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This work reports the measurement of electron g factor anisotropy (|∆g| = |g001 − g11̄0|) for
phosphorous donor qubits in strained silicon (sSi = Si/Si1−xGex) environments. Multi-million-
atom tight-binding simulations are performed to understand the measured decrease in |∆g| as a
function of x, which is attributed to a reduction in the interface-related anisotropy. For x <7%,
the variation in |∆g| is linear and can be described by ηxx, where ηx ≈1.62× 10−3. At x=20%,
the measured |∆g| is 1.2 ± 0.04 × 10−3, which is in good agreement with the computed value of
1×10−3. When strain and electric fields are applied simultaneously, the strain effect is predicted to
play a dominant role on |∆g|. Our results provide useful insights on spin properties of sSi:P for spin
qubits, and more generally for devices in spintronics and valleytronics areas of research.

I. INTRODUCTION

Phosphorus impurities in silicon (Si:P) are promising
candidates for the implementation of spin-based quan-
tum technologies [1, 2] and quantum computing architec-
tures [3–5] due to their long coherence times [6, 7]. Tradi-
tionally the focus has been on electric field control of Si:P
nuclear or electron spin qubits [3], with remarkable progress
towards their fabrication [8] and characterisation [9, 10].
Lately the application of mechanical strain has emerged as
an alternative control mechanism [11–14]. The application
of strain is of interest for tuning of the hyperfine interac-
tion [11, 12, 14, 15] and increase in the exchange interaction
coupled with suppression of exchange variations [16, 17].
For control and characterisation of P spin qubits in strained
silicon (sSi = Si/Si1−xGex), one central requirement is to
understand the interaction of spins with a strained envi-
ronment, such as the coupling to orbital degrees of freedom
and valley repopulation, which could alter their response
to applied magnetic fields. While there has been signifi-
cant progress on the experimental side in terms of mea-
suring strain-dependent properties of a phosphorus donor
atom in sSi [11–14, 18–20], the theoretical literature on
understanding the spin properties (g factor) of sSi:P is pri-
marily limited to small strain fields (x ≤ 1% or ε ≤ 10−5

) [14, 18, 21], whereas a need for larger strain fields (5% or
more) has been predicted to fully exploit the advantage of
strain for spin qubit devices [16, 17, 22]. Furthermore, the
existing literature has investigated spin properties of Si:P
with the application of electric fields [23], however the elec-
tric field dependent variation in g factor for sSi:P system
is still an open question. This work reports experimen-
tal measurements of the electron g factor in sSi:P samples
with strain varying from 7% to 25%. Multi-million-atom
tight-binding simulations, in good agreement with the mea-
surements, provide key insights in spin properties of sSi:P
including the application of electric fields.
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Figure 1 (a) schematically shows the device structure
and the application of strain field is illustrated in (b).
The ground state (A1) of unperturbed bulk Si:P is com-
posed of equal contributions from the six degenerate valleys
(±kX ,±kY ,±kZ) at the conduction band minimum of sil-
icon. However, strain breaks the degeneracy of the ground
state valley configuration, thereby increasing (decreasing)
the population of valley(s) along the compressive (tensile)
strain direction. Fig. 1 (c) plots the valley composition of
the donor ground state as a function of strain (given as the
Ge fraction x in the substrate) based on simple analytical
expressions derived from a valley repopulation model [18].
Under the application of strain, the population of the ±kZ
valleys quickly increases and for x > 0.1, the donor ground
state is predominantly composed of ±kZ valleys. We have
labelled x ≤ 0.07 as valley repopulation (VR) and x >
0.07 as single-valley-type (SVT) regime of operation. The
qubit operation in the SVT regime is important for quan-
tum computing applications as it has been predicted to sup-
press valley interference-related variations in the exchange
interaction [16, 17]. Our results indicate that the g factor
anisotropy increases in VR regime and the trend changes
in the SVT regime where the anisotropy is found to slightly
decrease as a function of strain when the P donor is closer
to the interface. When both electric and strain fields are si-
multaneously applied, the effect of strain plays a dominant
role and dictates the strength of g factor anisotropy.

II. EXPERIMENTAL MEASUREMENT OF THE g
FACTOR

Fig. 2 shows electrically detected magnetic resonance
(EDMR) data of fully stressed phosphorus-doped silicon
films at T = 5K. The investigated device layer is an in-plane
tensile stressed silicon layer with a thickness of 15 nm grown
by chemical vapor deposition onto a virtual Si1−xGex sub-
strate of 2 µm thickness. We fabricated strained silicon top
layers on various virtual substrates with x up to 0.3. For
x=0.3, we confirmed the successful tensile stress transfer
from the virtual substrate onto the active silicon layer as
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FIG. 1. Schematic diagram of sSi:P qubit device: (a) The application of strain is implemented by growing a Si:P epi-layer on
top of Si1−xGex substrate, leading to a compressive in-plane strain and a tensile out-of-the-plane strain (see part (b)). The applied
magnetic field directions parallel and perpendicular to the strain are also labelled. (c) The valley configuration of the donor ground
state A1 as a function of the Ge fraction x in the substrate is plotted, computed from the published analytical model [18].

well as the fully relaxed growth of the Si1−xGex virtual sub-
strate using XRD (see Ref. [11] for more details). The thin
strained silicon layer is doped with phosphorus donors at a
concentration of 1×1017 cm−3. To enable EDMR measure-
ments, we pattern electrical Cr/Au contacts onto the top
silicon layer and measure the resistance change of the de-
vice under microwave radiation as function of the external
magnetic field. To enhance sensitivity, we employ locking
modulation techniques [11].

Figure 2(a) shows spectra for a stained silicon film on
Si1−xGex with x=0.07 (or 7%) recorded for a rotation of
the sample around the (110) axis, where the angle θ is de-
fined between the (001) axis and the magnetic field direc-
tion. We find, besides a reduction of the hyperfine inter-
action (see Ref. [11]), the emergence of a clear anisotropy
in the resonance field of the hyperfine lines as indicated
by the solid blue lines. In addition to the hyperfine-split
peaks originating from the isolated phosphorus donors in
the strained silicon host material, we find indications for a
central line, which could be attributed to conduction band
electrons [24], as well as a set of lines at lower magnetic
fields, which can be identified as the Si/SiO2 interface de-
fect Pb0 [25, 26]. To obtain information about the g factor
anisotropy, we extract the resonance fields Br of the two
hyperfine lines in the spectra for x=0, 0.07, 0.15, 0.21, and
0.25 as shown in Fig. 2 (b), where we have subtracted the
field Bc given by the center of gravity of the anisotropy.
From this anisotropy data, we obtain the magnitude of
anisotropy of the g factor |∆g| = |g001(x) − g11̄0(x)| as
shown in Fig. 3(a).

III. THEORETICAL CALCULATION OF THE g
FACTOR

To provide a reliable understanding of the measured g
factor, we perform atomistic tight-binding calculations of
the P donor wave function with and without the application
of strain fields. The Si bulk band structure is reproduced
by the sp3d5s∗ tight-binding model, and the P donor atom
is represented by a detailed set of central-cell corrections
(CCC) [27] and benchmarked against the measured hyper-
fine values [15] and high resolution STM images of donor
wave function [10, 28, 29]. Based on the tight-binding wave
functions of P donor, we then compute the electron g fac-
tor by solving the Zeeman Hamiltonian perturbatively [23],
where the g factor is computed from the Zeeman splitting
of the two lowest spin states. The details of these methods
are presented in appendix A. To highlight the dependence
of the g factor on strain and the direction of magnetic field
~B, we use the notation gθ(x), where subscript θ indicates
the magnetic field direction and x is the applied strain.

In our model, the application of strain is implemented by
increasing the in-plane lattice constants (a100 and a010) of
Si in accordance with the lattice constant of the Si1−xGex
substrate. As a result, the out-of-plane lattice constant
(a001) undergoes compressive strain in accordance with the
Poisson ratio (see Fig. 1 (b)). Further details of the strain
implementation are provided in appendix B. Note that in
this paper we define strain in terms of Ge fraction x in
the substrate, in contrast to some previous studies where
the strain is quantified in terms of valley strain χ [16, 18]
or absolute value ε [14]. We should point out that these
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FIG. 2. Experimental measurement of g factor: (a) Elec-
trically detected magnetic resonance spectra of the phospho-
rus hyperfine split resonances in compressively stressed silicon
grown on a virtual Si0.93Ge0.07 substrate. (b) Analysed hyper-
fine splitting and the anisotropy extracted from measurements
such as the one shown in (a). For clarity we subtract the center
of gravity of the hyperfine splitting Bc.

quantities are directly related to each other and therefore
can be used interchangeably. For example, χ ∼ −0.98x,
whereas in-plane ε ∼ 4.2 ×10−2x. For remainder of this
paper, we will use x to define the strength of the applied
strain field.

IV. ELECTRIC FIELD INDUCED ANISOTROPY
OF THE g FACTOR

Before computing g factor for the sSi:P case, we first
benchmarked our theoretical model against the available
electric field-induced Stark shift data of the electron g fac-
tor in unstrained Si:P. Table 1 shows the comparison of the
calculated and measured g factor Stark shifts, highlight-
ing the excellent agreement of our model with the recent
experimental measurements [30] and the theoretical values
previously computed from a tight-binding model [23]. We
note that our theoretical calculations based on the non-
static dielectric screening of the donor wave function po-
tential (equation 1 in appendix A) provide a slightly better
agreement with the experimentally measured values when
compared to the previous tight-binding calculation based
on a single value of the silicon dielectric constant.

V. STRAIN INDUCED ANISOTROPY OF THE g
FACTOR

Fig. 3 (a) plots the measured and the calculated g fac-
tor anisotropies |∆g| = |g001(x)− g11̄0(x)| as a function of
the substrate Ge fraction x in both VR and SVT regimes
of strain fields. From theory, we calculate |∆g| for three
different position configurations of a P donor: a bulk con-
figuration where the distance of P atom from interfaces is
larger than 20 nm, and two subsurface configurations where
the distance of P atom from (001) interface is 3 nm and 8
nm. In our model, the (001) silicon surface is hydrogen pas-
sivated, with the dangling bond energies shifted by a large
potential (of the order of 30 eV) to avoid surface states in
the energy range of interest [31]. This creates a large po-
tential barrier at the surface, which blocks any leakage of
the wave function outside the boundary of silicon box.

We first look at the bulk case. In the VR regime, as
the applied strain increases, the ±kZ (±kX = ±kY ) valley
population of the bulk donor ground state linearly increases
(decreases) [15, 18]. This leads to a linear variation in
|∆g|, which was also predicted earlier by effective-mass the-
ory [18]. This strain dependence of |∆g| can be represented
by an analytical relation |∆g| = ηxx, where ηx ≈1.62×
10−3. With the application of the large strain fields in the
SVT case, the ground state of the sSi:P donor is predom-
inantly in the ±kZ valley state and therefore the g factor
converges towards a single valley g factor. We should point
out here that a previous calculation of g factor anisotropy
based on valley repopulation model has predicted a larger
variation (> 10−3) for bulk sSi:P [18]. The valley repopu-
lation model ignores mixing of higher states in the ground
state wave function as well as the atomistic representation
of the donor wave function and is therefore expected to
overestimate the effect of valley reconfiguration. Our tight-
binding description takes both of these factors into account
and has been shown to exhibit excellent agreement with ex-
perimental measurements and DFT calculations of strain
dependence of the hyperfine interaction [15].

In the VR regime, the simulated g factor anisotropy for
subsurface 3 nm case is shown in Fig. 3(a). The inter-
action of the donor wave function with the (001) surface
leads to an asymmetric distribution of the wave function.
Furthermore, the ground state has an asymmetric valley
compositions (±kZ > ±kX = ±kY ) at x=0, which leads
to a g factor anisotropy of 0.4× 10−3. The variation of
|∆g| is linear with x, although the slope slightly decrease
for strain fields close to the end of VR regime. By fitting
of the data in Fig. 3(a), we find that the variation of |∆g|
can be described by an ηx value of ∼1.2× 10−3 for small
strain fields.

The experimentally measured data for g factor
anisotropy is plotted in Fig. 3(a) for x > 0.07. Contrary
to the computed bulk g factor anisotropy, the measure-
ments show a small decrease in |∆g| when the strain is
increased above 7%. To investigate this effect, we sim-
ulate two cases where the P donor is closer to Si inter-
face. These are labelled as subsurface 3 nm and 8 nm in
Fig. 3(a). In our experimental measurements, the thickness
of sSi layer is only 15 nm. Therefore it is expected that the
P donor atom should exhibit |∆g| variation with strain me-
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TABLE I. Computed values of the quadratic Stark shift parameter ηE for the electron g factor are compared against the experimental
and previously reported theoretical values.

Field Experiment [30] Theory (static screening) [23] Theory This Work (non-static screening)
Orientations ηE (µm2/V2) ηE (µm2/V2) ηE (µm2/V2)
~E ‖ ~B -8 ± 2 × 10−6 -12 × 10−6 -10 × 10−6

~E ⊥ ~B 6 ± 1.5 × 10−6 14 × 10−6 8 × 10−6

FIG. 3. Strain-induced anisotropy of the g factor: (a) The measured and theoretically computed g factor anisotropy |∆g| is
plotted as a function of the substrate Ge fraction x. From the simulations, we plot values of |∆g| for both bulk and subsurface (3 nm
and 8 nm) donor configurations. For 3 nm subsurface configuration, we have also included the values of fractional change (∆VS

kZ
)

in the ±kZ valley compositions due to interface effect. (b) Line cut of the ground state charge density of P donor wave function for
subsurface 3 nm configuration is shown along the (100) axis through the P atom position for the two strain fields corresponding to
x=0 and x=0.25. Only envelope part of the wave function is plotted to indicate its interaction with the interface. (c) Same as (b)
but the plot is along the (001) axis.

diated by significant interface effects. The computed |∆g|
values for subsurface cases indeed capture the decrease in
anisotropy with increasing strain qualitatively following the
experimental trend. This decrease of |∆g| could be ex-
plained by understanding the interplay between the strain
and interface effects on the donor ground wave function
and its valley composition. The application of strain field
for subsurface P donor perturbs the donor ground state in
two ways, inducing competing effects on |∆g|: (i) strain
increases ±kZ valley compositions and therefore increases
|∆g|, (ii) the compression (elongation) of the spatial dis-
tribution of wave function along (001)-axis ((001)-plane)
reduces the interface-induced asymmetry of wave function
as well as the ±kZ valley population. The second effect is
shown by plotting line-cuts of donor wave function charge
densities in Figs. 3 (b,c) for the unstrained (x=0) and 25%
strain (x=0.25) cases, along the two directions: (001) axis
and (100) axis thought the donor position. It is clearly
evident that the suppression of wave function spatial dis-
tribution for x=0.25 strain along the (001) axis will reduce
the strength of the interface effect.

The two competing effects on donor wave function aris-
ing from the interplay between interface and strain produce
a net decrease in ±kZ valley compositions, in contrast to
bulk P donor case where the increase in strain leads to
an increase in ±kZ valley compositions. To quantitatively
provide an estimate of this ±kZ valley composition change,
we have computed the net change in ±kZ valley composi-
tion defined by ∆VS

kZ
= (VS

kZ
− VB

kZ
)/VB

kZ
, where VB

kZ
and

VS
kZ

are kZ valley compositions for bulk and subsurface 3
nm donor configurations, respectively, at the same applied
strain. The values for VS

kZ
are VB

kZ
were computed directly

from the donor ground state wave function Fourier spectra
in accordance with the published procedure [28]. The val-
ues of ∆VS

kZ
are provided in Fig. 3 (a) for x > 0.07. These

values clearly indicate a net decrease in the±kZ valley com-
positions for subsurface case when the strain is increased.
As |∆g| is directly proportional to change in ∆VS

kZ
, a de-

crease in ∆VkZ is attributed to the observed decrease in
|∆g| in our measurements.

To summarise our discussion above, the small decrease
with strain in |∆g| as observed in both experimental mea-
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FIG. 4. Rotation of magnetic field: The g factor anisotropy is plotted as a function of the magnetic field angle θ with respect
to the (001)-axis for three different strain fields (x=0,0.03, and 0.25). For each strain field, we investigate three scenarios of the
electric field: red circles=no field, blue circles=3 MV/m field along the (001) axis, and black circles=3 MV/m field along the (11̄0)
axis.

surements and and theoretical calculations for subsurface
P donors can be explained as follows: In the VR case, the
effect of valley repopulation due to strain is very strong and
it overcomes the small decrease in |∆g| due to a reduction
of the interface effect. In the SVT regime, as the strain ef-
fect becomes saturated, the interface effect becomes impor-
tant and leads to a small reduction in |∆g|. Although our
theoretical results qualitatively follow the measured trend
for |∆g| dependence on strain in the SVT regime, there is
some quantitatively difference as evident from the plots of
Fig. 3(a). Here we should point out that the experimental
measurements were performed for relatively thin (15 nm
thick) sSi:P crystal on top of Si1−xGex substrate. As the
P donors are expected to be closer to the sSi/Si1−xGex in-
terface, significant surface effects are expected in the mea-
sured g factor anisotropy [19]. Our simulations do not ex-
plicitly include Si1−xGex substrate, rather only the Si is
strained in accordance with x. Therefore, we attribute the
quantitative discrepancy in |∆g| magnitude to the absence
of sSi/Si1−xGex interface in our calculations. Nevertheless
the results of our calculations are of the same order of mag-
nitude as measured in the experiment and follow the trend
with respect to increasing strain for the subsurface donor
case, confirming anisotropy in the magnitude of g factor.
Moreover as our simulations accurately includes the net
effect of strain on Si:P system, the results will be useful
for Si1−xGex substrate free methods of applying strain to
silicon-donor system such as based on silicon-on-insulator
(SOI) [32, 33] and more recently by using calibrated masses
attached to plastic rod-Si system [14].

VI. EFFECT OF MAGNETIC FIELD
ORIENTATION

In Fig. 4, we investigate the effect of of the orientation
of the magnetic field by varying an angle, θ, from the com-
pressive strain (001) axis to the tensile strain (11̄0) axis.
We plot ∆g=gθ(x)− g001(x) for a bulk P donor as a func-
tion of θ for three different magnitudes of the applied strain
fields: (a) x=0, (b) x=0.03, and (c) x=0.25 corresponding
to no strain, VR strain and SVT strain respectively. In each
case, we also investigate three scenarios of electric fields as
indicated in the figure. For the case of no applied strain
(Fig. 4 (a)), ∆g is zero irrespective of the magnetic field
orientation when no electric field is applied. This is ex-
pected as the g factor is isotropic for bulk P in the absence
of any external perturbation. The application of electric
field creates a valley repopulation effect by increasing the
population of valleys along the electric field axis. For a

(001) oriented electric field ( ~E001), the rotation of ~B field

implies a ∆g due to ~E‖ ~B − ~E⊥ ~B case, leading to a nega-
tive sign. On the other hand for the (11̄0) electric field, we

investigate ~E⊥ ~B− ~E‖ ~B case, which is a positive change in
∆g. These are consistent with the trends observed in table
I.

As we turn on a strain field in Figs. 4 (b) and (c),

for ~E=0, the anisotropy in ∆g increases due to the
increase in the valley repopulation as discussed before.
Note that ∆g will exhibit a linear dependence if plot-
ted against sin2θ (instead of θ) following the relation-
ship g=

√
(g||cosθ)2 + (g⊥sinθ)2, which was also previously

shown by Wilson et al. [18]. The application of ~E11̄0 has an
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opposite effect to the strain: the strain shifts higher weight
towards ±kZ valleys, whereas the in-plane electric field will
enhance ±kX and ±kY valley populations. From Fig. 4 (b),
we note that even a small strain field (3%) is sufficient to
overcome the electric field effect and reverses the sign of
∆g. Further increase in the strain to x=0.25 adds to the
∆g anisotropy.

The application of an ~E001 field increases the valley pop-
ulation of ±kZ valleys. Therefore the application of a small
strain (x=0.03) is sufficient for the donor state to be in the
SVT regime. The ∆g magnitudes remain same when the
strain is increased from 0 to 0.25 in Fig. 4 (a) to (c). There-
fore we conclude that for the sSi:P system, the application
of a small strain is sufficient to overcome the effect of in-
plane electric fields, whereas SVT behaviour is expected
for (001)-oriented electric fields even at low strain fields of
typical amplitude (3 MV/m).

VII. A COMPARISON OF SPIN-ORBIT AND
HYPERFINE SHIFTS

Recently, it was predicted that a magnetic field of magni-
tude ∼0.78 T makes the Zeeman energy shift due to spin-
orbit effects comparable to the hyperfine shift for a bulk
unstrained Si:P donors [23] under an electric field control.
Here we estimate the same quantity for the sSi:P qubits.
The ESR frequency shift as described by spin Hamiltonian
in a (001) directed magnetic field as: ∆Hz = ∆g(x)µBBzSz
+ ∆A(x)IzSz, where Sz and Iz are the z projections of the
electronic and the nuclear spins and A(x) denotes the hy-
perfine constant under strain field. For a bulk P donor
under large strain (x=20%), the ∆A(x) is on the order of
0.25A(x = 0), and ∆g(x) is on the order of 10−3g(x = 0).
Using these values, we can estimate the Bz field on the or-
der of 0.42 T at which the Zeeman shift due to spin-orbit
effects becomes comparable to the hyperfine shift under
strain control. This is of a similar magnitude as predicted
for electric field control and is experimentally realizable.
Moreover for x > 15%, the changes in both ∆A(x) and
∆g(x) are small with respect to further variation in strain,
therefore we expect that the requirement for Bz field will
be relatively independent of strain fields in comparison to
electric field.

VIII. CONCLUSIONS

In summary, we have experimentally and theoretically
investigated the g factor anisotropy for phosphorus donor
qubits in strained Si environments (sSi:P). While the pre-
vious theoretical understanding was limited to the appli-
cation of relatively small strain fields (less than 2%) re-
stricted to valley repopulation regime of operation, our
work probes the g factor anisotropy (∆g) for both small
and large strain fields (varying from 0% to 30%) to take
advantage of the single-valley-type properties for quantum
computing devices. Our results show that for bulk sSi:P
system, the linear variation of ∆g becomes constant at large
strain fields. For subsurface donors, the magnitude of the
measured ∆g, 1.2 ± 0.04 × 10−3 is found to be in good

agreement with the computed value of 1×10−3 from multi-
million-atom tight-binding simulations explicitly including
spin-orbit coupling and central-cell corrections. We also
experimentally measure a small decrease in ∆g magnitude
when strain increases above 7%. We explain this in terms
of interface effects which reduce due to deformation of spa-
tial distribution of donor wave function by strain. When
electric and strain fields are simultaneously applied, the
variation in the ∆g is dependent on the direction of the elec-
tric field with respect to the compressive strain axis. The
reported results mark an important step towards under-
standing magnetic field-dependent spin properties of sSi:P
qubits and will be useful for the design and implementation
of future quantum technologies.
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Appendix A. Calculation of donor wave func-
tion and the electron g factor

Theoretical investigation of the g factor for sSi:P qubits is
limited in the existing literature. In Wilson and Feher [18],
a valley repopulation model was applied to calculate g
factor variation under the application of small strain
fields. This simplified model has been shown to exhibit
poor agreement for high strain fields with experimental
measurement of hyperfine shifts [11], highlighting the
need for more sophisticated atomistic approaches such as
DFT or tight-binding theory. To properly understand the
anisotropy of the measured g factor, we perform atomistic
tight-binding calculations of the donor wave function
based on a P atom in a large Si domain (40×40×40 nm3)
containing roughly 3.1 million atoms [15, 27]. The silicon
material is represented by a twenty-band sp3d5s∗ tight-
binding model, which explicitly incorporates spin-orbit
coupling [34–36]. The P donor atom is represented by a
Coulomb potential, U(r), which is screened by a non-static
dielectric function for Si and is given by:

U (r) =
−e2

εr

(
1 +Aεe−αr + (1−A) εe−βr − e−γr

)
(1)

where e is the electronic unit charge and the previously pub-
lished values of ε, A, α, β, and γ are used [27]. The donor
potential is truncated to U0 at the donor site, whose value
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is selected to reproduce the measured 1s binding energies.
The intrinsic strain in the vicinity of the donor atom is im-
plemented by small nearest-neighbour bond-length defor-
mations predicted by DFT calculations [37]. The model has
been implemented within the framework of the NEMO3D
software package. In the past, this model has demonstrated
excellent agreement with the available experimental mea-
surements, such as involving electrical field and strain con-
trol of donor hyperfine interactions [15, 27] and the donor
wave function images measured by scanning tunnelling mi-
croscope [10, 29].

The calculation of the electron g factor from the donor
wave functions is based on solving the Zeeman Hamiltonian
perturbatively [23] using the matrix elements:

HZij = < Ψi(~r, x) | (~L+ 2~S) · ~B | Ψj(~r, x) > (2)

where i, j represent the spin up/down of the donor states
Ψ under the strain field defined by the substrate Ge frac-

tion x, and ~L and ~S denote the orbital and spin angular
momentum operators, respectively. The g factor is then
computed by using the energies E of the two lowest spin
states (↑ and ↓) of HZ:

gθ(x) =
(E↑ − E↓)
µB |~B|

(3)

where µB is the Bohr magneton and θ is the direction of
magnetic field as indicated in Fig. 1: θ=0 corresponds to
~B||(001)-axis, θ=90o to ~B||(11̄0)-axis.

Appendix B. Application of strain field

Figure 1 (a) schematically shows the application of a
strain field to a P donor atom in silicon used here [11].
The in-plane tensile stressed sSi:P thin film is grown
lattice-matched on a virtual Si1−xGex substrate. The
thickness of the sSi:P layer in our samples is chosen to
be 15 nm, which is below the critical thickness for strain
relaxing defect formation [11]. For all Ge fractions x > 0,
the lattice constant of Si1−xGex is greater than the lattice
constant of Si (aSi=0.5431 nm). Therefore, the applied
stress will stretch the in-plane lattice constant of the Si:P

epilayer (a‖ > aSi) and in turn the out-of-plane lattice
constant will experience a compressive strain (a⊥ > aSi)
in accordance with the Poisson ratio (see Fig. 1 (b)). This
leads to two inequivalent lattice directions in the strained
Si environment: compressive strain along the growth (001)
direction and tensile strain in the (001)-plane.

In some previous theoretical studies [16, 18], effective val-
ley strain is used as a parameter to represent the strain
effect on donor wave function properties, which is given by:

χ =
Ξu

3∆c

(
aSi − aGe

aSi

)(
1 +

2C12

C11

)
x (4)

Here the value of the uniaxial strain parameter Ξu is 8.6
eV, C11 and C12 are the elastic constants of Si and the value
of their ratio C12/C11 is 2.6, 6∆c=12.96 eV is the energy
splitting of the singlet (A1) and doublet (E) states for the
unstrained bulk P donor, aSi=0.5431 nm and aGe=0.5658
nm are the bulk Si and Ge lattice constants, respectively,
and x is the concentration of Ge in the virtual Si1−xGex
substrate. This equation shows a direct relationship be-
tween χ and x, where χ ≈ −0.98x, therefore the two repre-
sentations of strain are interchangeable. In the remainder
of this study, we prefer to use x to represent the applied
strain, which is a directly relevant experimental parameter.

The strain-induced symmetry breaking has been shown
to strongly influence the donor ground state, reducing
its binding energy and increasing(decreasing) its ±kZ
(±kX ,±kY ) valley contributions [15]. The ground-state
valley configuration is plotted in Fig. 1 (c) as a function of
x in accordance with the published analytical model [18].
As the strain increases, the ±kZ-valleys quickly populates
and for x ≥ 20%, the ground state is nearly entirely ±kZ
valley state. We call the x ≤ 7% case as the valley re-
population (VR) regime where the population of the ±kZ-
valleys sharply increases with the applied strain. The x >
7% case is identified as the single-valley-type (SVT) regime
because the donor ground state is dominated by ±kZ-
valleys.

In our study, ~B field direction is varied from the (001)-
axis towards the (11̄0)-axis. Due to the asymmetric popula-
tion of valleys under a stain field, the impact of the applied
magnetic field on the electron g factor is expected to be
anisotropic, similar to the previously measured anisotropy
in the presence of the applied electric fields [30].
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