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We develop a statistical theory of waveform shaping of incident waves that aims to efficiently
deliver energy at weakly lossy targets which are embedded inside chaotic or weakly disordered
enclosures such as body cavities, buildings, vessels etc. Our approach utilizes the universal features
of chaotic scattering – thus minimizing the use of information related to the exact characteristics of
the chaotic enclosure. The proposed theory applies equally well to systems with and without time-
reversal symmetry and will find applications in diverse areas of applied physics involving wavefront
shaping for targeted energy transfer in complex environment.

PACS numbers:

Introduction –The prospect of utilizing waveform shap-
ing of incident acoustic or electromagnetic radiation to
efficiently direct energy to focal points, placed inside
chaotic (or disordered) enclosures, has been recently in-
tensely pursued [1]. The excitement for this research is
twofold: On the fundamental side the interesting ques-
tion is to identify schemes that will allow us to utilize
multiple scattering events in complex media like disor-
dered structures or chaotic reverberation cavities in or-
der to overcome the diffraction limit [2–9]. A successful
outcome can revolutionize many applications of wave fo-
cusing in complex media, including imaging techniques
[10–13], medical therapies [14], outdoor or indoor wireless
communications [15] and electromagnetic warfare [16].

In this endeavor, time reversal (TR) and wavefront
shaping (WFS) are among the most promising wave-
focusing schemes with impressive experimental demon-
strations in a range of frequencies (see review [1]). Dis-
regarding subtle details, it was shown that the wave fo-
cusing process is benefited from the multiple scattering
events occurring during propagation inside a complex
medium [1, 3, 17, 18]. These two methods are com-
plementary in the sense that TR is a broadband ap-
proach which results in spatiotemporal focusing of in-
cident waves while WFS is mainly a monochromatic con-
cept which results in maxima of deposited energy at de-
sired foci. Both methods, however, are requiring a time-
reversal invariance of the propagation medium–a con-
dition that can be violated either because of inherent
losses or because of some external magnetic field. More-
over, they are not addressing the fact that in typical cir-
cumstances, where the targets are inside chaotic enclo-
sures (or disordered enclosures of the size of the mean
free path), the scattering fields demonstrate an extreme
sensitivity to the exact configuration of the enclosure,
its coupling to the interrogating antennas, the operat-
ing frequency etc. Thus, in many practical applications,
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FIG. 1: (color online) A WETAC algorithm can lead to a
waveform design which enhanced the probability to deliver
energy at a localized lossy element (red points) embedded in
(a) a complex network of coaxial cables; (b) a chaotic cavity;
and (c) a multimode waveguide with random scatterers.

the design of a waveform with 100% focusing efficiency
(for a specific configuration of an adiabatically varying
enclosure) is a formidable task. Instead, a more appro-
priate treatment would potentially rely on WFS schemes
that provide maximal (not necessarily 100%) focusing ef-
ficiency and whose success is quantified using statistical
tools. There are some attempts along these lines [18–21];
however a statistical approach for WFS is still lacking.

At the same time, there are well developed statistical
methods, applicable both in the frame of electrodynam-
ics [22, 23] and acoustics [24–26], whose central theme
is the statistical description of wave interference at any
position inside a complex enclosure [27, 28]. The guid-
ing viewpoint of this school of thought is that the (adia-
batic) changes of the enclosure render any attempt to de-
scribe transport characteristics for a specific "replica" of
the system meaningless. Thus, the statistical description
constitutes the only meaningful approach for the scat-
tering properties of chaotic enclosures. This approach,
however, does not provide any recipe for the realization
of incident waveforms that will lead to foci (hot-spots)
inside a chaotic/disordered enclosure.

Here we develop a statistical approach for the design
of chaotic Waveforms with Enchanced TArgetted Capa-
bilities (WETACs), that have high probability to deliver
a large amount of their energy at localized weakly lossy
targets embedded inside complex enclosures. We have
used the terminology chaotic waveform for two reasons:
(a) the designed waveforms aim to deliver maximum en-
ergy to targets inside chaotic or disordered enclosures of



2

the size of the mean free path (for some examples see Fig.
1), and (b) in the limit of isolated resonances these wave-
forms are directly related to the eigenmode components
of the isolated chaotic/disordered cavity. This relation,
although in a more complicated way, is also extended to
the other limiting case of overlapping resonances.

Our WETAC scheme distributes the injected energy
over multiple channels and utilizes the statistical features
of chaotic scattering as they are quantified by the so-
called Ericson parameter [28]. The design of WETACs
requires a minimal information about the enclosure: (i)
the loss-strength of the target (with some tolerance); (ii)
the eigenfrequencies; and (iii) the (normalized) eigem-
mode amplitudes of the isolated cavity at the positions
of the interrogating antennas and at the target(s). While
most of this information is experimentally accessible via
reflection measurements, the field amplitude at the posi-
tion of the target might not be easily measured. The ad-
ditional assumption that the latter is given by its ergodic
limit (as it is calculated using the RandomMatrix Theory
formalism) is proven successful, particularly for multiple
localized lossy targets. The success of the WETAC algo-
rithms is quantified by analyzing the distribution of ab-
sorbances when the incident energy is carried over by the
designed WETACs. The statistical evaluation, the Eric-
son parameter, and the ergodicity assumption, constitute
the basic statistical element of the proposed scheme.
Scattering and Absorption Matrices in case of Localized

Losses – The object that describes the scattering process
of an incident monochromatic wave with frequency E(k),
is the M ×M scattering matrix S(k, γ)

S (k, γ) = −1̂− ıWT 1

Heff (k, γ)− E(k)
W, (1)

where M is the number of (identical) propagating chan-
nels, 1̂ is the M ×M identity matrix and Heff

Heff (k, γ) = H(γ) + Λ(k)− ı

2
WWT (2)

is an effective Hamiltonian that represents the cavity
in the presence of radiative and Ohmic losses [29, 30].
Specifically, H(γ) in Eq. (2) is decomposed in two terms

H({γd}) = H0 − ıΓ0; Γ0 =
∑
d

γd |ed〉 〈ed| , (3)

where the N dimensional Hamiltonian H0 = H†0 de-
scribes the isolated system and Γ0 indicates the exis-
tence of Nd localized lossy targets with loss-strength
(Ohmic conductivity) γd(d = 1, · · · , Nd). The unit
vectors {|el〉} indicate the basis where H0 is repre-
sented. The term Λ(k) appearing in Eq. (2) describes
the lead-coupling induced renormalization for the iso-
lated system Hamiltonian and can be written as Λ(k) =∑M

m=1 λm(k) |em〉 〈em|. The frequency-dependent real-
valued constants λm(k) = λm(−k) are system specific
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FIG. 2: (color online) (a) The transmittance versus frequency
for a GOE cavity with one loss target of strength γ = 0.01.
(b) The parametric evolution of complex zeros of the secular
equation Eq. (6) in the complex frequency plane, as the loss-
strength γ increases. The cavity is modeled by a GOE matrix
H0 with dimensionality N = 15, and M = 2 number of leads.
Blue (red) lines indicate a system with a coupling constant
between the leads and the cavity which is w = 0.2 (w = 1),
with a corresponding Ericson parameter E ≈ 0.03 (E ≈ 1.4)
indicating isolated (overlapping) resonances. The complex
zeros for γ = 0 are indicated with open blue/red circles for
each case respectively. Black crosses indicate the position of
the eigenenergies E(0)

n of H0.

and depend on the properties of the channels and their
coupling to the system. The coupling of the system with
the leads is controlled by the N ×M matrix W with ele-
mentsWlm =

√
vgwmδlm (wm are dimensionless coupling

strengths), where vg ≡ ∂E(k)
∂k .

For γ = 0, the scattering matrix is unitary. When
γ 6= 0, it becomes sub-unitary and one can define an
absorption operator A ≡ 1 − S†S = A† [31]. Using Eq.
(1) we get [32]

A (k, γ) =2
∑
d

γd |ud〉 〈ud| , |ud〉 = WTG |ed〉 (4)

where G (k, γ) =
[
H†eff (k, γ)− E (k)

]−1
.

The absorbance associated with an incident waveform
|I〉 is defined as

α (k, γ) ≡ 〈I|A (k, γ) |I〉
〈I |I〉

∈ [0, 1] (5)

An α = 1 indicates that the energy carried by the inci-
dent waveform is completely absorbed by the target(s).
The opposite limit of α = 0 corresponds to an incident
waveform that “lost” completely the lossy target(s) and
has been either transmitted or (and) reflected by the cav-
ity. Below, we shall use α as a measure of success of a
designed waveform to deliver its energy to a lossy target.
Perfect Waveforms –A perfect waveform (PW) corre-

sponds to an incoming wave whose energy is completely
absorbed by the lossy target(s). The PW |IPW 〉 is an
eigenvector |α(kPW , γ)〉 of A(kPW , γ) with a correspond-
ing eigenvalue α(kPW , γ) = 1. This condition defines the
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FIG. 3: (color online) Numerical (staircase lines) and the-
oretical (smooth lines) distribution of absorbances P(α) for
a chaotic cavity with (a) one; (b) two and; (c) four lossy
targets. Green (blue) lines are associated to WETAC (er-
godic WETAC) incident waveforms. Black lines are associ-
ated with an ensemble of |IR〉 incident waveforms. In all cases
M = 2, w = 0.3 (corresponding to E ≈ 0.06). The cavities are
modeled by a GOE random matrix H0 with dimensionality
N = 15 while γ̄ = 0.01 and η = 0.35.

real-valued wavevector kPW . The reality of the wavevec-
tor is a physical requirement and it is associated with the
fact that, in order to transport energy, the input signal
has to be a propagating wave. It deserves to point out
that PWs have recently attracted a lot of attention in
the framework of optics where they have been identified
as the time-reversed of a lasing mode [33, 34]. While
these studies are restricted to integrable cavities with
TR-symmetry, PWs can also emerge in chaotic systems
with or without TR-symmetry [29, 30].

It is straightforward to show that, for a fixed γ,
kPW are the real zeros (if exist) of the secular equation
det [S(k, γ)] = 0. Using Eq. (1) one can rewrite the sec-
ular equation in terms of the effective Hamiltonian Eq.
(2) as [29, 30]

ζ (k, γ) ≡ det (Heff (−k, γ)− E(k)) = 0. (6)

which for a fixed γ, it has multiple complex zeros kn.
Characterization of chaotic PW based on Ericson Pa-

rameter –The scattering properties of a chaotic cavity
depend crucially on the way that the system is coupled
to the leads. In the case of weak coupling, the trans-
mittance consists of resonances that demonstrate narrow
linewidths Γn which are typically smaller than the mean
level spacing ∆ of the corresponding isolated cavity [28],
see blue line in Fig. 2a. In the opposite limit of strong
coupling, the transmittance is represented by a sum of
many overlapping resonances [28], see red line in Fig. 2a.

The distinction between these two qualitative differ-
ent scattering domains is typically done by the Ericson
parameter E ≡ 〈Γ〉/∆ where 〈Γ〉 is the mean resonance
width. When E � 1 the resonances are well isolated from
one another while in the opposite case we have strongly
overlapping resonances.

It turns out that the Ericson parameter controls the na-
ture of the PW as well. In Fig.2b we show the parametric
evolution of the complex zeros in the Re(E) − Im(E)-
plane as the loss-strength γ increases. At the same figure
we also mark with crosses the eigenvalues {E(0)

n } of the

Hamiltonian H0. Initially (i.e. for γ = 0) the zeros are in
the upper part of the complex plane (see blue and red cir-
cles). As γ increases they move downwards and cross the
real axis at EPW ≡ E(kPW ) corresponding to a critical
value of γ = γPW . It is exactly this pair of (EPW , γPW )
for which a PW can be achieved. When E � 1 (blue tra-
jectories), the EPW (whenever they exist) are very close
to the eigenvalues {E(0)

n } of the isolated system. In the
opposite limit of E � 1, the PW energies EPW occur be-
tween two nearby eigenfrequencies {E(0)

n } indicating that
more than one mode might affect their formation.
Design schemes for WETACs –We start our analysis

with the observation that a WETAC can be determined
by a subset of the normalized eigenmodes

∣∣∣Ψ(0)
n

〉
of the

Hamiltonian H0. The size N of this subset depends on
the Ericson parameter as N = [E ] + 1, where [· · · ] indi-
cates integer part. This reduced subspace is defined by
a projection operator P (N )

n0 =
∑N

n=1

∣∣∣Ψ(0)
n0+n

〉〈
Ψ

(0)
n0+n

∣∣∣
where n0 = 1, · · ·N −N .

Next, we project Eq. (6) in the P (N )
n0 subspace. The

corresponding matrix elements of the reduced effective
Hamiltonian H

(N )
eff,n0

(−k, γ) = P
(N )
n0 Heff (−k, γ)P

(N )
n0

are expressed in terms of the eigenvalues {E(0)
n } and

eigenvectors {
∣∣∣Ψ(0)

n

〉
} of the isolated system which be-

longs to the P (N )
n0 subspace[

H
(N )
eff,n0

(−k, γ)
]
nl

= E(0)
n δnl − ı

∑
d

γd

〈
Ψ(0)

n

∣∣∣ ed〉 〈
ed

∣∣∣Ψ(0)
l

〉
+
∑
m

(
λm(k) +

ı

2
vg(k)w2

m

)〈
Ψ(0)

n

∣∣∣ em〉〈em ∣∣∣Ψ(0)
l

〉
(7)

where the indexes d,m run over the position of the tar-
get(s) and the leads respectively. The potential WE-
TAC pairs (EWETAC , γWETAC) are associated with the
real roots of the reduced secular equation ζ

(N )
n0 (E, γ) ≡

det
(
H

(N )
eff,n0

(−k, γ)− E(k)
)

= 0. Below we assume that
the analysis applies for all subspaces n0.

Out of all possible pairs (EWETAC , γWETAC) which
are solutions of the secular equation ζ(N )(E, γ) = 0 we
consider only the ones that satisfy the following “prox-
imity” constrains: (a) EWETAC ∈ [E

(0)
min − δ, E

(0)
max + δ]

where E
(0)
min/max are the borders of the frequency in-

terval associated with the eigenmodes of the reduced
subspace P (N ) and δ � ∆; and (b) the evaluated
γWETAC ∈ γ̄[1 − η, 1 + η] where γ̄ is the loss strength
(conductivity) of the target and η is a tolerance level of
our knowledge of its loss-strength. The corresponding
subspace P (N )

WETAC which leads to a secular equation with
solutions (EWETAC , γWETAC) that satisfy the above two
constrains constitute a good basis for the description
of WETACs. The WETAC waveforms |IWETAC〉 cor-
respond to the eigenvector

∣∣∣α(N )
max

〉
associated with the
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maximum eigenvalue α(N )
max = 1 of the projected absorp-

tion operator A(N ). The latter is given by Eq. (4) with
G substituted by G(N ) ≡ P (N )

WETACGP
(N )
WETAC.

Ergodic WETACs –In many practical situations, it is
impossible to have information about the eigenmode am-
plitudes at the position of the target(s). We have there-
fore relax further the WETAC scheme by substituting in
Eq. (7) for H(N )

eff (and consequently in G(N )), the eigen-
mode amplitudes at the position of the target(s) with
their ergodic limit i.e.

〈
ed

∣∣∣Ψ(0)
l

〉
∼ 1/

√
N . This approx-

imation is justified for chaotic cavities where typically the
modes are ergodically distributed over the enclosure. We
shall refer to this algorithm as the ergodic WETAC.
Numerical Examples –We tested the proposedWETAC

schemes for cavities with E � 1 (isolated resonances) and
E > 1 (overlapping resonances) as well as for cavities with
and without TR-invariance. We have modeled the com-
plex enclosures by an ensemble ofN×N random matrices
H0 taken from the Gaussian Orthogonal/Unitary Ensem-
ble (GOE/GUE) for isolated cavities with/without TR
symmetry [27, 28].

When E < 1 the dimensionality of the projected sub-
spaces is N = 1 and thus P (N=1)

n =
∣∣∣Ψ(0)

n

〉〈
Ψ

(0)
n

∣∣∣ for
n = 1, · · · , N . In this case the evaluation of H(N=1)

eff re-
quires only the knowledge of the field intensities at the
positions of the targets and of the antennas, see Eq. (7).

Following the WETAC recipe we first identify a po-
tential pair (EWETAC , γWETAC). The latter is calcu-
lated from the reduced secular equation ζ(N )(E, γ) =(
Re
[
ζ(N )

]
, Im

[
ζ(N )

])
= (0, 0). The pair is accepted as

a WETAC solution if it satisfies the proximity constraints
mentioned above. In this case the subspace P (N=1)

n is
identified as P (N=1)

WETAC and is used for the evaluation of
the WETAC field via A(N=1). We get

|IWETAC〉 ∝WT
∣∣∣Ψ(0)

〉
(8)

where we have used Eq. (4) together with the substitu-
tion of G with G(N=1) =

[〈
Ψ(0)

∣∣G ∣∣Ψ(0)
〉] ∣∣Ψ(0)

〉 〈
Ψ(0)

∣∣.
Notice that |IWETAC〉 involves only the eigenmode com-
ponents at the position where the leads are attached to
the cavity. The latter can be measured via reflection
measurements, see Ref. [28].

The efficiency of the WETAC scheme is evaluated by
calculating the distribution of absorbances P(α) for inci-
dent waveforms given by Eq. (8). In Figs. 3a,b,c we show
the numerical results for P(α) (staircase green lines) and
Nd = 1, 2, 4 hot-spots respectively. These distributions
have been generated over a GOE ensemble of H0 (for a
fixed loss-strength γ̄) by substituting Eq. (8) together
with the value of EWETAC satisfying the proximity con-
straints, in Eq. (5) for the numerical evaluation of the
absorbance. In the same figure we also report the theo-
retical results (green lines) of P(α) for the E < 1 WETAC
scenario [32].

a) b) c)

FIG. 4: (color online) Absorbance distributions P(α) for
GOE/GUE cavities (dark/light lines) with E ≈ 1.4/E ≈ 1.7
(w = 1). (a) One lossy target; (b) two lossy targets; and (c)
four lossy targets. The loss tolerance is η = 0.3. All other
parameters and color coding are the same as in Fig. 3.

In Fig. 3 we also show the numerical (staircase black
lines) and the theoretical (continous black likes - see Sup-
plement, Eq. (S12)) distribution of absorbances P(αmax)
when the incident waveforms |IR〉 = |αmax(k)〉 corre-
spond to eigenvectors of A(k, γ̄) associated with the max-
imum eigenvalue. The wavevectors are taken from a box
distribution k ∈ [0, π]. We find a fast decay of P(αmax)
indicating that the majority of these waveforms are miss-
ing the lossy target. Notice that any other random wave-
form will be less efficient.

In Fig. 3, we plot the theoretical result (blue solid
lines) for P(α) [32] together with the numerical data
(blue staircase lines) for the ergodic WETAC scheme.
In comparison with the actual WETAC, the efficiency
of the ergodic WETAC scheme is reduced. The origin
of this deviation is associated with the statistical imple-
mentation of the proximity constraint via γWETAC. The
ergodic WETAC scheme is, nevertheless, far superior to
the random incident waves (black lines). The efficiency
is improved further when more lossy targets Nd > 1 are
considered, see Fig. 3b,c. The improvement is a direct
consequence of the validation of the ergodic hypothesis
in the limit of many targets 1� Nd � N .

We have also tested our WETAC algorithm for chaotic
cavities with E > 1. In this case the projected space
is enlarged i.e. N > 1 and the implementation of
the algorithm becomes more demanding. Nevertheless,
one can easily carry over the WETAC program numeri-
cally. For demonstration purposes we have considered,
a system with M = 2 channels and E = 1.4 corre-
sponding to N = 2. The projection operator takes the
form P (N=2) =

∣∣∣Ψ(0)
n

〉
〈Ψ(0)

n

∣∣∣ +
∣∣∣Ψ(0)

n+1

〉
〈Ψ(0)

n+1

∣∣∣ for all

subsequent modes E(0)
n , E

(0)
n+1 of the isolated cavity H0.

The potential WETAC pairs (kWETAC , γWETAC) are ob-
dained via Eqs. (6,7). Furthermore, the implementation
of the proximity conditions allow us to single out the ac-
tual WETAC pairs and the corresponding WETAC sub-
spaces P(2)

WETAC .
The design of the WETAC waveforms requires the di-

agonalization of the reduced absorption matrix A(N=2)

in the WETAC subspaces P(2)
WETAC . The latter are cal-
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culated using Eqs. (4, 7). The eigenvector |αmax〉 as-
sociated with the eigenvalue α = 1 gives us the desired
WETAC |IWETAC〉 = |αmax〉. For one lossy target at po-
sition d0 one has |IWETAC〉 ∝ |ud0

〉 (see Eq. (4)), which
in the P(2)

WETAC space reads [32]

|IWETAC〉 ∝
([
H

(N=2)
eff

]
2,2
− EWETAC

)
WT

∣∣∣Ψ(0)
1

〉
−
[
H

(N=2)
eff

]
2,1
WT

∣∣∣Ψ(0)
2

〉
. (9)

where H
(N=2)
eff has been evaluated at

(kWETAC , γWETAC), see Eq. (7). For more lossy
targets Nd > 1, the waveforms |IWETAC〉 are more
complicated. Nevertheless, they can be evaluated nu-
merically using the aforementioned WETAC algorithm.
We point out that, as opposed to Eq. (8), here the
calculated EWETAC is affecting the WETAC waveform
via the weight between the two contributing eigenmodes.

In Figs. 4a,b,c we report our numerical results for P(α)
when a WETAC incident wave is launched towards the
complex cavity (green staircase) with Nd = 1, 2, 4 lossy
targets, respectively. At the same subfigures we report
also the P(α) associated with an ergodic WETAC (blue
staircase). The two approaches converge rapidly to the
same distribution P(α) as Nd increases. As a reference
we also show the distribution P(α) corresponding to ran-
dom incident waveforms |IR〉 (black staircase).
WETACs for cavities with broken TR-invariance – In

Fig. 4 we also report P(α) for enclosures with broken
TR-symmetry. The corresponding incident waveforms
have been generated using the same WETAC scheme as
above for E = 1.7. We find that the WETAC (light green
staircase) and the ergodic WETAC (light blue staircase)
schemes demonstrate the same level of efficiency as in the
GOE case. Light black staircase lines indicate the P(α)
generated from an ensemble of |IR〉 incident waveforms
and it is shown for comparison.
Conclusions –We have proposed a statistical algorithm

to design waveforms that deliver, with high probability,
large portion of their energy in weakly lossy targets which
are embedded inside chaotic enclosures. There are many
open questions that need further investigation. For ex-
ample, can we guarantee simultaneous multiple strikes?
How non-universal features (like scars) can be utilized for
better performance? These questions will be the theme
of future research in WETAC shaping.
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