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We analyze the dynamical response of a two-dimensional system of itinerant fermions coupled to a
scalar boson φ, which undergoes a continuous transition towards nematic order with d−wave form-
factor. We consider two cases: (a) when φ is a soft collective mode of fermions near a Pomeranchuk
instability, and (b) when it is an independent critical degree of freedom, such as a composite spin
order parameter. In both cases, the order-parameter is not a conserved quantity and the d−wave
fermionic polarization Π(q,Ω) remains finite even at q = 0. The polarization Π(0,Ω) has similar
behavior in the two cases, but the relations between Π(0,Ω) and the bosonic susceptibility χ(0,Ω)
are different, leading to different forms of χ′′(0,Ω), as measured by Raman scattering. We compare
our results with polarization-resolved Raman data for the Fe-based superconductors FeSe1−xSx,
NaFe1−xCoxAs and BaFe2As2.

Introduction.- The behavior of strongly correlated
fermions in the vicinity of a quantum critical point
(QCP) is one of the most fascinating problems in many-
body physics. A traditional way to treat the physics near
a QCP is to study an effective low-energy model in which
itinerant fermions are coupled to near-critical fluctua-
tions of a bosonic order parameter [1]. The boson can be
a collective mode of electrons, as in the case of a Pomer-
anchuk instability, or an independent degree of freedom
(e.g., a phonon). In both cases, the boson-fermion cou-
pling affects the bosonic dynamics. This effect is encoded
in the fermionic polarization Π(q,Ω), which in turn is
related to the bosonic susceptibility χ(q,Ω). Previous
studies of χ(q,Ω) [1–5] focused primarily on the range
Ω� vF q (vF is the Fermi velocity), in which the scaling
behavior holds in critical theories with a dynamical expo-
nent z > 1 . However, several experimental probes, most
notably polarization-resolved Raman scattering, analyze
χ(q,Ω) in the opposite limit of vanishing q and finite
Ω [6]. The same regime has been probed in Quantum-
Monte-Carlo studies [7]. If the order parameter is con-
jugate to a conserved quantity, e.g. the total fermion
number-density or the total spin, the fermionic polar-
ization Π(q,Ω) vanishes identically by the conservation
law at q = 0 and, by continuity, is small at Ω � vF q.
However, if the order parameter is conjugate to a quan-
tity that is not constrained by conservation laws, Π(0,Ω)
does not have to vanish and may give rise to a nontrivial
frequency dependence of χ(0,Ω).

In this letter we report the results of our study of
Π(0,Ω) and χ(0,Ω) for a clean system of 2D fermions
coupled to fluctuations of a (charge) nematic order pa-
rameter, φ, with a d−wave form-factor. If φ is a collec-
tive mode of fermions, the model describes an itinerant

fermionic system near a Pomeranchuk instability. If φ
is a separate degree of freedom, it softens on its own,
but fermions still affect the critical behavior. In both
cases, Π(q,Ω) is the same. However, in the Pomeranchuk
case, the bosonic susceptibility represents the same col-
lective excitations that determine the polarization and is
proportional to Π(q,Ω) for all momenta and frequencies.
We compare our results with the Raman data for Fe-
chalcogenide FeSe1−xSx [8, 9] and Fe-pnictides BaFe2As2

[10] and NaFe1−xCoxAs [11], which all display nematic
order in some range of temperature and doping. For these
and related systems two different electronic scenarios for
nematicity have recently been put forward [12]. One sce-
nario is that nematicity is associated with a composite
spin order [13, 14]. Another is that nematic order is a
Pomeranchuk order in the charge channel with a d−wave
form factor [15–18]. The two order parameters are lin-
early coupled, and if the susceptibility for one order pa-
rameter increases, it triggers the increase of the suscep-
tibility for the other order parameter. Still, if the lin-
ear coupling is not strong, one can identify the primary
mechanism, with the most strongly divergent correlation
length. At the moment, there is no clear-cut experimen-
tal confirmation for either mechanism (for recent exper-
imental reviews see [19, 20]).

For all systems, we find evidence of quantum critical
behavior near the transition. For FeSe and FeSe1−xSx,
we find good agreement with the Pomeranchuk scenario,
consistent with the fact that magnetic order in these sys-
tems does not develop down to T = 0 (although some
magnetic fluctuations have been detected [21–23]). For
NaFe1−xCoxAs and BaFe2As2 we find a better agreement
with the composite magnetic scenario of nematicity, con-
sistent with the fact that nematic and magnetic ordering
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FIG. 1. The d-wave fermion polarization Π′′(q,Ω) at q = 0
for a model of itinerant fermions near an Ising nematic quan-
tum critical point. We use log-log scale to highlight different
power-law regimes. At very low frequencies, Π′′(0,Ω) scales
as Ωξ2. Above a crossover frequency Ωc ∝ ξ−3, Π′′(q,Ω) be-
comes universal (independent of ξ) and has different forms in
two regimes, depending on the ratio Ω/Ω∗, where Ω∗ � εF
is defined after Eq. (4). For Ω� Ω∗, Π′′(0,Ω) ∝ |Ω|1/3. For
Ω � Ω∗, Π′′(0,Ω) ∝ |Ω|. At even higher frequencies (not
shown) Π′′(0,Ω) passes through a maximum and decreases.

temperatures nearly coincide and in NaFe1−xCoxAs fol-
low each other as functions of doping.

The model.- We consider a clean two-dimensional sys-
tem of itinerant fermions with a circular Fermi surface
(FS) specified by Fermi momentum kF and Fermi veloc-
ity vF , coupled to a scalar boson φ(q), which undergoes a
continuous transition towards charge nematic order with
d−wave form factor. The field φ is coupled to the d−wave
component of fermionic density as

HI = g
∑
k,q

f(k)φ(q)ψ†(k + q/2)ψ(k− q/2), (1)

where g is a coupling constant and f(k) is a momentum
dependent vertex with d−wave symmetry (e.g., f(k) =
cos kx − cos ky). Near the FS f(k) ≈ f(θ), where θ is an
angle along the FS. This model has been discussed ex-
tensively in the regime where the characteristic bosonic
frequency Ω is much smaller than vF q, with q the char-
acteristic bosonic momentum [5, 23, 24]. In standard
treatments of this regime, the boson propagator is

D(q,Ω) =
χ0

ξ−2
0 + q2 − Ω2/c2 + ḡΠ(q,Ω)

. (2)

Here ḡ = g2χ0 is the effective coupling constant (as-
sumed much smaller than εF ≡ vF kF /2), ξ0 and c are
the bosonic correlation length and velocity at g = 0, i.e.,
in the absence of coupling to fermions, and Π(q,Ω) is the
particle-hole polarization bubble, given by

ḡΠ(q,Ω) = − ḡk2
F

4πεF

(
〈f2〉+ if2(q̂′)

|Ω|
vF |q|

)
, (3)

where εF = vfkF /2, 〈f2(θ)〉 =
∫
dθ
2πf

2(θ), and q̂′ = ẑ×q̂,
ẑ is a unit vector in the direction perpendicular to the
2D plane [25, 26]. The constant term in ḡΠ(q,Ω) ac-
counts for the difference between ξ0 and the actual ne-
matic correlation length ξ: ξ−2 = ξ−2

0 − ḡk2
F 〈f2〉/(4πεF ).

The form of D(q,Ω) at Ω � vF |q| determines the
fermionic self-energy on the FS: at the QCP, Σ(Ω, θ) ∝
|f(θ)|4/3|Ω|2/3ω1/3

0 , where ω0 ∼ ḡ2/εF .
Our goal is to obtain Π(q,Ω) at T = 0 in the op-

posite limit of q = 0 and finite Ω. We obtain Π(0,Ω)
first along Matsubara axis Ω = iΩm, and then convert
to real Ω. For free fermions, Π(0,Ωm) vanishes for arbi-
trary f(θ) because the density of fermions at each mo-
mentum is separately conserved. At a finite ḡ, this is
generally not the case. We evaluate Π(0,Ωm) to leading
order in ḡ by computing the two-loop Maki-Thompson
diagrams for the d-wave particle-hole bubble, along with
the Aslamazov-Larkin diagrams, which contribute at the
same order (see Ref. [27] for details). For a constant
form-factor (f(θ) = 1), these diagrams cancel exactly,
and the cancellation can be traced to the Ward iden-
tity for fermion number conservation [28]. For a non-
conserved order parameter the diagrams do not cancel.
Evaluating the diagrams, we obtain

ḡΠ(q = 0,Ωm) =

(
ḡ

vF

)2

〈f2〉×

[A (kF ξ)− C (|Ωm|; kF ξ)] . (4)

Here 〈f2〉 = 〈f2f ′2 + 1
2f

3f ′′〉 < 0, and the functions A
and C are

A (kF ξ) = 1− (kF ξ)
−1 tan−1(kF ξ) (5)

and

C (|Ωm|; kF ξ) ∼


ḡ|Ωm|
ε2F

(kF ξ)
2 |Ωm| � Ωc(

ḡ|Ωm|
ε2F

)1/3

Ωc � |Ωm| � Ω∗

vF
c
|Ωm|
εF

Ω∗ � |Ωm| � εF

.

(6)
The characteristic frequencies in (6) are Ωc ∼
ε2
F ḡ
−1(kF ξ)

−3 and Ω∗ ∼
√
ḡεF (c/vF )3. The frequency

Ωc separates Fermi liquid and QC behavior, and Ω∗

marks where the damping term starts to dominate over
the bare Ω2

m/c
2 in Eq. (2) (Refs. [29, 30]). The various

dynamical regimes in real frequency, both at and near
the QCP, are depicted qualitatively in Fig. 1.
Nematic susceptibility When φ represents a collec-

tive mode of fermions near a d-wave Pomeranchuk in-
stability, the nematic susceptibility is well approximated
by χPom(0,Ω) = −Π(0,Ω)/(1 + ḡξ2

0Π(0,Ω)) where ḡξ2
0

is a four-fermion interaction in the d-wave channel For
Ω � vF q, one can verify that χPom(q,Ω) has the same
form as D(q,Ω) in Eq. (2). For Ω � vF q, Π(q → 0,Ω)
is much smaller and χPom ≈ −Π(0,Ω). When φ can
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be considered an independent, near-critical bosonic field,
the full bosonic susceptibility χind(0,Ω) predominantly
comes from the φ field, i.e., χind(0,Ω) ≈ D(0,Ω), where
D is given by Eq. (2). The behavior of χind(0,Ω) then
depends on the scale ξ0 as well as ξ. This opens an av-
enue to distinguish the “Pomeranchuk” and “indepen-
dent” scenarios, by comparing low-energy properties of
the real and imaginary parts of their corresponding sus-
ceptibilities. We concentrate on two such properties: the
the behavior of δχ′ = χ′ξ=∞(0,Ω → 0) − χ′ξ(0,Ω → 0)
and the slope of the imaginary part of the susceptibility
Γ = χ′′(0,Ω)/Ω|Ω→0.

In the Pomeranchuk case, converting Eqs (5) and (6)
to real frequencies we find

δχ′Pom ∝ ξ−1, ΓPom ∝ ξ2. (7)

In the independent case, to leading order in ḡ/εF ,
χ′ind(Ω) = χ0ξ

2
0 , and χ′′ind(Ω) = −χ0ḡξ

4
0Π′′(0,Ω), where

we recall that ξ−2 = ξ−2
0 −ḡk2

F 〈f2〉/(4πεF ) [31] Therefore

δχ′ind ∝ ξ−2ξ2
0 , δ

(
1

χ′ind

)
∝ ξ−2, Γind ∝ ξ2ξ4

0 . (8)

We emphasize that in both cases, χ′ξ=∞(Ω → 0) re-
mains finite at the QCP because it differs from the ther-
modynamic nematic susceptibility χ′(q → 0,Ω = 0),
which scales as ξ2 and diverges at the QCP. We recall
in this regard that we consider a clean system. In the
presence of weak disorder the limits q→ 0 and Ω→ 0 in-
deed commute [16], but χ′(0,Ω) nonetheless approaches
its clean limit behavior for frequencies above an appro-
priate transport scattering rate γtr. In this respect our
χ′(0,Ω → 0) is actually the susceptibility for Ω much
larger than γtr, but well below any other energy scale.
Comparison with experiments The d-wave bosonic

susceptibility is directly measured in polarization-
resolved Raman scattering experiments [6]. The momen-
tum transfer in Raman experiments is very low, so that
to high accuracy the susceptibility extracted from Ra-
man measurements coincides with χ(q = 0,Ω) = χ(Ω).
Near the transition, the quadrupole response develops
a broad peak. As T approaches Ts, the peak position
moves to a smaller frequency and the slope at Ω → 0
increases. Several explanations of the peak have been
presented [16, 32–35]. Within our theory, this peak is a
direct consequence of Eq. (6).

We compare our theoretical results for χ′′(Ω) with data
for the Fe-chalcogenides FeSe/ FeSe1−xSx (Refs. 8 and 9)
and Fe-pnictides BaFe2As2 (Ref. 10) and NaFe1−xCoxAs
(Ref. 11). We assume that the relevant frequencies in
Raman measurements are larger than the transport scat-
tering rate, i.e., the data can be described within a clean
limit, although disorder may be a source of systematic
corrections[36] From the data one can extract the slope
Γ = limΩ→0 χ

′′(Ω)/Ω. Regardless of how the extrap-
olation to Ω → 0 is performed [37], Γ grows rapidly

FIG. 2. B2g Raman data on FeSe1−xSx for dopings x = 0
(shifted up for clarity) and x = 0.15, (T − Ts)/Ts . 1,
taken from Ref. 9 [Similar data for x = 0 are in Ref. 8].
Filled circles – 1/Γ, where Γ = χ′′(0,Ω)/Ω is the slope
of measured χ′′(0,Ω) at small frequencies. Open circles -
(δχ′)2 = (χ′ξ=∞(Ω → 0) − χ′ξ(Ω → 0))2, where χ′ξ(Ω → 0)
has been obtained from χ′′(0,Ω) by KK transform. The data
for (δχ′)2 have been rescaled by a constant factor [37]. The
data show that (δχ′)2 and 1/Γ scale together, i.e., their ra-
tio is independent of ξ. Such behavior is consistent with the
Pomeranchuk scenario described in the text. The inset shows
the experimental χ′ξ(Ω → 0) along with the fit to Eq. (5)
using ξ(T ) extracted from the data for Γ [37].

in the vicinity of TS . The real part of the suscepti-
bility χ′(0,Ω → 0) was extracted [8, 9, 11] from the
data for χ′′(Ω) via Kramers-Kronig: χ′(0,Ω → 0) =
(2/π)

∫∞
W0

dΩ′χ′′(0,Ω′)/Ω′, where W0 ∼ 3meV is the
lower cutoff in the data. We emphasize that this is not
a true static susceptibility, even if we set W0 = 0, be-
cause the data for χ′′ are obtained at Ω� vF q, hence in
χ′(0,Ω→ 0) Ω/vF is still much larger than momentum.

The nematic transition temperature TS varies with x in
FeSe1−xSx and NaFe1−xCoxAs and vanishes at a partic-
ular S or Co doping. We assume that the T dependence
can be incorporated into ξ0(x, T ) and ξ(x, T ), but do not
otherwise incorporate finite temperature into our calcu-
lations. As such the results should be valid as long as
typical Ω > TS , which is true for most of the relevant
experimental frequency range.

For both sets of materials we examined possible scal-
ing between 1/Γ and powers of δχ′. For FeSe1−xSx we
found that (δχ′)2 and 1/Γ scale together (Fig. 2). Such
behavior is consistent with the Pomeranchuk scenario, as
in this case both (δχ′)2 and 1/Γ scale as ξ−2, Eq. (7).
The data for FeSe1−xSx also show [9] that χ′KK(0, 0) in-
creases as the system approaches the nematic transition
but deviates from Curie-Weiss behavior near the tran-
sition point. The deviation gets more pronounced with
increasing x. Such behavior is also consistent with the
Pomeranchuk scenario, Eq. (5), particularly given that
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FIG. 3. B2g Raman data for NaFe1−xCoxAs for dopings x = 0
(shifted up for clarity) and x = 0.15, (T − Ts)/Ts . 1 (taken
from Ref. 11). Filled circles – 1/Γ, open circles – δ(1/χ′).
Inset– the same quantities for undoped Ba122 (data from Ref.
10). The data show that δ(1/χ′) and 1/Γ scale together in
both NaFe1−xCox and BaFe2As2. Such behavior is consistent
with the independent scenario, but the fact that the scaling
holds in a wider range of T than expected requires further
study.

kF in this system is small for all pockets [19, 38, 39]), be-
cause in this case χ′(0,Ω→ 0) increases as ξ2 between ξ
on order of the lattice constant and ξ ∼ 1/kF . The data
also show [8, 9] that the maximum in χ′′(0,Ω) remains
at a nonzero frequency at the nematic transition. This
is consistent with the crossover to QC behavior because
at ξ = ∞, χ′′(0,Ω) still increases at small Ω as Ω1/3,
and therefore passes through a maximum at nonzero Ω.
We consider the combination of these results as a strong
indication that nematicity in FeSe/FeSe1−xSx is caused
by a d-wave Pomeranchuk instability.

For Ba(FeAs)2 and NaFe1−xCoxAs, we found that the
temperature dependence of 1/Γ closely follows that of
δ(1/χ′) over several tens of kelvin near TS , as shown in
Fig. 3. This observation is generally consistent with the
“independent” scenario as there both 1/Γ and δ(1/χ′)
scale as ξ−2 (see Eq. (8)). A natural candidate for the
independent order parameter is the composite Ising ne-
matic operator derived from the magnetic order param-
eter [13], since in these materials the magnetic and ne-
matic transitions are close to each other and show nearly
identical doping dependence. We caution, however, that
the scaling 1/Γ ∼ δ(1/χ′) holds in our theory under the
assumption that ξ0 is essentially a constant, and hence
χ′ ∝ ξ2

0 is also a constant. This is the case near Ts, but
at higher T , the measured χ′ varies significantly over the
temperature ranges shown in Fig. 3 (Refs. [10, 11]).

Summary In this work we analyzed the dynamic
response of a clean 2D system of itinerant fermions cou-
pled to a scalar boson φ, which undergoes a continuous
transition towards a d-wave charge nematic order. We

obtained the form of Π(0,Ω) both at and near the ne-
matic transition and related it to the bosonic suscepti-
bility χ(0,Ω) in the cases where φ is a soft collective mode
of fermions near a Pomeranchuk instability or an inde-
pendent critical degree of freedom, such as a composite
spin order parameter near an Ising-nematic transition.
We compared our results with polarization-resolved Ra-
man data for FeSe1−xSx and BaFe2As2/NaFe1−xCoxAs.
We argued that the data for FeSe1−xSx, which does not
order magnetically down to T = 0, are well described
by the d-wave charge Pomeranchuk scenario. The data
for BaFe2As2/NaFe1−xCoxAs at T ≥ Ts are more con-
sistent with the independent boson scenario (for which
composite spin order is the primary candidate). For all
compounds we found evidence for quantum critical be-
havior near TS .

Our analysis neglects the interaction with acoustic
phonons. This interaction does not directly affect χ(q =
0,Ω), but it does contribute to χ(q → 0,Ω = 0) [16, 18,
34]) and therefore gives an additional contribution to the
difference between ξ0 and ξ. It also affects the momen-
tum dependence of D(q,Ω) at Ω < vF q, and eventually
cuts off the critical behavior at T = Ts [32, 40]. Given
that Γ and χ′ strongly increase as T approaches Ts, we
conjecture that coupling to acoustic phonons affects the
system’s dynamics only in a narrow range very near TS ,
while our theory is applicable outside this range.
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I. Paul, Y. Gallais, and J. Schmalian, Phys. Rev. B 92,
075134 (2015).

[33] A. Baum, H. N. Ruiz, N. Lazarevi, Y. Wang, T. Bhm,
R. H. Ahangharnejhad, P. Adelmann, T. Wolf, Z. V.
Popovi, B. Moritz, T. P. Devereaux, and H. Rudi,
arXiv:1709.08998 (2017).

[34] F. Kretzschmar, T. Bhm, U. Karahasanovi, B. Muschler,
A. Baum, D. Jost, J. Schmalian, S. Caprara, M. Grilli,
C. Di Castro, J. G. Analytis, J.-H. Chu, I. R. Fisher, and
R. Hackl, Nature Physics 12, 560 (2016).

[35] M. Khodas and A. Levchenko, Phys. Rev. B 91, 235119
(2015).

[36] The value γtr at T = 0 can be extracted from the resis-
tivity data. For FeSe we used the data from Ref. [51] and
obtained γtr ∼ 1meV . The data for Imχ(0,Ω) in Refs. 9
and 11 are for frequencies above roughly 3 meV, i.e. for
all Ω the condition Ω > γtr is satisfied. ().

[37] See Supplementary Material.
[38] T. Terashima, N. Kikugawa, A. Kiswandhi, E.-S. Choi,

J. S. Brooks, S. Kasahara, T. Watashige, H. Ikeda,
T. Shibauchi, Y. Matsuda, T. Wolf, A. E. Böhmer,
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R. Arita, and S. Uji, Phys. Rev. B 90, 144517 (2014).

[39] A. Charnukha, K. W. Post, S. Thirupathaiah, D. Prpper,
S. Wurmehl, M. Roslova, I. Morozov, B. Bchner, A. N.
Yaresko, A. V. Boris, S. V. Borisenko, and D. N. Basov,
Scientific Reports 6, 18620 (2016), and references within.

[40] I. Paul and M. Garst, Phys. Rev. Lett. 118, 227601
(2017).

[41] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys.
Rev. B 78, 134514 (2008).

[42] M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and
M. Imada, Phys. Rev. B 82, 064504 (2010).

[43] M. D. Watson, T. K. Kim, A. A. Haghighirad, N. R.
Davies, A. McCollam, A. Narayanan, S. F. Blake, Y. L.
Chen, S. Ghannadzadeh, A. J. Schofield, M. Hoesch,
C. Meingast, T. Wolf, and A. I. Coldea, Phys. Rev. B
91, 155106 (2015).

[44] Y. S. Kushnirenko, A. A. Kordyuk, A. V. Fedorov,
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