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A simple, novel, non-empirical, constraint-based orbital-free generalized gradient approximation
(GGA) non-interacting kinetic energy density functional is presented along with illustrative appli-
cations. The innovation is adaptation of constraint-based construction to the essential properties of
pseudo-densities from the pseudo-potentials that are essential in plane-wave-basis ab initiomolecular
dynamics. This contrasts with constraining to the qualitatively different Kato-cusp-condition densi-
ties. The single parameter in the new functional is calibrated by satisfying Pauli potential positivity
constraints for pseudo-atom densities. In static lattice tests on simple metals and semiconductors,
the new LKT functional outperforms the previous best constraint-based GGA functional, VT84F
(Phys. Rev. B 88, 161108(R) (2013)), is generally superior to a recently proposed meta-GGA, is
reasonably competitive with parametrized two-point functionals, and is substantially faster.

Introduction. Hohenberg-Kohn density functional the-
ory (DFT) [1, 2] has come to prominence mainly in Kohn-
Sham (KS) orbital form [3]. However, driving ab initio

molecular dynamics (AIMD) [4–7] with KS DFT exposes
a computational cost-scaling burden. The KS computa-
tional cost scales no better than N3

e with Ne the num-
ber of electrons or number of thermally occupied bands.
Additionally there is reciprocal space sampling cost or
equivalent costs from large real-space unit cells used with
Γ-point sampling. In contrast, orbital-free DFT (OF-
DFT) offers linear scaling with system size [8, 9] for use
of AIMD on arbitrarily large systems.
The long-standing barrier to widespread use of OF-

DFT has been the lack of reliable non-empirical approx-
imate kinetic energy density functionals (KEDFs). In
terms of the KS orbitals ϕj , the reference, positive defi-
nite KS kinetic energy (KE) density is

ts[n] = torbs ≡
1

2

Ne∑
j=1

|∇ϕj |
2 , (1)

in Hartree atomic units with n(r) the electron number
density (and unit occupation for simplicity). Two types
of approximate KEDFs have been explored, semi-local
(one-point)

Ts[n] =

∫
dr ts[n(r),∇n(r), . . .] (2)

and two-point with a non-local term

TNL[n]=cTF

∫∫
drdr′nα(r)K[n(r), n(r′), r, r′]nβ(r′) (3)

with cTF = 3
10 (3π

2)
2

3 . For a dimensionless K, α + β =
8/3. Most approximate Ks are parametrized; see Refs.
[9–16] for details as well as brief discussion below. In this
communication, we propose a novel non-empirical one-
point KEDF and show that it is competitive with current
two-point KEDFs, generally better than other one-point
functionals, more transferable, and notably faster.

Generalized Gradient Approximations. The simplest
one-point functionals are Thomas-Fermi [17–19]

TTF [n] :=

∫
dr tTF (r) , tTF (r) := cTFn

5

3 (r) , (4)

and von-Weizsäcker [20]

TW [n] :=
1

8

∫
dr

|∇n(r)|2

n(r)
≡

∫
dr tW (r) . (5)

Neither is satisfactory as a general KEDF. As with ap-
proximate exchange-correlation (XC) functionals [21],
the gradient expansion of the weakly inhomogeneous elec-
tron gas KE leads to consideration of generalized gradient
approximations (GGA) for Ts,

TGGA
s [n] =

∫
dr tTF (r)Ft(s(r)) . (6)

Here Ft(s) is the GGA KE enhancement factor, a func-
tion of the dimensionless reduced density gradient s :=
|∇n|
2nkf

≡ 1
2(3π2)1/3

|∇n|
n4/3 familiar from GGA X functionals.

GGA KEDFs so constructed automatically satisfy Ts uni-
form scaling requirements [22]. In GGA form the von
Weizsäcker KE becomes FW (s) = 5

3s
2.

From the Pauli term decomposition [8, 23, 24],

Ts[n] = TW [n] + Tθ[n] , (7)

three constraints follow[25],

Tθ[n] ≥ 0 , (8)

vθ(r) ≥ 0 ∀ r, (9)

vθ(r) ≥
tθ(r)

n(r)
∀ r, tθ := torbs − tW , (10)

with the Pauli potential defined as vθ(r) := δTθ[n]/δn(r)
and the Pauli enhancement factor is Fθ(s) = Ft(s) −
FW (s).
To date, perhaps the best constraint-based GGA

KEDF is VT84F (evaluated at T=0 K of course)[26].
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It is successful in finite-T AIMD simulations [27] and
is the only non-empirical GGA KEDF that yields rea-
sonable binding in simple solids. It was constrained to
satisfy Eqs. (8) and (9) for physical atom densities, i.e.,
those that obey the Kato cusp condition [28]. VT84F
also was constrained to respect lims→∞ Fθ(s)/FW (s) =
0. This comes from the one-electron tail region of a
many-electron atom[29] where tθ/tW must vanish, hence
ts → tW [30].
In terms of the universal Hohenberg-Kohn-Levy den-

sity functional, such a physically motivated constraint is
non-universal: the Kato cusp condition is specific to an
external Coulomb potential. Such non-universality is ra-
tional for material and molecular property calculations.
But the ubiquitous use of pseudo-potential plane-wave
basis methods in AIMD simulations means that it is not
the optimal non-universality for them. OF-DFT calcula-
tions in fact require a local pseudo-potential (LPP). The
OF-DFT Euler equation then implies that vθ is closely
related to the LPP vpseudoext and that vθ is evaluated with
the corresponding pseudo-density. Thus any constraint
based on density characteristics should be specific to a
particular type or class of pseudo-potential.
Ref. [31] explored some elementary consequences for

constraint satisfaction (or violation) with non-Kato den-
sities. Difficulties with simpler one-point KEDFs (linear
combinations of TTF and TW ) used with orbital-free pro-
jector augmented-wave pseudo-densities also have been
reported [32]. So far as we know, no approximate KEDF
has been constructed by explicit satisfaction of the fore-
going constraints, Eqs. (8)-(9), for a specified type of
pseudo-densities. Nor has Eq. (10) been used.
New GGA KEDF.We resolve this pseudopotential

AIMD deficiency by devising a GGA KEDF constrained
to satisfy Eqs. (8) and (9) for pseudo-densities of a par-
ticular kind and show that in most spatial regions its vθ
satisfies Eq. (10) as well. The new GGA KEDF enhance-
ment factor is

FLKT
t (s) =

1

cosh(a s)
+

5

3
s2 (11)

with parameter a > 0. Fig. 1 compares FLKT
θ with the

VT84F and APBEK [33] enhancement factors. It sat-
isfies the obvious homogeneous electron gas constraint
lims→0 Ft/θ(s) = 1 and obeys 0 ≤ FLKT

θ ≤ 1 so as to
satisfy the bound conjectured by Lieb [34, 35]

Ts ≤ TTF + TW . (12)

FLKT
t also satisfies[25, 29, 36] tθ([n]; r) ≥ 0 ∀ r, thus

TLKT
θ ≥ 0.
The sole parameter a = 1.3 (which was used through-

out all the subsequent calculations) was determined as
follows. A set of pseudo-densities was generated for
the atoms H through Ne with a typical Hamann norm-
conserving non-local pseudo-potential (NLPP) scheme

LKT
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FIG. 1. Pauli enhancement factors for LKT (a = 1.3) (red
dot-dashed), VT84F (blue dashed), and APBEK (orange dot-
ted).

[37] using default radii in the APE code [38] and the
Perdew-Zunger (PZ) XC local density approximation
(LDA) [39]. Then a was found such that all the post-
scf Pauli potentials from those pseudo-densities satisfied
vθ ≥ 0 ∀ r. Importantly, as long as an a value gave
vθ ≥ 0 for the H atom, positivity also was met for all the
heavier atoms. For Li a < 1.4 is required, while for H,
a ≤ 1.3 is needed to get a post-scf vθ ≥ 0. For He, the
a value does not seem to matter within the range tested.
While the a value is non-universal, we expect reasonable
transferability to those other pseudo-potential types for
which the pseudo-densities are similar, specifically those
with nearly flat pseudo-densities near the nucleus. The
expectation is confirmed by post-scf and scf calculations
for atoms.

Though the reference atom set, H–Ne, encompasses 1–
8 pseudo-electrons, equally good performance for other
elements is not assured. Post-scf determination of a also
is distinct from self-consistent calculation, which might
vitiate the supposedly constrained behavior. Atomic
tests are the first line of investigating these issues. For
a given pseudo-potential and XC approximation, self-
consistent solution of the KS equation provides the refer-
ence KS tθ and the ingredients to construct the reference
KS Pauli vθ (see Eq. (35) in Ref. [23]). Those are the
standards against which to judge tθ and vθ from an ap-
proximate KEDF. In anticipation of the OF-DFT calcu-
lations on periodically bounded systems reported below,
we focused upon the bulk-derived LPP (BLPS) [40, 41]
for two atoms, Al and Li. Here we discuss Al because it
was not in the a calibration. Li discussion is in the Sup-
plemental Material [42]. (The Li pseudo-atom is chal-
lenging because it is a one-orbital system (2s1) for which
Tθ should vanish.) Again the XC functional is PZ.

Fig. 2 displays the reference tθ/n and vθ for the BLPS
Al pseudo-atom in the 3s2 3p1 configuration and the post-
scf results with that pseudo-density for both VT84F and
LKT. Note several features. Though VT84F was con-
structed to satisfy vV T84F

θ ≥ 0 near a nucleus for Kato-
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FIG. 2. Upper left: Al BLPS as function of radial position
(inset: KS pseudo density); Upper right: reference KS vθ
and tθ/n. Lower left: post-scf vθ (solid) and tθ/n for VT84F
(dashed). Lower right: Same for LKT.

cusped densities, it also satisfies that constraint arbitrar-
ily close to the nucleus for the cusp-less pseudo-density.
However, vV T84F

θ becomes negative near r = 0.1 bohr, a
clear example of the crucial non-universality. LKT does
not have that problem. Second, vLKT

θ is much smoother
than vV T84F

θ , though not as smooth as vKS
θ . Third, ex-

cept for a small region around r = 1.8 bohr, vLKT
θ re-

spects the Pauli potential inequality, Eq. (10), whereas
vV T84F
θ violates it in four regions that span much of the
significant density magnitude.

Note also that, unlike some other GGA KEDFs, e.g.
E00[43], PBE2 [24], and APBEK, vLKT

θ (r) decays cor-
rectly to zero asymptotically for an atom. This may be
useful in the AIMD simulation of low-density regions of
matter. Though vV T84F

θ decays similarly, its rapid os-
cillations in the dominant density region might slow scf
convergence rates as well as cause other difficulties.

Self-consistent OF calculations for the BLPS Al
pseudo-atom show that vLKT

θ stays positive, though it
exhibits oscillations quite similar to those seen in the
post-scf case; see Fig. 3. The LKT Pauli energy per par-
ticle is far from the KS value. However, the inequality
Eq. (10) is violated only around r = 1.8 bohr as in the
post-scf case. We did not insist on strict imposition of
this constraint because doing so would require a / 0.8, a
value that materially worsens results for solids.

Performance on Solids. Validation of the new func-
tional for AIMD requires accuracy tests on extended
systems. We therefore did KS-DFT and OF-DFT cal-
culations on simple metals and semiconductors. Con-
ventional KS calculations were done with Abinit [44]
and the OF-DFT calculations used Profess[45] and/or
Profess@Quantum-Espresso [46]. Again the PZ
LDA XC functional and BLPS were used. For compar-
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FIG. 3. Top: Al KS (solid, red) and LKT(dashed, blue)
pseudo-densities as function of radial position. Bottom: KS
vs. LKT vθ (solid red vs. dash-dotted blue, upper pair) and
similarly tθ/n (dashed red v. dotted blue; lower pair).

ison we included the Wang-Govind-Carter (WGC) [13],
Huang-Carter (HC) [14], and Constantin et al. KGAP
[16] two-point KEDFs and the one-point Constantin et
al. SOF-CFD [47] meta-GGA (Laplacian-dependent)
KEDF. Technical details and parameter values are in the
Supplemental Material [42].
Note that WGC was parametrized for main-group met-

als and yields poor binding curves for semiconductors,
while HC was parametrized for semiconductors. KGAP
is parametrized to experimental direct band gaps. Re-
sults from the one-point functionals E00, APBEK, and
PBE2 are omitted because of unrealistic binding curves
for the former two and instability problems for the lat-
ter one. KGAP comparisons are from Tables I and II of
Ref. [16]. SOF-CFD values are from Table I of Ref. [47].
Equilibrium volumes, energies, and bulk moduli for other
functionals were generated by varying ±5% around the
equilibrium volume to obtain 11 energy-volume points,
which then were fitted to the Birch-Murnaghan equation
of state [48].
The metals were Li, Mg, and Al in the simple cubic,

body-centered cubic, face-centered cubic, and hexagonal
close-packed structures. Nine III-V semiconductors in
zinc-blende structures were treated: AlP, AlAs, AlSb,
GaP, GaAs, GaSb, InP, InAs, and InSb.

With KS quantities as references, Table I shows the
mean absolute relative error (MARE) percentages for
equilibrium volume V0, energy E0 per atom (for metals)
or per cell (for semiconductors), and bulk moduli B0 from
WGC, HC, KGAP, VT84F, SOF-CFD, and LKT. These
are calculated as |(QOF − QKS)/QKS| × 100/Nsystems,
where Q is V0, E0, or B0. (More detailed tabulations are
in the Supplemental Material [42].) For V0 and B0, LKT
is a significant improvement over VT84F. The V0 and B0

MAREs are reduced by 33% in metals. The reduction is
more dramatic in the semi-conductors, a factor of 5 for V0

and 13 for B0. The semiconductor E0 MARE is reduced
by 22% but worsened slightly from 0.1% to 0.2% for the
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TABLE I. KEDF performance on solid metals and semicon-
ductors: MARE of equilibrium volumes V0, energies E0, and
bulk moduli B0, as percentages. See text for notation.

KEDF Metals Semiconductors

V0 E0 B0 V0 E0 B0

WGC 0.7 0.0 2.7 - - -

HC 5.5 0.6 12.3 1.5 0.5 4.9

KGAPa 4.0 - 5.1 3.0 - 16.2

VT84F 6.0 0.1 11.6 10.5 3.6 56.4

SOF-CFDa 5.2 0.6 8.5 3.4 0.9 10.0

LKT 4.0 0.2 7.7 2.1 2.8 4.3

a Note: only metals with cubic symmetry were included and PBE

XC was used.

metals. Except for performance on semi-conductor E0, it
also is clear that the LKT GGA is superior to the more-
complicated non-empirical SOF-CFD meta-GGA KEDF.
Despite noticeable discrepancies in absolute energies for
semiconductors, it is important to note LKT OFDFT
gives the same phase ordering as does conventional KS;
see Table III in the Supplemental Material.

Regarding the two-point functionals, WGC outper-
forms all the other functionals on the metals but is inap-
plicable on semiconductors, recall above [13]. Conversely,
HC with averaged parameters exhibits balanced error,
with all three MAREs within 5% (except B0 for metals).
KGAP does well on volumes in both classes but not B0.
Remarkably LKT exhibits performance competitive with
both HC and KGAP in prediction of equilibrium volumes
for both material classes. Moreover, LKT outperforms
HC for B0 and is much more balanced than KGAP for
B0. (Comparison with the recent MGP two-point func-
tional is of no avail, since its parametrization is tuned to
match KS results for each system [15].)

For the case of AlP, we found that LKT converges
for relatively smaller energy cutoff than needed with
VT84F and HC. Typically LKT also requires fewer self-
consistent iterations for solution to a given tolerance than
are needed by either HC or VT84F and each LKT itera-
tion is typically about one-fifth the time of an HC itera-
tion. Thus the one-point LKT is more useful as a broadly
applicable functional than the highly parametrized two-
point HC KEDF or the experimentally parametrized two-
point KGAP KEDF yet is simpler, faster, and mostly
better than the SOF-CFD one-point KEDF. LKT seems
therefore to be currently the most promising candidate
for general AIMD OF-DFT use or with small-box algo-
rithms [49]. Though it remains to be tested, we anticipate
the finite-T generalization [50] of LKT will be of value
for warm dense matter simulations.

As to limitations, LKT does not yield a good value of
V0 for bcc Li with a 3-electron LPP. So far as we know,

all GGA KEDFs developed so far share this limitation.
The extent of transferability to another distinct class of
pseudo-potential, along with the post-scf determination
of a, remains to be examined.
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