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We study the structure of the orbital order Γ = 〈d†xzdxz − d†yzdyz〉 in FeSe in light of recent STM
and ARPES data, which detect the shapes of hole and electron pockets in the nematic phase. The
geometry of the pockets indicates that the sign of Γ is different between hole and electron pockets
(Γh and Γe). We argue that this sign change cannot be reproduced if one solves for the orbital order
within mean-field approximation, as the mean-field analysis yields either no orbital order, or order
with the same sign of Γe and Γh. We argue that another solution with the opposite signs of Γe

and Γh emerges if we include the renormalizations of the vertices in d−wave orbital channel. We
show that the ratio |Γe/Γh| is of order one, independent on the strength of the interaction. We also
compute the temperature variation of the energy of dxz and dyz orbitals at the center of electron
pockets and compare the results with ARPES data.

Introduction Orbital degrees of freedom turned
out to play an important role for iron-based supercon-
ductors (FeSC). Studies of SDW magnetism and super-
conductivity in these materials found that the orbital
composition of the states near the Fermi surface (FS)
affects the structure of the fermionic spectrum in the
spin-density-wave (SDW) phase [1] and the anisotropy of
the superconducting gap [2–4]. Another example is the
tetragonal-to-orthorhombic phase transition observed in
many FeSCs at T = Ts. Below Ts, the system sponta-
neously breaks C4 lattice rotational symmetry down to
C2. Below Ts the occupation of dxz and dyz orbitals be-
comes unequal, i.e., the system develops an orbital order
Γ(|k|) ∝

´
dθk(nxz(k)− nyz(k)), where ni is the density

of orbital i, and the integration is over the directions of k
for a given |k|. Above Ts, Γk vanishes by C4 symmetry,
but once C4 symmetry is broken, by one reason or the
other [5], Γ(|k|) becomes finite.

In most FeSCs the range of nematic order is quite nar-
row as the system develops a stripe magnetic order al-
most immediately after the nematic order sets in. How-
ever, in FeSe (and in doped FeSe1−xSx) the regions of
nematic and magnetic order are well separated ([6, 7]).
In pure FeSe, the nematic order sets in at Ts ≈ 85K,
and magnetic order does not develop down to T = 0.
This opens up an opportunity to extract the information
about the structure of Γ from the analysis of the feedback
effects on the electronic structure. The magnitude of Γ,
extracted from ARPES, is 10 − 20meV , much smaller
than the fermionic bandwidth [6, 8–15]. In this case,
the most relevant feedback from Γ is on fermions near
hole and electron pockets. The pockets in FeSe are quite
small, and Γ(|k|) near these pockets is well approximated
by numbers Γh and Γe.

Manifestations of the orbital order in FeSe have been
seen in Raman, STM, ARPES, and other experiments
(see Ref. [6] for recent review on FeSe). STM and
ARPES data show [8–12, 16] that below Ts the larger
hole pocket becomes elliptical and (π, 0) electron pocket
becomes peanut-like. Adding Γh and Γe terms to
the hopping Hamiltonian in orbital representation and

transforming from orbital to band basis, one can make
sure [8, 17] that the observed shapes of the pockets are
reproduced if Γh > 0 and Γe < 0, i.e., the orbital order
changes sign between hole and electron pockets.

In this communication we consider how the sign change
between Γe and Γh can be understood theoretically. For
this, we derive and analyze the self-consistent equation
for d-wave orbital order Γ. We argue that at mean-field
level, the set of coupled equations for Γh and Γe contains
the single effective interaction U0 = 5J−U , where U and
J are Hubbard and Hund local interactions. The orbital
order either does not develop, when U0 > 0, or yields
equal sign of Γe and Γh, when U0 < 0. We next include
into the analysis the fact that the couplings flow away
from their bare values (used in mean-field analysis), when
we progressively integrate out contributions of fermions
with higher energies. This flow is captured within par-
quet renormalization group analysis (pRG) [18] or func-
tional RG [19]. The pRG flow splits U0 into two different
interactions Ua and Ub. We show that this splitting gives
rise to a non-zero coupling in another channel for orbital
ordering, this time with Γe and Γh of opposite signs (d+−

channel). This is similar to how the coupling in the s+−

pairing channel emerges due to small inter-pocket pairing
interaction on top of strong Hubbard repulsion. We show
that the coupling in this new orbital channel is attrac-
tive, regardless of the sign of the bare U0, and exceeds the
coupling in the d++ channel. Our results are summarized
in Figs. 2, 3.

Our approach is similar to earlier works [4, 20], which
also found an attraction in the d+− channel, but differs
in detail. The authors of [4] analyzed the flow of the
interactions in the C4 symmetric regime near the fixed
trajectory, i.e., at the very end of the pRG flow. Here we
consider the evolution of Ua and Ub without assuming a
special relation between the interactions in the universal
regime close to a fixed trajectory. This is a more realistic
approach, given that in practice pRG only runs over a
finite window of energies. We show that the d+− channel
becomes attractive from the very beginning of the pRG
flow. In another distinction with [4] here we consider the
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ordered phase and include the splitting between dxz and
dyz orbitals and nematicity-induced changes to Bogoli-
ubov coefficients of the transformation from the orbital
to the band basis. The authors of [20] considered the case
of large U/J > 5 and obtained sign-changing d+− orbital
order by selecting a particular combination of RPA and
Aslamazov-Larkin type diagrams for the renormalization
of the Hubbard interaction. We consider arbitrary U/J
and treat vertex renormalizations within pRG, which ac-
counts on equal footing for vertex renormalizations in
particle-hole and particle-particle channels. We find that
it is important to include the full renormalization because
the sign change between Γh and Γe depends on the level of
approximation. Another explanation for the sign change
between Γe and Γh has been put forward in Ref. [21].
It is based on the earlier study[22], which showed that
the self-energy due to spin fluctuation exchange has op-
posite sign near Γ and near X/Y , and shrinks both hole
and electron pockets. Our approach is complimentary to
that work: we include orbital order into fermionic prop-
agators, but neglect nematicity-induced changes of the
interactions, while the authors of [21] included the X/Y
anisotropy of the effective interaction but not orbital or-
der. We emphasize that both approaches lead to sign-
changing orbital order.

We also consider how orbital order affects the energies
of dxz and dyz orbitals Exz and Eyz at (0, π) and (π, 0)
points in the 1FeBZ. In absence of orbital order, the two
energies are degenerate even in the presence of spin-orbit
coupling[23]. A non-zero Γe breaks the degeneracy. To
first order in Γe, Exz increases by Γe/2 and Eyz decreases
by Γe/2. Observation of this splitting has been reported
in Refs. [13, 16], but not in Ref.[10]. The authors of [13,
16] argued that the dxz/dyz splitting appears on top of a
larger effect – a simultaneous change of the temperature
dependence of Exz and Eyz below Ts. To verify this
claim, we compute the corrections to Exz and Eyz to
second order in Γe and Γh. The Γ2

e and Γ2
h terms are the

same for Exz and Eyz and, if these terms are large, they
can overtake the ±Γe/2 splitting already at small Γi. We
find that the second order contribution accounts only for
a small correction to ±Γe/2. If both Exz and Eyz indeed
become smaller in magnitude below Ts, as the authors
of [13, 16] argue, this must be due to some other physics.

ψi Pocket Orbital ψi Pocket Orbital ψi Pocket Orbital
ψ1 Y dxz ψ3 X dyz ψ5 Γ dyz

ψ2 Y dxy ψ4 X dxy ψ6 Γ dxz

TABLE I. Affiliation of ψi with a pocket and an orbital.

Mean-field analysis We consider a model with
two hole pocket near (0, 0) in the tetragonal phase (H-
pockets) and two electron pockets near (0, π) and (π, 0)
in the 1FeBZ (Y and X pockets). The hole pockets are
made out of dxz and dyz orbitals, the X pocket is made

out of dyz and dxy orbitals and the Y pocket is made
out of dxz and dyz (Refs. [2, 24]). We introduce six
spices of fermions: ψ1, . . . , ψ6, see Tab I and two d−wave
dxz/dyz orbital order parameters Γh = 〈ψ†6ψ6 − ψ†5ψ5〉
and Γe = 〈ψ†1ψ1 − ψ†3ψ3〉. For simplicity, we neglect d-
wave orbital order on the dxy orbital (the ψ†2ψ2 − ψ†4ψ4
term, Refs. [23, 25]). At the mean-field level, the self-
consistent equations for Γh and Γe are obtained by adding
up Hartree and Fock diagrams for different orbitals (Fig.
1a). To first order in the orbital order parameter, the
self-energies are ΣH

xz = Σh,0 + Γh/2, ΣH
yz = Σh,0 − Γh/2,

ΣY
xz = Σe,0 + Γe/2, ΣX

yz = Σe,0 − Γe/2, where Σh,0 and
Σe,0 are the self-energies in the absence of orbital order.
Evaluating the diagrams and taking the difference ΣH

xz−
ΣH

yz = Γh, ΣY
xz − ΣX

yz = Γe, we obtain self-consistent
equations for Γh,Γe in the form [26]

Γh = Ua

(
nH

xz − nH
yz

)
+ Ub

(
nY

xz − nX
yz

)
Γe = Ua

(
nY

xz − nX
yz

)
+ Ub

(
nH

xz − nH
yz

)
(1)

Here each density ni is the momentum integral over the
corresponding Fermi function. We find, to leading order
in Γi, nH

xz−nH
yz = AhΓh and nY

xz−nX
yz = AeΓe. To obtain

the prefactors Ah and Ae, we used the orbitally-resolved
low-energy model from Ref. [24] for the kinetic energy,
converted from orbital to band basis, and computed the
momentum integrals of the Fermi functions for different
bands. Finite values of Γh and Γe split the energies of
dxz and dyz orbitals and affect the Bogoliubov coefficients
of the orbital-to-band transformation. They also modify
the interactions Ua and Ub, but to linear order in Γe and
Γh, Ua and Ub in (1) can be evaluated in the tetragonal
phase.

We present the details of the calculations in [27] and
here state the result: both Ah and Ae are negative, and
their ratio γ = Ae/Ah depends on the parameters in the
kinetic energy and is, in general, of order one. Using the
band structure parameters that fit the ARPES and STM
data, we obtained γ ∼ 0.2.

The interactions Ua and Ub are linear combinations of
seven interactions involving dxz and dyz orbital states
near momenta where FSs are located. We show these
seven interactions in Fig. 1b. In terms of these interac-
tions, Ua = U5 − 2Ũ5 + ˜̃U5[28] and Ub = 2(U1 − Ū1) −
(U2 − Ū2) (labels are as in Fig. 1b). The bare values
of the interactions are U (0)

5 = U
(0)
1 = U

(0)
2 = U, Ũ

(0)
5 =

Ū
(0)
1 = U ′, ˜̃U (0)

5 = Ū
(0)
2 = J . As a result, the bare U (0)

a

and U (0)
b are the same: U (0)

a = U
(0)
b = U0 = U +J − 2U ′.

If we take U ′ = U−2J (Ref. [2]), we obtain U0 = 5J−U .
Substituting Ua = Ub = U0 into (1), we obtain that the
only possible solution of the self-consistent set is Γh = Γe

(sign-preserving d++ orbital order), and this order devel-
ops if the eigenvalue λ++ = U0(Ah + Ae) > 1. The
solution with the opposite sign of Γe and Γh does not
emerge at the mean-field level.

Beyond mean-field We now go beyond mean-
field and include into consideration that the seven in-
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Ũ5

ψ1 ψ1

ψ3 ψ3

˜̃U5

ψ1 ψ3

ψ1ψ3

U1

ψ1 ψ1

ψ6 ψ6

Ū1
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ψ6 ψ6

U2

ψ1 ψ6

ψ1ψ6

Ū2
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FIG. 1. a) Hartree and Fock self-energy diagrams; b) Exam-
ples of the interaction terms which contribute to Hartree-Fock
self-energies. The U5 terms in the first row also act on hole
pockets (ψ5, ψ6). Each diagram has symmetry-equivalents.
(ψ1 ↔ ψ3, ψ5 ↔ ψ6). The self-energy beyond mean-field
has been computed using dressed interactions, which we ob-
tained using pRG scheme. In a direct perturbation theory,
this amounts to summing up infinite series of self-energy dia-
grams, including RPA and Aslamazov-Larkin diagrams.

teractions, which contribute to Ua and Ub, flow to dif-
ferent values as one progressively integrates out fermions
with higher energies. This flow can be captured within
pRG and comes from mutual vertex renormalizations of
the total of 30 different interactions between low-energy
fermions on dxz, dyz, and dxy orbitals [4, 24, 25]. The
flow equations have been derived in [25], and we use the
results of that work to obtain the flow of Ua and Ub. This
flow accounts for the full logarithmically singular vertex
renormalizations in the particle-hole and particle-particle
channels.

The results are shown in Fig.2. We see that Ua and Ub

become different from U0, and Ub > Ua, irrespective of
whether U0 > 0 or U0 < 0. Solving for the eigenfunctions
and eigenvalues of Eq. (1) when Ua and Ub are different,
we obtain an eigenfunction Γ++ = Γh + α+Γe with the
eigenvalue λ++ and Γ+− = Γh+α−Γe with the eigenvalue
λ+−, where

α± = −1− γ
2

Ua

Ub
±

√(
1− γ

2

)2
U2

a

U2
b

+ γ (2)

λ++,+− = −|Ah|

1 + γ

2 Ua ± Ub

√(
1− γ

2

)2
U2

a

U2
b

+ γ


We see that α+ > 0 and α− < 0, i.e., the eigenfunc-

tion Γ++ describes sign-preserving d++ orbital order and
Γ+− describes sign-changing d+− order. We plot the cor-
responding eigenvalues λ++ and λ+− in Fig. 3. We see
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FIG. 2. Panels (a) and (b) – the pRG flow of the couplings
Ua and Ub for the case when the bare U (0)

a = U
(0)
b = U0 =

5J−U is positive in (a) and negative in (b) (we set J/U = 0.3
and 0.1, respectively). Panels (c) and (d) – the flow of the
couplings UM and UΓ in Eq. (3). The parameter L = logW

E
,

where W is of order bandwidth and E is the running energy.
The larger L is, the more high energy states are integrated
out. We used mhU/(4π) = 0.35 where mh is the mass of the
dispersion near the hole pocket.

that λ+− becomes positive (i.e., attractive) for any sign
of U0, once we include the pRG flow of the interactions.
We emphasize that this holds even if the flow runs only
over a small range of energies. For an instability towards
a sign-changing orbital order, the flow needs to run over
a finite range of energies to reach λ+− > 1.

For U0 > 0, the coupling in the λ++ channel is re-
pulsive, i.e., d+− orbital order is the only solution of
Eq. (1). For U0 < 0, the d++ channel is attractive at
the bare level, but we see from Fig. 3c,d that it becomes
sub-leading once Ub changes sign under pRG (see Fig.
2b). The attraction in d+− orbital channel for U0 < 0
was earlier obtained in Ref. [20] who used a combina-
tion of RPA spin and charge channels and Aslamazov-
Larkin diagrams to separate Ua and Ub. In distinction
with Ref. [20], here we account for the renormalization of
Ua and Ub systematically, in an order-by-order treatment
(as pRG is), through all channels including the pairing
channel. Like we said, we found that λ+− becomes posi-
tive already at the very beginning of the pRG flow, when
the renormalization of Ua,b can be obtained within a di-
rect perturbative expansion. In particular, the condition
U0 < 0 is not required [29]. We note that our compu-
tation of the self-energy, using the diagrams in Fig. 1a
with the dressed interactions is diagrammatically equiva-
lent to summing up infinite series of contributions to the
self-energy, including both RPA and Aslamazov-Larkin
diagrams.

Temperature variations of Exz and Eyz. We
now analyze how the energies Exz at (0, π) and Eyz at
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FIG. 3. The flow of the dimensionless couplings λ++ in sign-
preserving d++ channel (green) and λ+− in sign-changing d+−

channel (red). Notations are as in Fig. 2. Panels (a) and (b)
- the flow for the case U0 = 5J − U > 0 for two values of the
parameter γ = Ae/Ah (see text). Panels (c) and (d) – the
same for U0 < 0. The sign-changing d+− channel becomes
dominant once Ub changes sign near L = 2. . For γ 6= 1, the
couplings jump by finite values when Ub passes through zero.

(π, 0) vary with increasing orbital order (in the 2FBZ
these are energies of dxz/dyz orbitals at M). To first or-
der in Γe, the two energies just split: Exz = Ee,0 + Γe/2
and Eyz = Ee,0 − Γe/2, where Ee,0 < 0 is the energy in
the absence of the nematic order [23, 24]. Our goal is to
go beyond the first order in Γe and check if there is a large
common term of order Γ2

e,h. To check this, we computed
the self-energies ΣY

xz and ΣX
yz to order Γ2. We We did not

do the full self-consistent calculation to this order, as it
would require to include the self-energy to order Γ2 into
the densities nH

xz, n
H
yz, n

Y
xz, and nX

yz. Rather, we evalu-
ated the ”source” term in the self-energy Σso(Γ), which
comes from keeping O(Γh,e) terms in the self-energy, but
expanding the densities to order Γ2

h,e. The the common
self-energy for ΣY

xz and ΣX
yz below the nematic transition

is proportional to Σso(Γ)− Σso(0). We find

Σso(Γ) = UM (nY
xz + nX

yz) + UΓ(nH
xz + nH

yz) (3)

and UM = U5+2Ũ5− ˜̃U5 and UΓ = 2(U1+Ū1)−(U2+Ū2).
The bare value of UM and UΓ are again equal, each is

U + 2U ′ − J (= 3U − 5J if U ′ = U − 2J), but under
pRG, UΓ becomes larger than UM , as we show in Fig.
2 c,d. The common densities are (nH

xz + nH
yz) = nh,0 +

BhΓ2
h, (nY

xz + nX
yz) = ne,0 + BeΓ2

e, where ni,0 labels the
density for Γi = 0. We find (see [27] for details) that
the magnitudes of Bh and Be are at most of order 1/Ts,
hence near Ts, when Γh,e are small, the self-energy to
second order in Γi is a small correction to the first-order
±Γi/2 term. This is inconsistent with the interpretation
of the data in Refs. [13, 16].

Conclusions. In this communication we presented
the solution of self-consistent equations for d-wave ne-
matic order parameters on dxz/dyz orbitals. We argued
that at a mean-field level the only solution possible is
sign-preserving d++ nematic order Γ (same sign of Γe

and Γh) when the bare coupling U0 < 0. We went be-
yond mean-field and included the flow of the couplings
under pRG. Then we found an attraction in d+− channel
for which Γe and Γh have opposite sign, in agreement
with STM and ARPES data. We argued that d+− or-
bital order becomes the leading instability for either sign
of bare U0. We also computed the common self-energy
for dxz and dyz orbitals at the center of electron pockets
to second order in Γ to check whether we can reproduce
the results of Refs. [13, 16] that the energies EY

xz and EX
yz

simultaneously get smaller by magnitude in the nematic
phase. We obtained a much smaller self-energy and of
opposite sign than the one which is needed. If the inter-
pretation of the data in[13, 16] is correct, it has to be due
to a self-energy with vertices beyond our RG analysis.
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