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Surface scattering of free electrons strongly modifies the electromagnetic response near the inter-
face. Due to the inherent anisotropy of the surface scattering that necessarily reverses the normal
to the interface component of the electron velocity while its tangential component may remain the
same, a thin layer near a high-quality interface shows strong dielectric anisotropy. The formation
of the resulting hyperbolic dispersion layers near the metal-dielectric interface strongly modifies the
local density of states, and leads to orders of magnitude changes in all associated phenomena.

Light incident on a conducting material, changes the
dynamics of the free charge carriers near the interface.
The resulting surface plasmon-polariton excitations [1]
increase the local photonic density of states, leading to
a dramatic change in broad range of related phenom-
ena – from the enhancement of the spontaneous emission
rates near the interface [2] to surface-enhanced Raman
scattering,[3] to subwavelength light localization and con-
finement [1]. While most of these phenomena can be
understood, at least at the qualitative level, within the
framework of the effective local dielectric permittivity
of the metal, this approach becomes progressively more
problematic when the plasmon fields change on a scale
that is compatible to the electron mean free path. The
importance of an accurate account of the inherent mo-
bility of free charge carriers is now well understood, [4–
7] and the corresponding “spatial dispersion” formalism
was successfully used for quantitative description of sur-
face plasmon-polaritons in metallic nanostructures. [4–7]

However, the inherent mobility of the free-charge car-
riers not only leads to an essentially nonlocal theoretical
description (the fundamental property which is equally
important both at the bulk and near the surface of the
conducting medium), but also qualitatively changes the
nature of the electromagnetic response near the metal-
dielectric interface. For a high-quality surface, the elec-
tron reflection will reverse normal to the surface com-
ponent of the momentum, while leaving its tangential
projection intact. As a result, while the specular reflec-
tion at the interface will not strongly affect the electro-
magnetic response in the tangential direction, its compo-
nent that is normal to the metal surface, will be substan-
tially altered. Even in the presence of substantial surface
roughness,[8] the effect of the surface scattering on the
momentum transfer from the free carriers to the interface
(and thus the entire sample as a whole) is still very differ-
ent in the normal and tangential directions. As a result,
the free carrier electromagnetic response near the con-
ductor - dielectric interface will show strong anisotropy.

In this thin interfacial layer, while diffuse component
of the surface scattering leads to an increased loss, the
tangential dielectric permittivity retains its negative sign.
However, the electronic contribution to the normal to the
interface permittivity is strongly suppressed (as the free-

carrier current density at the interface in this direction
is exactly zero, regardless of the magnitude of the elec-
tric field). As a result, the interface layer has essentially
hyperbolic electromagnetic response.

The formation of the hyperbolic layer near the metal-
dielectric interface will no longer support direct resonant
coupling from the incident field to the free electrons in
the “bulk” metal, leading to a suppression of the con-
ventional plasmon resonance via the hyperbolic blockade.
While the conventional surface plasmon polariton mode
is still present in the system, in can no longer reach the
extreme values of the wavenumbers predicted for a “di-
rect” (lossy) metal-dielectric interface. At the same time,
the hyperbolic layer leads to an additional surface wave
– the so-called “hyper-plasmon”, that can now co-exist
with the standard plasmon-polariton.[9]

As a result, the local photonic density of states (pDOS)
at the metal-dielectric interface is strongly modified.
First, the peak near the surface plasmon resonance fre-
quency is strongly suppressed, and the corresponding
density of states is substantially reduced – while at other
frequencies when the hyper-plasmon waves are present,
it can be substantially enhanced. Second, the photonic
density of states now shows a very different behavior as a
function of the distance to the metal-dielectric interface
d. When it’s much larger than the thickness of the hy-
perbolic layer d∗, the latter is not “resolved” – and the
density of states is close to the value calculated from the
“bulk” properties of the metal (albeit with the nonlocal
corrections [4]). However, for d ≤ d∗, it is now the hyper-
bolic layer that determines the density of states – leading
to a crossover to a different behavior.

In the quantitative theory of this Letter, we focus
on the calculation of the spontaneous emission rate for
a small emitter (such as a dye molecule or a quan-
tum dot) in the proximity to the metal-dielectric inter-
face. While directly connected to the local density of
states via the Fermi Golden Rule, and thus offering a
probe into the local pDOS, the spontaneous emission rate
is also an important quantity for both the interpreta-
tion of experimental data [10–12] and for technological
applications.[13]

In the weak coupling limit,[2, 14] for an emitter located
at the distance d from a planar interface (see Fig. 1) we
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obtain

Γ = Γ0 + η ∆Γ, (1)

with
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where η < 1 is the quantum efficiency [14] that accounts
for other (non-radiative) decay channels of the excited

state in the emitter, kz ≡
√
εd (ω/c)

2 − k2, ω is the emit-

ted light frequency, and εd is the permittivity of the di-
electric medium at z > 0, while mτ and mn are the
tangential and normal to the metal-dielectric interface
projections of the unit vector m that indicates the direc-
tion of the dipole moment of the emitter (see the inset
to Fig. 1). Note that Eqns. (1), (2) define the total
radiative linewidth, that includes both the far-field emis-
sion and the radiation into the lossy modes of the metal-
dielectric interface. Unless special measures are taken to
out-couple the latter back into the free space, the emis-
sion into lossy modes leads to the Joule heating of the
sample, while the detected far-field intensity corresponds
to only a fraction of the total radiative linewidth (1), (2).

We emphasize that (1), (2) implies no assumption on
the nature of the material on the other side of the in-
terface: the medium can be metallic, hyperbolic or di-
electric, with either local or non-local electromagnetic
response, as long as it has translational symmetry par-
allel to the interface, and at least a uniaxial symmetry
along the normal to the surface. Under these conditions,
the incident s− and p− polarizations are not mixed up
upon reflection, and can be described by the correspond-
ing reflection amplitudes rs and rp.

The original mathematical formalism for the descrip-
tion of electromagnetic field reflection from free charge
carriers [8, 15, 16] was developed in the context of anoma-
lous skin effect,[17, 18] when the electron mean free path
is longer than the effective “skin depth.” [8] However, in
optical experiments with plasmonic media at room tem-
peratures, the field penetration depth generally exceeds
the electronic mean free path,[19] which does not allow a
direct application of these results to plasmonic systems.

When the distance to the interface d much larger than
de Broglie wavelength of the free charge carriers,

d� λ, (3)

the integral in (2) is dominated by the waves with in-
plane wavenumbers k ≤ 1/d� 1/λ. The free charge car-
rier response at such wavenumbers can be treated within
the semiclassical framework, via the Boltzmann kinetic
equation: [8]

∂fp
∂t

+ vp · ∇fp + eE · vp
∂f0
∂εp

= −fp − f0
τ

, (4)

where fp (r, t) is the charge carriers distribution function
with its equilibrium (Fermi-Dirac) limit f0, εp is the elec-
tron energy for the (Bloch) momentum p, vp ≡ ∂εp/∂p
is the corresponding electron group velocity, and τ is
the effective relaxation time defined by the bulk scat-
tering (due to e.g. phonons, impurities, etc.) The local
equilibrium distribution function f0 is defined by the ac-
tual time-dependent local density rather than its time-
averaged value,[20] if the scattering process does not lo-
cally create or annihilate charge carriers. However, when
the electromagnetic field frequency ω � 1/τ , the local
correction to the equilibrium distribution function can be
neglected.[21, 22]

For a high-quality interface along one of the symmetry
planes of the crystal, the surface leads to specular reflec-
tion of the charge carriers,[8] which can be accounted for
by the boundary condition on the distribution function,
[8, 15, 16, 23, 24]

fp− (rs) = fp+ (rs) , (5)

where rs corresponds to any point at the interface, p+

and p− are connected by the specular reflection condi-
tion.
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FIG. 1. The spontaneous emission rate near the dielectric -
conductor interface, as a function of the distance d from the
emitter to the surface (see the inset). The emission rate is
normalized to its value in infinite dielectric Γ0. Solid lines
show the exact solution obtained in the present work, while
the corresponding dotted lines represent the results of the
calculation based on the local theory. Different colors cor-
responds to different frequencies and emission polarizations:
dipole moment m ‖ n̂ at ω = 0.5 ωsp (red), m ⊥ n̂ at ω = ωsp

(green), m ‖ n̂ at ω = 2 ωsp (blue), where ωsp is the surface
plasmon resonance frequency and n̂ is a unit vector along the
normal to the interface. In this calculation, the electron scat-
tering time τ = 18.84/ωp, the crystal lattice permittivity of
the conductor ε∞ = 12.15, the permittivity of the dielectric
εd = 10.23, and the Fermi velocity vF = 0.00935 c ' 2.8 · 106

m/sec; for the plasma wavelength λp ≡ 2πc/ωp = 10 µm
these parameters correspond to the AlInAs/InGaAs material
system of Ref. [29]

.

The electromagnetic field in the system is defined by
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the self-consistent solution of the kinetic equation and the
surface scattering boundary condition together with the
Maxwell equations. The corresponding electron charge
and current densities are then given by

ρ (r) = 2

∫
dp

(2π~)
3 · (fp (r)− f0 (εp)) , (6)

j (r) = 2

∫
dp

(2π~)
3 · e vpfp (r) , (7)

Following the mathematical approach described in Ref.
[9], this problem can be solved exactly, and for the reflec-
tion coefficient in the s-polarization we obtain

rs = −1 + 2kz

(
kz +

√
ετ (k) · (ω/c)2 − k2

)−1
, (8)

where

ετ (k) = ε∞ +
2e2

π2~3ω

∫
dp v2y

ω + kvy + i/τ
· ∂f0
∂εp

. (9)

For a degenerate electron gas the integration in (9) yields

ετ (k) = ε∞ −
ε∞ ω2

p

ω (ω + i/τ)
Fτ
(

vF k

ω + i/τ

)
, (10)

with

Fτ (x) =
3

x2
(F0 (x)− 1) , F0 (x) =

1

2x
log

1 + x

1− x
, (11)

where vF is the electron Fermi velocity, ε∞ is the “back-
ground” permittivity of the crystal lattice in the conduc-
tor, and ωp is the standard plasma frequency.[1] Note
that the expression ετ (k) in Eqn. (10) is consistent with
the other models of nonlocal free carriers response used
in the recent literature. [4, 25]

For the p-polarization, we find

rp = −1 + 2kz

(
kz +

2iεdω
2

πc2

∫ ∞
0

dq

D (k, q)

)−1
, (12)

where

D (k, q) = εx (k, q)
ω2

c2
− q2 − ν2xz (k, q)

εz (k, q) ω
2

c2 − k2
, (13)

and

εx,z (k, q) = ε∞ −
16πie2τ

ω

∫
vz>0

dp

(2π~)
3

∂f0
∂εp

× v2x,z
1− iωτ + ikvxτ

(1− iωτ + ikvx)
2

+ q2v2zτ
2
, (14)

νxz (k, q) = kq − 16πe2τ2ωq

c2

∫
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(2π~)
3

∂f0
∂εp

× vxv2z
1

(1− iωτ + ikvxτ)
2

+ q2v2zτ
2
. (15)

For a degenerate electron gas, [26] analytical integration
over the electron momentum p reduces Eqns. (14),(15)
to

εx (k, q) = ε∞ −
3ε∞

2

ω2
p

v2F

1 + i/ (ωτ)

k2 + q2

{
q2 − 2k2

k2 + q2

+

(
v2F q

2

(ω + i/τ)
2 +

2k2 − q2

k2 + q2

)
F0

(
vF
√
k2 + q2

ω + i/τ
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, (16)

εz (k, q) = εx (q, k) , (17)

νxz (k, q)

kq
= 1 +

9ε∞

2
(
1 + i

ωτ

) Fν
(
vF
√
k2+q2

ω+i/τ

)
(k2 + q2) c2/ω2

p

, (18)

where

Fν (x) =
1

x2
+

(
1

3
− 1

x2

)
F0 (x) . (19)

Together, Eqns. (12) and (16)-(19) define the reflection
coefficient rp.

Electromagnetic field near the interface with a con-
ducting medium, can also be represented in terms of the
surface impedance Z that defines the ratio of the tangen-
tial components of the electric and magnetic fields at the
interface. [8, 15, 16, 21] The values of Z for the s– and
p–polarizations calculated from Eqns (8)-(19), are con-
sistent with the earlier results of K. L. Kliewer and R.
Fuchs, [21] up to a small correction [22] only relevant at
low frequencies (ω � 1/τ) that originates from a differ-
ence in the representations of the collision integral in the
kinetic equation (4).
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FIG. 2. The frequency dependence of the spontaneous emis-
sion rate near the conductor-dielectric interface. As in Fig.
1, solid lines show the exact solution, while the dotted curves
correspond to the calculations using the local response model,
for m ‖ n̂ at d = 0.01c/ωp (red) and d = 0.1c/ωp (blue). The
material parameters are the same as in Fig. 1. Note the
suppression of the plasmon resonance due to the hyperbolic
blockade, together with an order of magnitude enhancement
of the spontaneous emission rate above the plasmon resonance
frequency, seen for d = 0.1c/ωp (red curve).

The resulting spontaneous emission rate can be calcu-
lated by substituting our analytical expressions for the
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reflection coefficients rs and rp into the general equa-
tion (2). In Fig. 1 we compare the resulting values
(solid lines) with the predictions of the standard lo-
cal theory (dashed lines) that describes the conductor
as an effective medium with the (Drude) permittivity

εm (ω) = ε∞

(
1− ω2

p

ω(ω+i/τ)

)
. As the distance to the in-

terface is reduced, local approximation initially underes-
timates the density of states – which is consistent with
the results of Ref. [4]. However, at a smaller distance
d < d∗, this behavior is reversed: the actual density of
states is now smaller than the local estimate. This is the
result of the hyperbolic blockade: the hyperbolic layer
“blocks” the coupling to conventional surface plasmon-
polaritons, and the photonic density of states is reduced.
Also note strong frequency dependence of d∗: the dis-
tance corresponding to the cross-over between the two
different regimes, non-monotonically changes with the
electromagnetic wavelength.

The frequency dependence of the spontaneous emission
rate for a given distance to the interface, presented in
Fig. 2, shows further evidence of the hyperbolic blockade.
Note the suppression of the plasmon resonance, especially
at the smaller distance to the interface. Furthermore, the
coupling to hyper-plasmons – the new surface waves that
originate from the hyperbolic layer, [9] manifests itself in
the enhancement of the spontaneous emission rate, seen
in Fig. 2 at higher frequencies.

This behavior should be contrasted to the prediction of
the existing theories of spontaneous emission near an in-
terface of non-local medium.[27] While starting from the
surface impedance approach [15, 16, 21] that also relies
on semiclassical framework, the authors of Ref. [27] then
introduced the hydrodynamic approximation that does
not accurately account for the hyper-plasmon modes.[9]
As a result, aside from the quantitative inaccuracy of the
spontaneous emission rate at small distances to the inter-
face, the predictions of [27] were limited to the reduction
of the width of the excited state due to spatial dispersion.

When the distance from the emitter to the interface
is much smaller than the free-space wavelength, d� λ0,
the analytical expression for the spontaneous emission
rate can be reduced to

∆Γ =
3

4
Γ0

m2
τ + 2 m2

n

|m|2
ε∞

√
εd (εd + ε∞)

2

(
c

vF

)2 (ωp
ω

)2
×

{
3

2ωτ

c

ωd
+

c

vF

εd + ε∞
εd + εm (ω)

Im

[(
1 +

i

ωτ

)2

×
3∑

α=1

u5α
Πβ 6=α (uα − uβ)

Q
(

2 (ω + i/τ) d

vF
uα

)]}
, (20)

where Q is related to the incomplete gamma-funciton of
0-th order

Q (x) = exp (−x) Γ (0,−x) , (21)

and

u1 = ζ (µ) +
µ

ζ (µ)
, u2,3 = e±

2iπ
3 ζ (µ) +

e∓
2iπ
3 µ

ζ (µ)
, (22)
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FIG. 3. The spontaneous emission rate as a function of the
distance to the interface, in scaled coordinates. Red dots and
the red curve correspond to the exact solution and the ap-
proximation of Eqn. (20) for ω = 0.5 ωsp, while blue dots and
the blue curve show the exact solution and the approxima-
tion of Eqn. (20) for ω = 2 ωsp. The dipole moment m ‖ n̂.
Solid black line corresponds to the interpolation (27), with
the black dotted and dashed lines indicating the d� d∗ and
d∗ � d � λ0 limits of the exact solution. The inset shows
the frequency variation of d∗.

with

ζ (µ) =
3

√
2iµ+

√
−µ3 − 4µ2, µ =

1

2

εd + εm (ω)

εd + ε∞
(23)

In Fig. 3, we compare the predictions of Eqn. (20) (col-
ored lines) with the corresponding results of the exact
calculations (colored dots), as functions of the distance
to the interface, for two different frequencies. Note ex-
cellent agreement in the entire parameter range shown in
the figure.

Depending on the relative value of the distance d and
the “electronic” scale ` ≡ vF ·min [τ, 1/ω], the analytical
expression (21) has the limiting behavior

∆Γ

Γ0
=
m2
τ + 2 m2

n

2 |m|2

{
γ0 (ω, d) , d� `
γ∞ (ω, d) , `� d� λ0

, (24)

where

γ0 (ω, d) =
9

4

ε∞ ω2
p

(εd + ε∞)
2
ω3τ

(
c

vF

)2
c

√
εdωd

, (25)

and

γ∞ (ω, d) =
3

8
Im

[
εm (ω)− εd
εm (ω) + εd

](
c

√
εdωd

)3

. (26)

Eqn. (20) can therefore be further approximated by the
interpolating function

∆Γ (d) = Γ∗ ·
{

d∗/d, d ≤ d∗
(d∗/d)

3
, d ≥ d∗

, (27)

where

Γ∗
Γ0

=
m2
τ + 2 m2

n

2 |m|2
9 (c/vF )

2
ω2
sp

4 (εd + ε∞)ω3τ

c
√
εdωd∗

, (28)
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and

d∗ =
1√
3

vF τ√
1 + (ωτ)

2 (
1− ω2

sp/ω
2
)2 . (29)

Here, ωsp is described by the standard expression for the
frequency of the surface plasmon resonance at the pla-
nar interface of a dielectric with Drude metal, ωsp =

ωp/
√

1 + εd/ε∞.
The solid black line in Fig. 3 plots Eqn. (27), while

the dashed and dotted lines correspond to γ∞ (ω, d) and
γ0 (ω, d) respectively. Although not sufficiently accurate
at the quantitative level, the interpolation (27) correctly
represents the qualitative behavior of the spontaneous
emission rate and adequately describes the cross-over be-
tween the two regimes.

The inset of Fig. 3 shows the frequency dependence
of the hyperbolic layer thickness d∗. Note its non-
monotonic variation, noticed earlier in the context of the
general behavior of the spontaneous emission rate as a
function of the distance to the interface (see Fig. 1).
The regime d < d∗ corresponds to the suppression of
the plasmon resonance due to the hyperbolic blockade.
Except for ω = ωsp when d∗ ∼ vF τ , as a function of fre-
quency d∗(ω) behaves as vF /ω at ω > ωp and as vFω/ω

2
p

for ω < ωp, with the characteristic scale given by the
Thomas-Fermi screening length ∼ vF /ωp. For a good
metal, in the optical range d∗ is on the order of a nanome-

ter. On the other hand, in transparent conducting oxides
such as the ITO [28] or in doped semiconductors,[29, 30]
we find d∗ on the order of a few tens of nanometers – and
the regime d < d∗ corresponds to the common situation
of an active quantum well in a close proximity to a doped
semiconductor substrate. In this case, the phenomenon
of the hyperbolic blockade and the theory introduced in
the present work, are essential for the accurate account
of light emission from such systems.

The predicted hyperbolic blockade and enhanced cou-
pling to hyper-plasmonic surface modes, are also ex-
pected to strongly modify the surface-enhanced Raman
scattering (SERS) at a high-quality conductor-dielectric
interface. While leaving the detailed discussion of this ef-
fect to a future publication,[31] it should be noted that its
general features are similar to the behavior of the spon-
taneous emission rate: strong suppression at and near
the surface plasmon resonance frequency due to the hy-
perbolic blockade, and the enhancement above the sur-
face plasmon resonance frequency due to the coupling to
hyper-plasmonic modes. This should be contrasted to the
existing theories of the SERS at an interface of nonlocal
medium, [32, 33] which generally focus on the decrease
of the SERS intensity due to non-locality.
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Office (grant W911NF-14-1-0639) and Gordon and Betty
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