presence of fermions, spin fluctuations introduce effective interactions among fermions and distort the bare
Fermi surface towards an interacting one with hot spots and Fermi pockets. Near the QCP, non-Fermi-liquid
behavior are observed at the hot spots, and the QCP is rendered into a different universality with Hertz-Millis type
exponents. The detailed properties of this QCP and possibly related experimental systems are also discussed.

I. INTRODUCTION

Quantum criticality in correlated itinerant electron systems
is a subject with great theoretical and experimental signifi-
cance1–8, and plays a vital role in the study of anomalous trans-
port, strange metal and non-Fermi-liquid9–12 in heavy-fermion
materials13,14, cupurates and Fe-based high-temperature su-
perconductors15–17. Among its many interesting aspects, the
fate of the Fermi surface (FS) and the nature of low-energy
excitations in the quantum critical region are of particular im-
portance.

In this paper, we focus on one family of itinerant QCPs,
where order parameters have finite wave vectors, such as anti-
ferromagnetism (AFM) and charge- or spin- density wave
(CDW/SDW) states. Although extensive efforts have been
devoted, theoretical understanding about these QCPs has not
yet reached convergence, due to its nonperturbative nature. For
example, according to theHertz-Millis-Moriya theory1–3, such
a QCP in 2D is characterized by mean-field scaling exponents
with dynamic critical exponent z = 2, and renormalization
group (RG) analysis reveals linear temperature (T) dependence
in spin susceptibility with logarithmic corrections. However,
as higher order contributions are taken into account, theories
beyond Hertz-Millis-Moriya have been proposed and exten-
sively studied18–24, where novel phenomena, e.g. anomalous
dimensions, are expected to emerge.Recently, the development
in sign-problem-free quantum-Monte-Carlo (QMC) methods
provides a new path way to sharpen our understanding about
these open questions, and this unbiased numerical technique
has been utilized to study various itinerant QCPs including
Ising-nematic25,26, ferromagnetic27, CDW28 and SDW29–32.
For SDW QCPS, the signature of a z = 2 has been ob-
served29–32, but the linearT dependence predicted in theHertz-
Millis-Moriya theory and the possible anomalous dimensions
have not yet been explored in QMC studies. In contrast to the
conclusion of z = 2, which comes from the leading-order ran-

dom phase approximation (RPA), these two predictions rely on
higher order effects and RG flows, and thus will only arise in
the close vicinity of the QCP, which are challenging for QMC
simulations to explore, because (1) in most previous studies,
the QCPs turn out to be covered by a superconducting dome,
which prevents the access to the quantum critical region and
(2) the diverging correlation length near a QCP enhances the
finite-size effect, thus requiring larger system sizes to obtain
reliable results.
To overcome these difficulties, we utilize two new method-

ologies in this paper. (1) We designed a new model with
two identical copies of fermions. As have been demonstrated
previously, such a double-copy construction greatly suppress
superconductivity near the ferromagnetic QCP27. Here, using
the same general idea, we find a pristine itinerant SDW QCP
without superconductivity or any other competing orderings to
interrupt the critical scaling. (2) By employing a self-learning
quantum Monte Carlo algorithm33–39 to improve numerical
efficiency, our simulations can approach larger system sizes,
and thus the finite-size effect is under control. In the close
vicinity of the QCP, our numerical data supports the Hertz-
Millis-Moriya prediction, including the linear T dependence2,
and gives a very small upper bound on the numerical value of
anomalous dimension.
It is also worthwhile to highlight that in comparison with

previous studies25,26,28–32, our model, which resides on a tri-
angular lattice, is bestowed with the new ingredient of geo-
metric frustration. The frustration results in an emergent U(1)
symmetry, as well as a Berezinskii-Kosterlitz-Thouless (BKT)
phase. On the experimental side, our findings have immediate
relevance towards the understanding of the recent experiments
in frustrated itinerant systems, such as anomalous transport in
rare-earth triangular lattice antiferromagnet CeCd3As3

42 and
frustrated Ising-like heavy-fermion compoundCePdAl43. And
the newly discovered transition-metal superconductor families,
CrAs44, MnP45 and CrAs1−xPx

46, where non-Fermi-liquid be-
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FIG. 1. (a) Illustration of our model. Fermions reside on two of the layers (λ = 1,2) with intra-layer nearest-neighbor hopping t. The middle
layer is composed of Ising spins sz

i
, subject to nearest-neighbor antiferromagnetic Ising coupling J and a transverse magnetic field h. Between

the layers, an onsite Ising coupling is introduced between fermion and Ising spins (ξ). (b) The bare FS of the Hfermion (yellow circle) and the
folded FS (orange circles), coming from translating the bare FS by momentum Q (blue arrow). The folded FS contains Fermi pockets and hot
spots. (c) Semi-quantitative phase diagram. The dashed lines mark the phase boundaries of the naked bosonic model Hspin, with a QCP (open
magenta dot) at hc = 1.63(1)40,41. The filled areas are the phases with fermions. The orange area is the clock phase with long-range order of
Ising spins and Fermi pockets and hot spots, the pink area is the BKT phase with power-law correlation functions, the blue area is the quantum
critical region , and the white area is the disordered paramagnetic phase. The QCP (solid blue dot) is shifted to a higher value h = 1.83(1) in
comparison to the naked bosonic one, where non-fermi-liquid behavior emerges near the hot spots.

havior close to the itinerant antiferromagnetic quantum critical
point has been observed.

II. MODEL AND METHOD

Our model is defined on layered triangular lattice with

H = Hfermion + Hspin + Hf-s. (1)

As shown in Fig. 1 (a), fermions, described by

Hfermion = −t
∑
〈i, j 〉,λ,σ

(c†i,λ,σcj,λ,σ + h.c.) − µ
∑
i

ni, (2)

subject to intra-layer nearest-neighbor hopping t and chemical
potential µ, reside on two of the layers λ = 1, 2. The middle
layer, decribed by

Hspin = J
∑
〈i, j 〉

szi szj − h
∑
i

sxi , (3)

is composed of Ising spins szi with frustrated antiferromagnetic
Ising coupling J > 0 and a transverse magnetic field h along x.
Fermions and Ising spins are coupled together via an inter-layer
onsite Ising coupling

Hf-s = −ξ
∑
i

szi (σ
z
i,1 + σ

z
i,2), (4)

where σz
i,λ =

1
2 (c
†

i,λ,↑
ci,λ,↑ − c†

i,λ,↓
ci,λ,↓) is the fermion spin

along z and ξ is the coupling strength. We set t = 1, J = 1,
µ = −0.5 (electron density 〈ni,λ〉 ∼ 0.8) and leave h and ξ as
control parameters.

Hspin describes a frustrated triangular-lattice transverse-field
Ising model with extensive ground state degeneracy at h = 0.
At finite h, this degeneracy is lifted by the quantum order-
by-disorder effect, resulting in an ordered ground state with
clock pattern47. As shown in the middle layer of Fig. 1 (a),
the clock phase breaks spontaneously the translational sym-
metry40,41 and thus has an enlarged unit cell with three sublat-
tices. This phase is characterized by a complex order parameter
meiθ = m1 + m2ei4π/3 + m3e−i4π/3 where mα =

1
3N

∑N/3
i=1 szi,α

with α = 1, 2, 3 representing magnetization of the three sublat-
tices. In the momentum space, this order parameter has a finite
wave-vector k = Q = ( 2π3 ,

2π√
3
) as shown in Fig. 1(b). Upon in-

troducing quantum/classical fluctuations via increasing h orT ,
the ordered phase can melt. The quantum melting is through
a second-order quantum phase transition at hc = 1.63(1) with
an emergent U(1) symmetry41. Because of this emergent con-
tinuous symmetry, despite that Hspin describes an Ising model,
this quantum critical point belongs to the (2+1)D XY univer-
sality class and the thermal melting of the clock phase involves
an intermediate BKT phase41.
In the presence of the fermion-spin coupling, which is

relevant in RG sense, the three phases survive with shifted
phase boundaries as shown in Fig. 1(c). Furthermore, because
fermion and Ising spins are coupled together, the Ising-spin
clock phase immediately generates a SDW ordering in the
fermionic sector with finite ordering wavevector Q, which
folds the Brillouin zone and renders a new Fermi surface (FS)
with pockets as schematically shown in Fig. 1(b). Near the
QCP, the quasi-particle at the tip of the FS pockets lose their
coherence, forming the so-called hot spots.
To unveil this processwith unbiased numerical approach, we

performed self-learning determinantal quantum Monte Carlo
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FIG. 2. Quasiparticle weight Z(T) [(a) and (b)] and fermion self-
energy Σ(k, ωn) [(c) and (d)]. (a) and (c) shows the ordered phase
h = 1.0 < hc , while (c) and (d) are at the QCP h ≈ hc . In (a) and
(c), Z(T) is suppressed on the hot spot due to the gap opening and
correspondingly ImΣ(k, ωn) diverges, whereas in (b) and (d), Z(T)
is suppressed at the hot spot due to the emergence of non-Fermi-
liquid behavior and correspondingly the ImΣ(k, ωn) saturate at low
frequency.

simulations33,39. While details are given in Appendix A, here
we highlight two key aspects of the method: i) to update the
configuration weight – comprised of the contribution from
both Ising spin Boltzmann factor and fermion determinant –
more effectively, we implement cluster update48 as well as
the cumulative updates in self-learning Monte Carlo33–36,38,39.
This advancedMonteCarlo technique enable us to comfortably
simulate systems as large as L = 30 and temperature as low as
βt = 40, and overcome the critical slowing down in the vicinity
of QCP. ii) the two layer construction of fermions guarantees
that our Hamiltonian is invariant under an anti-unitary (time-
reversal followed by an orbital rotation iτy) transformation, so
that we can simulate this system without sign problem at any
filling27.

III. LOCATING QCP AND NON-FERMI LIQUID AT
HOT-SPOTS

To locate the QCP, we measure both correlation ratio49 and
binder ratio of the Ising spins as a function of h. As shown in
Fig. 6 in Appendix B and Fig. 8 in Appendix D, the crossing
points of both ratios give rise to hc = 1.83(1) and no super-
conductivity emerges near the QCP. In the insets of Figs. 2(a)
and (b), Fermi surfaces at h = 1.0 < hc and h ≈ hc are pre-
sented respectively. Here, we plot the fermionGreen’s function
G(k, β2 ). At low temperature, G(k, β2 ) ≈ βA(k, ω = 0)25,27 and
thus this quantity reveals the spectral function, which peaks at

the Fermi surface. At h < hc , the zone folding induced by
the Ising-spin clock phase is clearly manifested, with Fermi
pockets and hot spots similar as those shown in the schematic
plot (Fig. 1(b)). At h ≈ hc , the zone folding disappears, indi-
cating that the lattice translational symmetry is recovered, but
non-Fermi liquid behaviors arise at hot spots. To demonstrate
the non-Fermi liquid behavior, we plot in Figs. 2(a) and (b), the
temperature dependence of quasiparticle weight calculated as
ZkF (T) =

1
1− ImΣ(kF , iω0)

ω0

, where ω0 = πT is the lowest Matsub-

ara frequency50, and in Figs. 2(c) and (d) the corresponding
fermion self-energy ImΣ(k, ω), with k at the Fermi pocket and
at the hot spot. At h < hc (Fig. 2 (a)), the quasiparticles on
the Fermi pocket are well-defined with Z(T) close to unity
and vanishing self-energy at low T . At the hot spots, due to
the gap opening from the zone folding, Z(T) vanishes with
divergent Fermi self-energy. Near the QCP (h ≈ hc), Fermi
liquid behavior is observed near the Fermi pocket with finite
Z(T) and vanishing Σ at low T . At the hot-spots, however,
Z(T) is strongly suppressed as T reduces with a finite fermi
self-energy, which are key signatures of a non-Fermi liquid.

IV. QUANTUM SCALING ANALYSIS

Next we discuss the scaling behavior at the QCP obtained
from Ising spin susceptibility, χ(T, h, q, ωn). We define q =
k − Q as the relative momentum vector with respect to the
position of the hot spots in BZ.

In the absence of fermions, theQCP iswell known40,41 in the
(2+1)D XY universality class, and the Ising spin susceptibility
takes the following form51 near the QCP,

χ =
1

ctT2 + ch |h − hc |γ + cq |q|2 + cωω2 . (5)

This behavior of bare bosonic spin susceptibility is also veri-
fied by turning off coupling to fermions in our simulation, as
showed in Fig. 7 in Appendix C.
In the presence of itinerant fermions, the fermion-boson

coupling will modify the scaling behavior at the phase transi-
tion. Because of its strong coupling nature, to understand this
itinerant QCP is a challenging task. In the past decades, var-
ious scenarios and approximations have been utilized, which
can be largely classified into three categories: (1) to the lead-
ing order, i.e. within the random phase approximation (RPA),
the fermion Landau damping introduces an extra linearω term
to χ−1, which dominates the lower-energy quantum dynamics,
transforming the dynamic critical exponent z from 1 to 21.
(2) Starting from the RPA effective theory, the RG analysis
by Millis suggests that the T dependence in χ−1 flows from
T2 to T (with logarithmic corrections) at low temperature,
ln[ln(1/T)] � 12. These results (linear ω and T dependence)
are known as the Hertz-Millis-Moriya theory3. Because the
effective dimension here is z+ d = 4, the upper critical dimen-
sion for a φ4-theory, anomalous dimensions are not expected
within these approximations. However, (3) by further taking
into account higher-order fermionic contributions beyond the
RPA, additional non-local interactions arises, which has been
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FIG. 3. Spin susceptibility χ(T, hc, q, ω). To determine the q and ω
dependence, we plot χ

−1(q)−χ−1(0)
|q | and χ−1(ω)−χ−1(0)

ω in (a) and (b).
Although linear behaviors are observed in both figures, the difference
in intersections [(a) zero and (b) finite] is crucial and indicating a clean
quadraticmomentum dependence cq |q|2 and a crossover cωω+c′ωω

2

frequency dependence. (c) presents the T dependence. At high T , the
linear relation in the inset (χ−1 vs. T2) indicates a T2 dependence.
However, the low T part deviates strongly from T2 and fits well to
linear T . The constant g here is the finite size gap, which scales
to zero in the thermodynamic limit. (d) The equal-time correlation
function. Here we compared numerical results (dots) and the analytic
theory in Eq. 8] (red solid line). The theoretical curve contains no
adjustable parameters, where all values are determined from Fig.(b)
and the L = 18 results in (c). Dashed lines (yellow and green) show
the asymptotic behaviors at low and high T respectively.

argued to result in the breakdown of the Hertz-Millis-Moriya
theory, e.g., finite anomalous exponent18–21. In this work, our
objective is to compare the unbiased numerical results with
predictions from all these three categories. Our results show
good agreement with the first two, consistent with the Hertz-
Millis-Moriya theory, while gives a very small upper bound on
the numerical value of the anomalous exponents. The details
of our results are presented in the following.
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FIG. 4. We set h = hc , ωn = 0 and plot ln(χ−1(hc,T, |q|, 0) −
χ−1(hc,T, 0, 0)) as function of ln(|q|) to obtain the power-law behav-
ior cq |q|aq | in the momentum dependence of bosonic susceptibility.

In the presence of itinerant fermions, the quantum phase
transition is found to remain second order and the spin suscep-
tibility form is found to get corrections from itinerant fermions.
A controllable quantum scaling analysis is first done by

exploring q, ω, T and |h − hc | dependence separately. For q
dependence, we found, χ−1(T, hc, q, 0) − χ−1(T, hc, 0, 0) can
be well fitted by cq |q|2 as showed in Fig. 3(a). In the Fig. 4,
we also tried to fit a general form cq |q|aq , i.e set the power aq
as free fitting parameter, and obtained aq = 1.98±0.06, which
means that the anomalous dimension η = 2−aq = 0.02±0.06,
thus gives a very small upper bound of the numerical value of
anomalous dimension.
For ω dependence, the correction is stronger and

χ−1(T, hc, 0, ω) − χ−1(T, hc, 0, 0) can be well fitted by cωω +
c′ωω

2, as showed in Fig. 3(b).
For temperature dependence, we found in Fig. 3 (c), when

q = 0 and ω = 0, the spin susceptibility can be well described
by

χ(T, hc, q = 0, ωn = 0) =
1

ctT + c′tT2 + g
, (6)

where the background constant g is put to take care of finite
size effect. As further elucidated in Fig. 5, the background
constant g reduces as system size L increases. Moreover, the
fitting parameter ct and c′t , summerized in Table I, can be seen
to converge to finite values as L increases. The converged
values of ct and c′t on the largest L we have simulated is also
shown in Fig. 3(c).
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TABLE I. The obtained fitting parameters for temperature depen-
dence of spin susceptibilities showed in Fig. 5.

L ct c′t g

18 0.038(6) 0.15(2) 0.0050(5)

24 0.034(5) 0.14(1) 0.0027(4)

30 0.033(7) 0.12(3) 0.0015(4)

In summary, the spin susceptibility in the presence of itin-
erant fermions can be described by the following form

χ(T, h, q, ωn) =

1
(ctT + c′tT2) + ch |h − hc |γ + cq |q|2 + (cωω + c′ωω2)

, (7)

where the values of the parameters are shown in Fig 3 (a),
(b) and (c). This spin susceptibility demonstrates a crossover
behavior between the low-energy Hertz-Millis-Moriya univer-

sality class and the high-energy (2+1)D XY universality class.
At low energy and temperature (T � ct/c′t or ω � cω/c′ω),
the subleading quadratic terms of ω and T become negligi-
ble and thus the Hertz-Millis-Moriya scaling is observed with
the signature linear T and ω dependence. Here, ct/c′t and
cω/c′ω define the crossover scales of temperature and energy,
and also serve as the temperature and energy cutoff in the
Hertz-Millis-Moriya theory. Above this cutoff, at high T and
ω, the quadratic T and ω terms dominate, and the (2+1)D
XY exponents are recovered up to a small and unmeasurable
anomalous dimension. This result is consistent with the under-
standing that fermion-boson coupling at this QCP is relevant
at infared in RG. As a relevant operator, this coupling becomes
stronger (weaker) at low (high) energy, and thus the scaling
exponents deviate from (recovers) the bare bosonic thoery.
To verified that these conclusions are not polluted by finite-

size effects, we examine the correlation length at the onsite
of the cross point ω∗ = cω/c′ω and T∗ = ct/c′t . At ω∗ and
T∗ the correlation length, ξ ∼

√
cq χ(q = 0), is about 4 and

7 respectively, both significantly smaller than the system size
L = 30, and thus finite-size contributions are well controlled.
It is also worthwhile to highlight that the correlation length
at T∗ is much larger than that at ω∗, implying that the linear
T dependences only arises at the close vicinity of the QCP in
comparison with the linear ω behavior. This observation is
consistent with the Hertz-Millis-Moriya theory, where the lin-
earω behavior comes from the leading order RPA corrections,
while the linear T dependence requires high order effect, i.e.
running coupling in RG, which only becomes significant near
the QCP.
The crossover behavior discussed above has a direct impact

on physical quantities. Here, as an example, we consider the
temperature dependence of the equal-time spin-spin correla-
tion function at zero wavevector C(T, q = 0, τ = 0). Based on
the susceptibility shown in Eq. (7), this correlation function
shall take the following analytic form

C(T) = −
T
δ
+

ψ

(
cω+
√
c2
ω−4c′ωδ

4πc′ωT

)
− ψ

(
cω−
√
c2
ω−4c′ωδ

4πc′ωT

)
π
√

c2
ω − 4c′ωδ

(8)

where ψ(x) is the digamma function and δ = χ(T, h, q =
0, ωn = 0)−1 = δ0+ctT +c′tT

2 is the mass of the boson modes,
which measures the distance away from the QCP, with δ = 0
at the QCP. We emphasize that here all the control parame-
ters are determined by Eq. (7) and Figs. 3(a-c), and there is
no other adjustable parameter in this theory. As shown in
Fig. 3(d), our numerical data agrees nicely with the analytic
result. More importantly, the asymptotic form of this analytic
formula demonstrates clearly a crossover behavior between
the low-T z = 2 (Hertz-Millis-Moriya) and the high-T z = 1
((2+1)D XY) critical scalings. As can be seen in Fig. 3(d),
at high temperature, C(T) ∼ coth(

√
δ/2

√
c′ωT)/2

√
c′ωδ, con-

sistent with a QCP with z = 1 and the linear ω term in
spin susceptibility plays no role here. At low T , however,

C(T) ∼ 1
π
√
c2
ω−4c′ωδ

log( cω+
√
c2
ω−4c′ωδ

cω−
√
c2
ω−4c′ωδ

) + cωπT2/3δ2. In the
close vicinity of the QCP (δ → 0 and T → 0), this low T
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asymptotic form becomes C(T) ∼ log(Λ/δ)
π
√
cω

with ultraviolet cut-
off Λ = c2

ω/c
′
ω . This logarithmic behavior is the key signature

of the z = 2 QCP.

V. DISCUSSIONS

In this paper, we examine the QCP with itinerant fermions.
For order parameters with a finite wavevector, we find that
the low energy scaling behavior agrees with the Hertz-Millis-
Moriya theory, and the fermion contributions becomes irrel-
evant at high energy. We have also provide an upper bound
of the possible anomalous dimension predicted for this QCP
beyond the Hertz-Millis-Moriya setting.

Although the linear T behavior that we observed is consis-
tent with the RG theory of Millis2, it is worthwhile to em-
phasize that in the Hertz-Millis-Moriya theory, this linear T
contribution is predicted for extremely low temperature limit,
ln[ln(1/T)] � 1. As pointed out in Ref.52, this assumption is
essentially impossible to satisfy in practice and our simulations
cannot access such an extremely low-T limit either. Instead,
our results indicate that the linear T behavior near such a QCP
survives to much higher temperature beyond ln[ln(1/T)] � 1.
Such a stable linear T behavior (at higher T) is consistent with
the model analyzed in Ref.52,which also contains a linear T
correction but with a different logarithmic correction. In prin-
ciple, one can differentiate the linear T correction in Ref.52
with that in the Hertz-Millis-Moriya theory by examining the
sub-leading logarithmic corrections. However, such a delicate
analysis is highly challenging for numerical studies and we
leave it for future investigations.
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Appendix A: Self-learning quantum Monte Carlo method

In this work, we performed the recently developed self-
learning determinantal quantum Monte Carlo (SLDQMC)
simulations33 to speed up our simulations. Before introduce
details of SLDQMC, we first briefly explain the DQMC frame-
work for our model. In DQMC, the partition function is ex-
pressed as

Z = Tr
[
e−βĤ

]
=

∑
sz1 · · ·s

z
N=±1

TrF
〈
sz1 · · · s

z
N

����(e−∆τĤ )M ���� sz1 · · · s
z
N

〉
(A1)

where S =
(
sz1 · · · s

z
N

)
denoting the Ising spins, then

Z =
∑

S1 · · ·SM

TrF 〈S1 |e−∆τĤ |SM 〉×

〈SM |e−∆τĤ |SM−1〉 · · · 〈S2 |e−∆τĤ |S1〉, (A2)

now we can trace out the fermion degrees of freedom, and
obtain the configurational weight,

ωC = ω
T I
C ω

F
C (A3)

with the Ising part

ωT I
C =

©«
∏
τ

∏
〈i, j 〉

e∆τJs
z
i,τ s

z
j,τ

ª®¬ ©«
∏
i

∏
〈τ,τ′〉

Λeγs
z
τ, i s

z
τ′, i

ª®¬ (A4)

where Λ2 = sinh(∆τh) cosh(∆τh), γ = − 1
2 ln (tanh(∆τh)).

For the fermion part, we have

ωF
C = det (1 + BM · · ·B1) (A5)

As an anti-unitary symmetry iτyK (where τy is a Pauli matrix
in the orbital basis and K is the complex conjugation operator)
make the Hamiltonian invariant, the fermion part ratio can be
further rewritten as

ωF
C =

�����∏
σ

det
(
1 + B1σ

M · · ·B
1σ
1

)�����2 (A6)

where

Bλστ = exp
(
−∆τKλσ + ∆τξDiag(sz1, · · · , s

z
N )

)
(A7)

with Kλσ the hopping matrix for orbital λ and spin σ. It
turns out both the fermion weight and the Ising weight are al-
ways positive, thus there is no sign problem. To systematically
improve the simulation, especially close to (quantum) criti-
cal point, we have implemented both local update in DQMC
and space-time global update48. In the global update, we use
Wolff algorithm53 and geometric cluster algorithm54 to pro-
pose space-time clusters of the Ising spins and then calculate
the fermion weight to respect the detail balance as the accep-
tance rate of the update.
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Since we are interested in the properties of the system in the
quantum critical region, strong autocorrelations in the DQMC
simulations are expected. To overcome this problem, we fur-
thermore performed the self-learning determinantal DQMC,
dubbed SLDQMC33, in which, to reduce the autocorrela-
tion and speedup the simulation, we use cumulative update
with bosonic effective model self-learnt from the feedback
of fermions via Ising spin configurations generated with the
above mentioned update scheme for the original model. The
SLDQMC algorithm is made up of following steps.

(i) Use the local update plus Wolff and geometric cluster
updates with DQMC to generate enough configurations ac-
cording to the original Hamiltonian.

(ii) Obtain an effective model by self-learning process33–35.
The effective model can be very general,

Heff = E0 +
∑

(iτ);(j,τ′)
Ji,τ;jτ′si,τsj,τ′ + · · · (A8)

where Ji,τ;jτ′-s parameterize the two-body interaction between
any bosonic field in space-time. More-body interactions, de-
noted as · · · , can also be included, although not in this Letter.
(iii) Perform multiple local updates with Heff (as in general

the Heff will contain non-local terms which make the cluster
update difficult to implement). Given a configuration C and
C′ is the configuration after cumulative local update, the ac-
ceptance ratio of the cumulative update can be derived from
the detail balance as

A(C → C′) = min

{
1,

exp (−βH[C′])
exp (−βH[C])

exp
(
−βHeff[C]

)
exp

(
−βHeff[C′]

) } .
(A9)

this entire process is denoted as a cumulative update. Since the
effective model is very close to the low-energy description of
the original Hamiltonian, the cancellation in the exponential
factors in Eq. A9 can easily give rise to acceptance ratio very
close to 1.

(iv) following the detailed balance decision, we decide
to accept or reject the final configuration via evaluating the
fermionic determinant.

Different from the local update in DQMC, the local move of
Heff in step (iii) is very fast, as there are no matrix operations
associated with DQMC involved. Furthermore, to generate
statistically independent configurations at (quantum) critical
point, the number of sweeps of local update should be com-
parable with correlation time τL . With these local updates
of effective model, the configuration has been changed sub-
stantially, and we take the final configuration as a proposal for
a global update for the original model. With these efferots,
we now can simulate systems with L = 30 and β = 40 com-
fortably. To our knowledge, it is the new record in the finite
temperature DQMC simulation.

Appendix B: Correlation ratio close to QCP

To determine the precise position of the QCP, we implement
the measurement of correlation ratio and binder ratio of the
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FIG. 6. (a)Correaltion ratio vs transverse field with β = L scaling
relation and (b)Binder Ratio vs transverse field with β = L scaling
relation. The crossing point of the correlation ratio Rc and the Binder
Ratio Rb converge to hc = 1.83(1)which is the quantum critical point
of our model.

Ising spin-spin correlation function49. Correlation ratio Rc is
defined from spin susceptibility at zero frequency.

Rc = 1 −
χ(T, h, k = Q + b/L, ω = 0)

χ(T, h, k = Q, ω = 0)
, (B1)

where b is the shortest reciprocal lattice vector. And Binder
Ratio is defined from Ising spin order parameter m.

Rb = 2 −
< m4 >

< m2 >2 , (B2)

As shown in Fig. 6, the crossing points of the Rc and Rb

determine the position of the QCP. Here we have purposely
chosen the scaling relation between system size and inverse
temperature as β = L. The crossing point of R(L) points to
the critical point at hc = 1.83(1).

Appendix C: Quantum critical scaling analysis of bosonic
susceptibility in the absence of fermions

In the absence of fermions, the QCP is in the 2+1D XY
universality class. In the main text, we discussed that the Ising
spin susceptibility takes the following form (in the approxima-
tion η = 0)

χ(T, h, q, ωn) =
1

ctT2 + ch |h − hc |γ + cq |q|2 + cωω2 , (C1)

where themain differencewith the casewith fermion is the only
quadartic form of ω and T dependence in χ−1. Here, we plot
the bare 2+1D XY model susceptibility in QCP hc = 1.63(1)
and the values of coefficients are determined from scaling
analyses, as shown in Fig. 7.
In Fig 7 (a) and (b), we plot (χ−1(q) − χ−1(0))/|q| and
(χ−1(ω) − χ−1(0))/ω which show obivious linear behavior.
Although the χ−1 vs q relation is very similar with fermion
coupling case in the main text, the χ−1 vs ω relation show
no intersection at zero frequency, indicating only quadartic
frequency dependence in bare XY model. In Fig 7 (c), the
quadartic temperature relation fits the data well. The inset of
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FIG. 7. (a) q dependance of the 2+1D XY dynamic bosonic suscep-
tibility χ−1(q)−χ−1(0)

|q | . (b) ω dependance of the 2+1D XY dynamic

bosonic susceptibility χ−1(ω)−χ−1(0)
ω . (c) T dependence of the 2+1D

XY dynamic bosonic susceptibility χ−1(T, hc, |q| = 0, ω = 0). The
fits are performed according to Eq. C1.

Fig 7 (c) plot χ−1 as function of T2 and the data show good
linear behavior which is consistent with T2 dependance for the
2+1D XY universality and different from T + T2 dependance
of the coupled case in the main text.

Appendix D: Superfluid Density

To test whether there are possible superconductivity insta-
bilities close to the QCP, we measured the superfluid density,
following literature27, it is given by

ρs = lim
qy→0

lim
L→∞

Kyy(qx = 0, qy) (D1)

with

Kyy(q) =
1
4

[
Λyy(qx → 0, qy = 0) − Λyy(q)

]
(D2)

|qy |
0 0.5 1 1.5 2 2.5 3 3.5 4

K
yy

(q
x =

 0
, q

y )

-45

-30

-15

0

 L=30, β=30
 L=24, β=24

FIG. 8. Kyy(qx = 0, qy) for different temperature at h = hc for a
L = 24 and L = 30 system. When qy approaches zero, the superfluid
density approaches a negative number, indicating a paramagnetic
response, and hence there is no strong superconductivity fluctuations.

and the current-current correlation function,

Λyy(q) =
∑
i

∫ β

0
dτe−iq·ri 〈 jy(ri, τ) jy(0, 0)〉, (D3)

where δ represent the nearest neighbor hopping direction and
δy is its y component, where

jy(ri) = it
∑
λσδ

δy ĉ†iλσ ĉi+δ,λσ . (D4)

As shown in Fig. 8, at h ≈ hc and as one goes down in tem-
perature, our measurement of Kyy shows that close to QCP, the
superfluid density is always negative even when the tempera-
ture is as low as to β = 30 and system size as large as L = 30.
Hence down to β = 30, we do not find signature of superfluid
density and correspondingly no emergent superconductivity.
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