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We study quantum noise in a nonequilibrium, periodically driven, open system attached to static
leads. Using a Floquet Green’s function formalism we show, both analytically and numerically, that
local voltage noise spectra can detect the rich structure of Floquet topological phases unambiguously.
Remarkably, both regular and anomalous Floquet topological bound states can be detected, and
distinguished, via peak structures of noise spectra at the edge around zero-, half-, and full-drive-
frequency. We also show that the topological features of local noise are robust against moderate
disorder. Thus, local noise measurements are sensitive detectors of Floquet topological phases.

Introduction.—Topological phases of matter are char-
acterized by bulk topological invariants and, via the
bulk-boundary correspondence, also by the appearance
of topological boundary states (TBSs). Canonical ex-
amples of such phases are provided by Chern insulators
characterized by bulk integer Chern numbers and chiral
edge states, and time-reversal topological insulators and
superconductors characterized by Z2 indices and counter-
propagating helical surface modes1,2. In equilibrium, the
bulk invariant manifests itself in quantized transport co-
efficients, such as Hall or spin-Hall conductance. In a
multi-terminal geometry, this is equivalently understood
in terms of TBSs connecting the leads.

Recent theoretical3–14 and experimental15–17 progress
has uncovered the possibility of engineering topological
phases in a system periodically driven at frequency Ω,
where topology is characterized, through Floquet theory,
by bulk invariants in the quasienergy spectrum and, cor-
respondingly, by the appearance of steady-state Floquet
TBSs (FTBSs) in the Floquet zone [−Ω/2,Ω/2]. These
Floquet topological phases have a richer structure than
their equilibrium counterparts; for example, in addition
to “regular” FTBSs at the Floquet zone center with the
same period as the drive, they can also host “anoma-
lous” FTBSs at the Floquet zone edge with twice the
period of the drive. A number of studies have connected
the Floquet topological invariants and the corresponding
FTBSs to observable quantities. For example, a quan-
tized Floquet sum-rule was obtained6 for conductance
summed over terminal biases spaced by integer multiples
of Ω (we are setting ~ = 1). The presence of FTBSs in
a disordered driven system has also been connected to
a generalized bulk magnetization density18. While these
connections expound observable effects of Floquet topol-
ogy in principle, they do not necessarily lend themselves
to experimental detection. Thus, the problem of detect-
ing a Floquet topological phase remains of interest.

In this Rapid Communication, we show that FTBSs
can be detected via noise measurements. We show that
quantum noise in a driven system attached to static leads
probes the quasienergy excitation spectrum. Thus, local
voltage noise spectrum at the boundary of the system
detects both the regular and anomalous FTBSs through
peak structures appearing at noise frequencies ω = 0,Ω/2

and Ω. These peaks are absent in the trivial phase and in
the bulk, and are robust to static potential disorder. Fur-
thermore, their behavior with respect to lead bias pro-
vides unique signatures of their topological origin. A
summary of our results is presented in Fig. 1.

Our proposal differs from most noise studies of elec-
tronic systems in its focus on voltage rather than current,
for which the latter is largely irrelevant in the system
we consider. Voltage noise resulting from particle num-
ber fluctuations can be measured in solid-state as well
as cold-atom realizations. Additionally, by attaching the
system to static leads we avoid the problem of heating to
infinite temperature, and a featureless noise spectra, in
generic driven systems19,20. In what follows we first de-
rive a general analytical expression for voltage noise in a
Floquet system, and then apply this formalism to a par-
ticular system the hosts FTBSs, the Su-Schrieffer-Heeger
(SSH) model 14,21.

Model.—As a concrete realization of a Floquet topo-
logical system we focus on the driven SSH model, which,
while simple, exhibits all the relevant Floquet topological
phases. The Hamiltonian is defined on a one-dimensional

lattice by Ĥ(t) =
∑
x [w − (−1)xδ(t)]ĉ†x+1ĉx + h.c.,

where ĉ†x creates a fermion at lattice site x, w is the un-
modulated hopping amplitude and δ(t) = δ(t + 2π/Ω)
is a temporally periodic hopping modulation. Using
Floquet’s theorem, the Schrödinger equation may be
written as [Ĥ(t) − i∂/∂t] |uα(t)〉 = εα |uα(t)〉, where
|uα(t)〉 = |uα(t+ 2π/Ω)〉 are periodic Floquet steady
states with quasienergy εα. The static system has two
distinct phases: a topological one for δ/w > 0 and a triv-
ial one for δ/w < 0, characterized respectively by the
presence and absence of solutions representing TBSs at
each edge. By contrast, the Floquet system has more
distinct topological phases; in what follows, we focus on
four distinct Floquet phases, each with one or no regular
and/or anomalous FTBS.

Noise in Floquet formalism.—Quantum noise in a local
observable Ôx(t) at time t (in the Heisenberg picture) is
defined as

Sxy(t, s) =
1

2
〈{Ôx(t), Ôy(s)}〉 − 〈Ôx(t)〉 〈Ôy(s)〉 , (1)

where {·, ·} is the anticommutator and 〈· · ·〉 is the ex-
pectation value with respect to steady states defined
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FIG. 1. (a) A sketch of the geometry considered for quan-
tum noise. The system, here a one-dimensional Su-Schrieffer-
Heeger chain, is attached to leads at its edges; noise is mea-
sured locally at the edge and the bulk. (b) Local voltage noise

spectrum, S
(0)
xx (ω), of Floquet phases in driven SSH model

with the hopping modulation δ(t) = δ0 + δ1 sin(Ωt). The
left (right) panels show the local noise at the edge, x = 1
(bulk, x = 50) of a chain with 100 sites. The top, top middle,
bottom middle, and bottom panels are four distinct Floquet
phases with, respectively, no, one regular, one anomalous,
and both types of Floquet topological bound states at the
edge. The dashed vertical lines indicate probe frequencies
ω = 0,Ω/2 and Ω. The parameters are: δ0 = −0.1 (top,
bottom middle), δ0 = 0.1 (top middle, bottom), δ1/w = 0.4,
γL = γR = 10−2w, TL = TR = 10−4w, and the leads are
unbiased in the main panels. The insets show the spectra for
a lead bias 0.1w and have the same range as the main panels.

by the leads, discussed below. In our driven sys-
tems, the dynamics is given by a periodic Hamilto-
nian Ĥ(t) = Ĥ(t + 2π/Ω), so the noise is a func-
tion of τ = t − s and is periodic in t: S(t, τ) =
S(t + 2π/Ω, τ) = 1

2π

∫
dω
∑
m e

iωτ+imΩtS(m)(ω), where

S(m)(ω) defines the Floquet noise spectrum.

We focus on voltage noise, characterized by the spa-
tiotemporal correlations in the number operator ĉ†xĉx,
where ĉ†x creates a quasiparticle in state |x〉 (here po-
sition). To calculate the expectation values in Eq. (1),
one must specify a density matrix19,20,22–24 which sets
the occupation of the Floquet bands, and therefore plays
a defining role in the accessible topological properties of
the system. We assume that the system is attached to
external static leads, as shown in Fig. 1(a), with a ther-
mal distribution of electrons impinging on the system4.
This contact with external reservoirs guarantees the sys-
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FIG. 2. Diagrammatic representation of Eq.(2), the Floquet

quantum noise S
(m)
xy (ω) at probe frequency ω and m “pho-

tons” exchanged with the drive across two (position) states
|x〉 and |y〉. The circular vertices (labeled x and y) project
to position basis; solid (dashed) lines show particle (photon)
propagation in the direction of arrows; square vertices λ, κ
represent coupling with external leads and exchange of a con-
served number of “photons,” with the net influx of m photons
indicated by the dashed circular vertex.

tem will not heat to infinite temperature. We employ a
Floquet Green’s function approach 6,9,11,12,25,26 to evalu-
ate the expectation values of Eq. (1). The details of our
calculation are presented in27, with the result,

S(m)
xy (ω) = 2πRe

∑

kln
λκ

∫
dν 〈y|Wλ

k+n,n+l(ν) |x〉 fλ(ν)

× 〈x|Wκ
m+l,k(ν + ω + nΩ) |y〉f̄κ(ν + ω + nΩ),

(2)

where k, l, n, are integers, the Fermi distribution of lead
λ with chemical potential µλ and temperature Tλ is
fλ(ω) = 1/

(
1 + exp[(ω − µλ)/Tλ]

)
, f̄λ = 1 − fλ, and

Wλ
n,m(ω) = G(n)(ω)Γλ(ω)G(m)†(ω) = Wλ†

m,n(ω), with Γλ

the self-energy due to lead λ. The matrix elements of
the Floquet Green’s function G(n)(ω) give the amplitude
of propagation for a particle at energy ω dressed with
n “photons,” carrying nΩ quanta of drive energy. In
the wide-band limit, i.e. with constant lead densities of
states, we have the spectral representation

G(n)(ω) =
∑

kα

|u(k+n)
α 〉 〈ū(k)

α |
ω − (zα + kΩ)

, (3)

where |u(k)
α 〉 is the kth harmonic of the periodic Floquet

state |uα(t)〉, and zα is the complex-valued quasienergy
of the open system. Note that the adjoint Floquet states

〈ūα|† have quasienergy z̄α.
Eq. (2) can be represented diagrammatically as shown

in Fig. 2, with the following rules. A circular vertex la-
beled x projects to the state |x〉; it is connected to one
external line at a given energy and photon number and
two dressed particle propagators of a given energy and
photon number. At such a vertex, the outgoing elec-
tron energy is increased from the incoming energy by the
incoming external frequency plus the energy exchanged
with the drive, equal to Ω times the net incoming pho-
ton number. Photon number by itself is not conserved
at this vertex. A square vertex labeled λ supplies the
tunnel coupling Γλ to lead λ; it connects one dressed



3

particle to a dressed hole and can exchange a number of
photons with the drive. Here, the dressed particle en-
ergy and photon energy are conserved separately. The
net influx of m photons is shown by the dashed circular
vertex. Finally, vertices are connected by lines of prop-
agating dressed particles and holes, represented by G†

and G. This diagram suggests the noise spectrum is un-
derstandable in terms of particle-hole pair fluctuations
around the steady state. We note Eq. (2) is general,
and applies for systems in any spatial dimension, type of
drive, and coupling with the external leads.

Weak-coupling limit.—While Eq. (2) is valid in gen-
eral, the physical processes contributing to voltage noise
become particularly transparent in the wide-band and
weak-coupling limits. Then, to lowest order in Γ =∑
λ Γλ, we can take |uα〉 to be the Floquet state of the

closed system with quasienergy εα = Re zα, 〈ūα| = 〈uα|,
and Im zα ≡ γα = −∑k 〈u

(k)
α |Γ |u(k)

α 〉. Using the
spectral form (3), we find only the diagonal elements

〈u(k)
α |Γλ |u(k)

α 〉 contribute significantly to the matrix ele-
ments of Wλ, so that

S(m)
xy (ω) ≈ 2πRe

∑

kln
λκαβ

Υλ(k)
α Υ

κ(l)
β fλ(εα + kΩ)f̄κ(εβ + lΩ)

×M (m,n)
αβ,xyδγαβ

(ω + εα − εβ + nΩ). (4)

Here, Υ
λ(k)
α = π 〈u(k)

α |Γλ |u(k)
α 〉 /γα is a dimensionless pa-

rameter that describes the coupling of the k-th Fourier
mode of the system with the leads, the matrix elements

M
(m,n)
αβ,xy =

∑
q,p 〈u

(n+q)
α |x〉 〈x|u(m+q)

β 〉 〈u(p)
β |y〉 〈y|u

(n+p)
α 〉

account for the projection of the states |x〉, |y〉 into the
Floquet basis, and γαβ ≈ max(γα, γβ) + γ0 is a small
broadening entering the Lorentzian δε(z) = (ε/π)/(z2 +

ε2). The delta function makes explicit that S
(m)
xy (ω) is a

measure of the particle-hole excitation spectrum, with a
dressed particle and a dressed hole propagating between
the positions x and y at energy ω and with a net loss
of m photons to the drive. We have included an addi-
tional small phenomenological part, γ0, to account for
other sources of broadening and experimental resolution.

Since in each process the dressed particles and holes
can lose or gain photons, one must sum over the am-
plitudes of all such virtual processes weighted by the ap-
propriate tunnel couplings and matrix elements. Thus, it
becomes possible to measure the quasienergy excitation
spectrum and reveal the presence of FTBSs. This gives
rise to noise at frequencies forbidden in a static system,

where the only nonzero noise harmonic is S
(0)
xy (ω). In

an unbiased static system, voltage noise vanishes for fre-
quencies below the particle-hole excitation gap. In par-
ticular, the “shot” noise at ω = 0 vanishes unless there
is a resonant (bound) state at the lead chemical poten-
tial. This structure can be used to detect static TBSs in
equilibrium27.

In the zero-temperature limit, an additional factor
must be included in the summands that correctly ac-
counts for restrictions arising from the step-function

Fermi distributions. For small lead bias, this only sig-
nificantly affects the behavior around ω = 0 resulting
from εα = εβ = 0. For example, in the static limit, these
conditions restrict ω > 0 in the zero-temperature limit27.
The main effect of this restriction is to render the peak
at ω = 0 resulting from a regular FTBS asymmetric, as
we discuss below.

Floquet noise spectrum.—We now show that local volt-
age noise with x = y in the driven system can detect dif-
ferent types of FTBSs unambiguously. In particular, the
structure of the noise spectra near frequencies ω = 0,Ω/2
and Ω bear unique signatures of FTBSs. For simplicity,
we shall assume the system is coupled at its edges to two
leads. Very generally, a particle-hole pair between any
quasistate and a state in the lead, dressed with a suffi-
cient number of virtual photons, will contribute to noise
at ω = 0. While the matrix elements for large virtual
photon numbers are quite small, this nevertheless leads
to a broad resonance at zero frequency in the bulk. Some
residual zero-frequency noise from these bulk states will
persist in the local noise at the edge.

On the other hand, for a topologically nontrivial driven
system coupled to unbiased leads, with a regular or
anomalous FTBS, or both, we expect to see a sharp
zero-frequency peak in the local noise measured at the
edge, arising from particle-hole excitations among differ-
ent FTBSs. Similarly, a peak should be seen at ω = Ω
due to processes involving a single virtual photon. The
peak originating from FTBSs can be distinguished from
the broad bulk peak by its behavior with chemical po-
tential in the lead: in the regular case, it drops sharply
in magnitude when the chemical potential moves away
from zero energy. The analogous peak for the anoma-
lous case remains unchanged for small biases and only
drops sharply when the chemical potential passes through
±Ω/2. In the bulk, this behavior is completely absent.

When the driven system hosts both regular and
anomalous FTBSs, their simultaneous presence an-
nounces itself through the noise spectrum near ω = Ω/2,
since the inter-level particle-hole spectrum at the edge
now has an excitation precisely at this energy. Indeed,
this peak is robust against a whole set of parameter varia-
tions, including disorder and other perturbations, so long
as the FTBSs continue to exist. Together with its ab-
sence in the local noise spectrum in the bulk, this peak
provides an unambiguous detection signal for this intrin-
sically nonequilibrium topological phase.

Numerical results.—In Fig. 1(b), we plot the local noise
at the edge and the bulk, obtained using the weak-
coupling approximation, Eq. (4), for the driven SSH
chain attached to unbiased leads at its edges. We have
numerically checked that this approximation accurately
reproduces the results of the full expression, Eq. (2), but
Eq. (4) allows for simulation of considerably larger sys-
tems. As expected, the trivial phase shows residual zero-
frequency noise. However, in all the topological phases
prominent zero- and full-frequency peak structures ap-
pear at the edge. For the phase with both regular and
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FIG. 3. Effect of local potential disorder on local voltage
noise, averaged over 200 disorder realizations with strength
W/w = 0.1. The shaded regions show the standard deviation
of the signal. The system parameters are as in the bottom
panel of Fig. 1(b).

anomalous FTBSs, an additional peak structure is ob-
served at half-frequency.

We also show, in the insets of the middle two panels,
the local noise at the edge for a small bias between the
leads. In agreement with our analysis above, the peak
structure for the regular (anomalous) FTBS goes away
(persists), thus distinguishing the two kinds of Floquet
phases. We note that the peaks for the regular (anoma-
lous) FTBS showing an asymmetric (symmetric) shape.
For the phase hosting both (the bottom panel), the peak
shape shows an intermediate asymmetry. These shapes
arise due to restrictions placed on the resonance condi-
tions by the Fermi distributions; a similar asymmetric
zero-frequency peak is also observed at the edge of the
topological phase of the static system.

Effects of disorder.—Topological bound states hosted
by a topological phase are generically robust against lo-
cal changes of potential that do not spoil the symmetries
protecting them: while their wavefunctions change, they
stay bound near an edge. Consequently, they are also
robust against local disorder that preserves the relevant
symmetries on average. Thus, a detection scheme of a
topological phase must also display a degree of robust-
ness against disorder. Indeed, we may expect a more
dramatic response to disorder, whereby the topological
feature becomes more prominent as the nontopological
aspects are suppressed by disorder more rapidly6.

In order to study the effects of disorder in quantum
noise, we calculated the local noise in the SSH model with
local potential disorder, taken to be an uncorrelated, uni-
formly distributed random variable Vx ∈ [−W,W ]. An
example of our results is shown in Fig. 3. After aver-
aging over disorder, we observed a smoothening of the
non-topological features; for example, the local noise at
the edge at frequencies away from multiples of Ω/2 shows
significant variation, which, after averaging, result in a
smoother profile. The peak structure at multiples of Ω/2
shows reduced variation and remains robust. This ro-
bustness allows the identification of topological phases in
moderately disordered systems.

Discussion.—As seen in the bottom two panels of

Fig. 1(b), the residual zero-frequency signal in the bulk
develops to a more prominent peak than in the upper
two panels. This structure reflects the growing intra-
band quasienergy particle-hole excitations with n = 0 in
Eq. (4), while the larger frequency features result from
interband excitations. We also note that the gap around
ω = Ω clearly seen in the top two panels closes in the
bottom two panels. This can also be understood as aris-
ing from intraband excitations with n = −1 in Eq. (4).
More generally, with decreasing drive frequency, multi-
photon processes become more relevant, so that gaps in
the bulk noise spectrum fill in and the signal becomes
more or less featureless. However, the noise at the edge
remains gapped and the peak structures persist at even
these lower drive frequencies. This robustness of the edge
noise spectrum reflects the robustness of the FTBS which
dominate the observed noise signal.

The numerical calculations we report here have been
performed in a one-dimensional system. However, the
analytical expressions we obtain for local voltage noise,
Eqs. (2) and (4), are valid for any dimension. For the
SSH model as well as other topological one-dimensional
systems, the focus on voltage rather than current noise
is important because the FTBSs do not carry current.
In higher dimensions, the system boundaries allow for
different geometries of connecting to leads. For exam-
ple, one may contact the leads on two extended edges or
surfaces of a two- or three-dimensional system28. These
geometric variations would lead to different matrix ele-
ments, Wλ in Eq. (2) or Υλ in Eq. (4). It would be
interesting to explore the Floquet noise spectra in these
and other multi-terminal geometries.

In conclusion, we derived a general expression for the
voltage noise in periodically-driven systems. We have
shown that quantum noise in a periodically driven sys-
tem attached to static leads probes the quasienergy ex-
citation spectrum. Thus, local quantum noise can detect
Floquet topological bound states at the edge and, in par-
ticular, the intrinsically nonequilibrium, anomalous Flo-
quet bound states. The structure of Floquet noise spectra
at lower drive frequencies and the effects of dissipation
and other bath geometries are interesting problems for
the future.
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