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We study the inelastic scattering rate due to Coulomb interaction in three-dimensional Dirac/Weyl
semimetals at finite temperature. We show that the perturbation theory diverges because of the
long-range nature of the interaction, hence, thermally induced screening must be taken into account.
We demonstrate that the scattering rate has a non-monotonic energy dependence with a sharp peak
owing to the resonant decay into thermal plasmons. We also consider Hubbard interaction for
comparison. We show that, in contrast to the Coulomb case, it can be well-described by the second-
order perturbation theory in a wide energy range.

Three-dimensional Dirac semimetals attract great in-
terest of condensed matter community due to its exotic
electronic properties [1–17]. The low-energy excitations
of these materials are massless Dirac fermions with linear
dispersion near the touching points between the conduc-
tance and valence bands. If the Kramers degeneracy of
the Dirac cones is removed by breaking either time rever-
sal or inversion symmetry, a topological Weyl semimetal
(WSM) is realized [3, 4]. Weyl nodes are monopoles of
Berry curvature in momentum space, hence, they are
topological objects and can be eliminated only by merg-
ing with another node of opposite monopole strength.

Although non-interacting WSMs are already intrigu-
ing due to their non-trivial topological properties, the
interaction effects in these materials are of great interest.
In particular, the inelastic electron-electron scattering is
expected to be crucial for determining the conductivity
[10, 11] and spectral properties [18–20] of clean samples
at low temperatures, which can be directly probed in
transport and ARPES/STM measurements, respectively.

While most of the previous studies of the spectral func-
tion focused on the zero-temperature case, certain inter-
esting phenomena are expected in interacting WSMs at
finite temperature. For example, finite-lifetime quasipar-
ticles can display novel spectral features described by the
non-Hermitian topological theory [21–33]. A call for pro-
found understanding of these intriguing phenomena that
can be measured in ARPES experiments motivates us to
study electron’s self-energy in WSMs at finite tempera-
ture.

In this paper we focus on the inelastic quantum scatter-
ing rate (inverse quasiparticle’s lifetime) due to electron-
electron interaction. We consider the cases of Coulomb
and repulsive Hubbard (short-range) interaction. We
find that the second-order perturbation theory generi-
cally diverges in case of Coulomb interaction, and the
summation of an infinite series of diagrams within the
random phase approximation (RPA) is required. At fi-
nite temperature, the collective density oscillations of
thermally excited carriers can be considered as thermal
plasmons. We show that the thermally induced screen-
ing and thermal plasmons lead to a strong energy de-
pendence of the electron scattering rate which exhibits

a sharp peak around plasma frequency ωpl ∝ T . This
peak can be viewed as a consequence of strong electron-
plasmon interaction. Although we do not aim to describe
any specific experiment in our study, we believe it shares
similar physics with certain features that were attributed
to the coupling between electrons and plasmons and were
observed in optical measurements in elemental bismuth
[34] and Na3Bi [35]. Additionally, while we focused on
the case of Dirac semimetals in our work, we believe that
the same physics is relevant for other semimetallic sys-
tems with low carrier density. For example, we consider
half-Heusler compounds with quadratic band touching as
promising candidates for testing our findings [36].

Among other results, we find that the scattering rate
vanishes logarithmically at exponentially small energies.
We also show that the model with the Hubbard interac-
tion, in contrast to the Coulomb case, allows for a pertur-
bative calculation of the scattering rate in a wide range
of energies. At the smallest energies, however, it also
approaches zero in a non-analytic way. We hope that
our results can be directly probed by measuring spectral
function in ARPES experiments.
Model – We consider a model for WSM at neutrality

point with N identical isotropic Weyl nodes. The low-
energy Hamiltonian in presence of interaction has form
H = H0 +Hint, with

H0 =
∑
i,k

χivFψ
†
k,isk · σss′ψk,is′ ,

Hint =
1

2

∑
k,p,q

ψ†k−q,isψk,isV0(q)ψ†p+q,js′ψp,js′ . (1)

Here ψk,is is a two-component spinor in the pseudospin
space s, σ is a vector of Pauli matrices, i, j = 1, . . . , N
numerate Weyl nodes, χi = ±1 is the chirality of the
ith node, and vF is the Fermi velocity. Summation over
repeating indices is implied. The bare Coulomb interac-
tion is given by V0(q) = 4πe2/εq2, where ε is a dielectric
constant of a material, and the repulsive Hubbard inter-
action is described by V0(q) = λ > 0. In what follows,
we neglect the internodal scattering as well as non-zero
curvature of a single-electron spectrum, which, in princi-
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ple, can play an important role at small energies [37, 38],
leaving these questions for future study. We use the units
with ~ = kB = 1 throughout the paper.

The Coulomb interaction – The strength of the
Coulomb interaction in Weyl materials is measured by
the dimensionless effective fine-structure constant, α =
e2/εvF , which is a density-independent ratio of typical
Coulomb energy to kinetic energy. In this paper, we only
consider the case of weak interaction, which is a reason-
able assumption for some real materials with large dielec-
tric constant. For example, fine structure constants for
Bi, Na3Bi and Cd3As2 can be estimated to be αBi ≤ 0.2,
αNa3Bi ≈ 0.15 and αCd3As2 ≈ 0.04 [12, 34, 35, 39–43]. To
analytically control our calculation, we further require a
large number of Weyl nodes, N � 1, but keep the prod-
uct αN � 1 small. Finally, we also assume that the more
restrictive condition is satisfied, αN ln(vFΛ/T ) � 1,
where Λ is a high-momentum cutoff of order of distance
between nodes. The latter assumption can be easily re-
laxed and is used here only to simplify some formulas.
Despite the approximations made above, we expect our
results to be qualitatively correct even for interaction
strength of order one.

Before we consider the inelastic scattering rate, we
briefly comment on the velocity and fine-structure renor-
malization due to Coulomb interaction. This ques-
tion was studied, e.g., in Refs. 1, 10, and 44. It was
found that the Fermi velocity and fine-structure con-

stant at the scale of temperature T are renormalized
to the leading order as vF (T ) = vF (α0/αT )2/N+2 and

αT = α0

[
1 + (N+2)α0

3π ln(vFΛ/T )
]−1

, where vF and α0

are bare values at the scale vFΛ. We use the renormal-
ized parameters hereafter.

The non-zero scattering rate results from the imag-
inary part of interaction potential. Since the bare
Coulomb interaction is real, we need to take into account
screening effects, e.g., within the RPA. The effective in-
teraction then has form

V R(ω,q) =
V0(q)

1 + V0(q)NΠR(ω,q)
, (2)

where ΠR(ω,q) is a polarization operator. Generally,
the RPA is justified in the limit of large number of Weyl
nodes, N � 1; however, as discussed in Ref. 45, at finite
temperature the RPA is valid even at N ∼ 1 due to
thermally induced screening, provided relevant momenta
satisfy the condition vF q . T.

While the evaluation of the polarization operator at
T = 0 is straightforward [46, 47], the calculation at finite
temperature is a very complicated task that can usually
be accomplished only numerically. Nevertheless, follow-
ing the method used in Ref. 45, we find an approximate
analytical expression for ΠR in the most relevant limiting
cases [48]:

ΠR(Ω, Q) =
T 2

v3
F



1
6

(
1− |Ω|2Q ln |Ω|+Q|Ω|−Q

)
+ Q2

3π2 ln Λ̃
max{1,|Ω|} + iQ

2

6π tanh Ω
2 , Q� 1, Q < |Ω|

1
6

(
1− |Ω|2Q ln Q+|Ω|

Q−|Ω|

)
+ Q2

3π2 ln Λ̃ + i π12
Ω
Q , Q� 1, Q > |Ω|

Q2

3π2 ln Λ̃√
Ω2−Q2

+ iQ
2

6π signΩ, Q� 1, Q < |Ω|

Q2

3π2 ln Λ̃√
Q2−Ω2

+ i 1
π e
−Q sinh Ω, Q� 1, Q > |Ω|

(3)

where we defined dimensionless quantities Q ≡ vF q/2T ,
Ω ≡ ω/2T, and Λ̃ ≡ vFΛ/2T . In the zero-temperature
limit, Q� 1, we reproduce the result by Abrikosov and

Beneslavskĭı [1], Π(ω, q) = q2

12π2vF
ln Λ√

q2−ω2/v2F
.

In the static limit, ω = 0, the polarization opera-
tor (3) determines the thermally induced screening of the
Coulomb potential, and the effective interaction at low
momenta takes form

V (ω = 0, vF q � T ) =
4παvF

q2 + l−2
scr

, (4)

where the screening length is given by l−1
scr = T

vF

√
2π
3 αN.

In the region vF q � ω � T , the real part of the po-
larization operator becomes negative, giving rise to ther-
mally induced plasmon excitations [49, 50]. At low mo-
menta, the plasmon dispersion is determined by the equa-
tion 1 +NV0(q)Π(ω � vF q) = 0, yielding the solution

ω = ωpl +
3

10

v2
F q

2

ωpl
− iΓ,

ωpl = T

√
2π

9
αN � T, Γ =

3

32π

ω4
pl

T 3
� ωpl. (5)

At the neutrality point, the only energy scale is set by
temperature, hence, it is natural that ωpl ∝ T . We stress
that, at weak coupling, the damping of thermal plasmons
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FIG. 1. The inelastic scattering rate as a function of energy due to (a) Coulomb and (b) Hubbard interactions. Red dashed
lines correspond to the asymptotic analytical expressions given by Eqs. (8) and (10). At exponentially small energies, scattering
rate logarithmically approaches zero in both cases (not displayed in this Figure). (a) Scattering rate exhibits non-monotonic
behavior with a sharp peak at ε = ωpl/2 owing to thermal plasmons. The coupling constant equals αN = 0.1. (b) Coupling
constant λ is such that λNT 2/v3

F = 0.03. The inset shows that the scattering rate is well-described within the second-order
perturbation theory (dashed line) in a wide range of energies around ε ≈ T . At higher energies, however, the perturbative
result smoothly crosses over to a constant, which can only be obtained after the RPA summation. This crossover occurs only
for extremely large values of ultra-violett cutoff Λ satisfying Λ�

√
vF /λN ln(vFΛ/T ).

in WSMs is small compared to their energy, consequently,
they are well-defined collective excitations.

To study the inelastic scattering rate, we calculate the
imaginary part of the electron’s self-energy, Im Σ(ω,k),
at finite temperature. As discussed in Ref. 45 in con-
text of graphene, electron’s self-energy is generally a ma-
trix in the pseudospin basis and can be parameterized as
Σ(ε,k) = ΣεI + Σvσ · k̂. It is natural to associate the
scattering rate with Im Σε taken on the mass-shell, in
spirit of the conventional Fermi-liquid (FL):

1

2τ(ε)
≡ −Im ΣRε (ε,p)

∣∣
p=|ε|/vF

. (6)

It is clear that τ(ε) = τ(−ε) at neutrality point due to
particle-hole symmetry, so we focus on positive energies
hereafter.

In the one-loop approximation, the imaginary part of
electron’s self-energy reads as [51]

Im ΣRε (ε,k) =
1

4

∑
i=±

∫
d3q

(2π)3
ImV R(ωi,q)

×
(

coth
ωi
2T

+ tanh
ε− ωi

2T

)
, (7)

where we defined ω± ≡ ε ± vF |k − q|. After straightfor-
ward but rather cumbersome calculation, we find [48]

1

τ(ε)
=



c1
T
N

(
ln T

ε

)−2
, ε� T exp

(
− c2
Nα

)
,

2αT, T exp
(
− c2
Nα

)
� ε� T

√
αN,

3
4αT ln 1

αN , ε = T
√

πNα
18 =

ωpl

2 ,

0.55αT, ε� T
√
αN,

(8)
where c1 and c2 are numerical coefficients of order 1.
The main contribution to the first region comes from the
bosonic frequencies and momenta of order of tempera-
ture, which are not accurately captured by Eq. (3), hence,
coefficient c1 cannot be calculated within our approach.

The behavior of the scattering rate as a function of
energy is shown in Fig. 1 (a). We emphasize that even
though we consider a weak-coupling limit, result (8) is
non-perturbative. Indeed, the naive lowest-order weak-
coupling answer (a single polarization bubble in the effec-
tive interaction) would be proportional to τ−1

naive ∝ α2N,
which does not hold in any of the energy domains. This
is due to singular form of the Coulomb interaction at
low momenta, that eventually leads to the infrared di-
vergence and requires the RPA resummation. This con-
clusion is similar to the result for a 2D analog of the
problem, graphene, considered in Ref. [45].

At small energies, ε . 2αT , the quasiparticles are
not well-defined, since τ−1(ε) > ε in this range. The
scattering rate of these states, however, is determined
by electrons with higher energies, which ensures the self-
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Coulomb ε, ξk � Te−c2/αN Te−c2/αN � ε, ξk � T
√
αN ε, ξk = ωpl T

√
αN � ε, ξk � T ε, ξk � T

Im Σε(ε, 0) ∼ T
N ln2(T/ε)

αT αT/2
2πα2NT3

3ε2
α2Nε
12π

Im Σε(0,k) ∼ T
N ln2(T/ξk)

αT
3
4
αT ln(1/αN)

2πα2NT3

9ξ2
k

2α2NT2 exp(−ξk/2T )
3πξk

Hubbard ε, ξk � T exp
(
− b2v

3
F

λNT2

)
T exp

(
− b2v

3
F

λNT2

)
� ε, ξk � T T � ε, ξk �

√
v3
F

λN ln(vF Λ/T )
ε, ξk �

√
v3
F

λN ln(vF Λ/T )

Im Σε(ε, 0) ∼ T
N ln2(T/ε)

0.035
λ2NT5

v6
F

λ2Nε5

15360π3v6
F

3πε
4N ln2(vF Λ/ε)

Im Σε(0,k) ∼ T
N ln2(T/ξk)

0.035
λ2NT5

v6
F

λ2NT2ξ3k exp(−ξk/2T )

384π3v6
F

6πT2 exp(−ξk/2T )

Nξk ln2(vF Λ/
√
ξkT )

TABLE I. The imaginary part of the electron’s self-energy in the limits of zero energy or momentum due to the Coulomb (top)
or the Hubbard (bottom) interactions. The single-electron spectrum is defined as ξk ≡ vF k. In case of Coulomb interaction,
Im Σε(0,k) exhibits strong peak at ξk = ωpl due to resonant excitation of thermal plasmons.

consistency of our calculation. This is in analogy with the
conventional FL theory at non-zero temperature, where
the finite lifetime of quasiparticles at vanishing energy is
determined by thermal excitations. There is, however, an
interesting difference between WSM and FL at exponen-
tially small energies, ε� T exp(−c2/αN). In this regime,
the scattering rate in FL saturates to a constant value,
τFL(ε → 0) ∝ T 2, while in WSM it logarithmically ap-
proaches zero, see Eq. (8). The reason for such behavior
is rooted in the logarithmical divergence of the real part
of polarization operator (3) at |ω| ≈ vF q ∼ T . For expo-
nentially small energies ε, one has ln ||Ω|−Q| ∼ ln(ε/T ),
which eventually determines τ−1 ∝ ln−2(T/ε) depen-
dence in this regime.

As the energy of quasiparticles increases, the scatter-
ing rate exhibits a non-monotonic behavior. In partic-
ular, it has a sharp logarithmically enhanced peak at
ε = ωpl/2 due to resonant excitation of thermal plas-
mons [48]. This distinctive feature is exclusive for 3D
and absent in graphene [45]. At zero temperature, the
scattering rate is zero because of phase-space restric-
tions [18]. Since τ−1 ∼ αT for most of energies, WSM
with Coulomb interaction can be called a marginal FL.

Next, we calculate the self-energy in two other impor-
tant limits, Im Σε(ε,k = 0) and Im Σε(ε = 0,k), and
present our results in Table I. We see that in the region
ε� T

√
αN the answer is non-perturbative and coincides

(up to a possible numerical prefactor) with the scatter-
ing rate, Eq. (8). At higher energies, on the contrary, one
can use second-order perturbation theory. We also notice
that the plasmon peak is absent in Im Σε(ε,k = 0), be-
cause the plasmon resonance cannot be achieved in this
case due to frequency-momentum mismatch [48].

Formally, the second-order perturbative result for
Im Σε(ε,k = 0) and Im Σε(ε = 0,k) converges (no in-
frared divergence in momentum integral) for any non-

zero ε 6= 0 or ξk = vF k 6= 0. However, upon decreasing
energy of excitations, it grows as 1/ε2 due to processes
with small momenta transfer, signalizing that the naive
perturbation theory becomes insufficient and full summa-
tion of the most divergent terms is required [37, 38]. Af-
ter summation within the RPA, the 1/ε2 behavior crosses
over to a physically meaningful non-perturbative result
at small energies, ε, ξk . T

√
αN , as shown in Table I.

The Hubbard interaction – Now we perform simi-
lar analysis for the case of repulsive Hubbard interac-
tion, which may be relevant for certain cold-atom sys-
tems. Since we neglect internodal scattering for sim-
plicity, our model is described by the same Hamilto-
nian (1) with V0(q) = λ. Again, we assume a weak-
coupling limit and large-N approximation to justify the
RPA summation where needed. Specifically, we focus
on small coupling constants λ satisfying λNT 2v−3

F �
1. Furthermore, analogously to the case of Coulomb
interaction, we impose a more restrictive condition,
λNT 2v−3

F ln(vFΛ/T ) � 1, in order to simplify final ex-
pressions.

Similarly to what we found before, finite temperature
generates stable collective excitations. In case of Hub-
bard repulsion, those are zero-sound modes, with the dis-
persion determined by the equation 1 + λNΠ(ω,q) = 0.
In the low-frequency limit, vF q < ω � T , we find a
solution

ω = (vF + δvF )q − iΓ(q),

δvF =
2

e2
vF exp

(
− 12v3

F

λNT 2

)
� vF ,

Γ(q) =
1

4πe2

v4
F q

4

T 3
exp

(
− 12v3

F

λNT 2

)
� ω. (9)

Since the damping is exponentially small, the zero sound
is a well-defined excitation provided its energy is smaller
than temperature.
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While careful calculation of the scattering rate requires
summation of the infinite RPA series for effective inter-
action, it is instructive to first consider the result ob-
tained within the second-order perturbation theory. We
find that it gives the answer expected from simple scaling
arguments, Im Σε(ε,k) ∼ λ2Nv−6

F T 5 for ε, vF k � T , in-
dependently of the ratio ε/vF k. This is in sharp contrast
to the 2D version of the problem studied in Refs. [37, 38]
or the case of Coulomb interaction studied above, where
perturbation theory completely fails at low energies.

Since the perturbative result does not display any dan-
gerous divergencies, it is tempting to conclude that such
approach is sufficient, and no RPA summation is needed
at weak coupling. Though this statement is true in a
large energy domain, the correct answer obtained within
the RPA is more peculiar:

1

τ(ε)
=



b1
T
N

(
ln T

ε

)−2
, ε� T exp

(
− b2v

3
F

λNT 2

)
,

0.07λ
2NT 5

v6F
, T exp

(
− b2v

3
F

λNT 2

)
� ε� T,

3ζ(3)+4
96π3 λ2N T 3ε2

v6F
, T � ε�

√
v3F

λN ln(vF Λ/T ) ,

3
2πλ

T 3

v3F

(
ln vF Λ

T

)−1
,
√

v3F
λN ln(vF Λ/T ) � ε� vFΛ.

(10)
Here b1,2 are coefficients of order 1, ζ(x) is the Rie-
mann zeta-function, and we assumed that Λ2 �
vF /λN ln(vFΛ/T ) (in the opposite limit, the last inter-
val in Eq. (10) is absent). We see that, as anticipated,
the second-order perturbation theory is applicable in a
wide energy range failing only for exponentially small,
ε � T exp

(
−b2v3

F /λNT
2
)
, and parametrically large,

ε �
√
v3
F /λN ln(vFΛ/T ), energies. From technical per-

spective, the reason for the deviation from the pertur-
bative result in these regimes is clear: even though no
singularities appear at the second order, a large logarith-
mical factor shows up in the third order and proliferates
with the order of perturbation. Hence, the RPA summa-
tion is necessary, resulting in the first and last lines of
Eq. (10). The energy dependence of the scattering rate
due to Hubbard interaction is shown in Fig. 1 (b).

The results for Im Σε(ε,k = 0) and Im Σε(ε = 0,k)
are summarized in Table I, demonstrating again the rele-
vance of perturbation theory in a big energy interval. In-
terestingly, the result for the self-energy at zero momen-
tum formally has simple scaling behavior, Im Σε(ε,k =
0) ∼ λ2N max{ε5, T 5}. In practice, however, the prefac-
tor at T 5 is four orders of magnitude larger than that at
ε5, which must be taken into account when applied to
real materials. Analogous situation was encountered in
study of the relaxation rate in quantum dots in Ref. [52].

Conclusions – We studied scattering rate due to
weak electron-electron interaction in three-dimensional
Dirac/Weyl semimetals at finite temperature. We con-

sidered the cases of Coulomb and Hubbard interactions.
We found that in the Hubbard case scattering rate can be
found within the second-order perturbation theory in a
wide range of energies. On the other hand, the Coulomb
interaction necessarily requires the RPA summation be-
cause of its long-range nature; this results in the non-
monotonic sharply peaked energy dependence of the scat-
tering rate due to thermally induced plasmon resonance.
In both cases, the scattering rate non-analytically ap-
proaches zero at exponentially small energies.
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