
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effect of wire length on quantum coherence in InGaAs wires
Yuantao Xie and J. J. Heremans

Phys. Rev. B 98, 035429 — Published 24 July 2018
DOI: 10.1103/PhysRevB.98.035429

http://dx.doi.org/10.1103/PhysRevB.98.035429


Effect of wire length on quantum coherence in InGaAs wires

Yuantao Xie
SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology,

International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education,
College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

J. J. Heremans∗

Department of Physics, Virginia Tech, Blacksburg, VA 24060, USA
(Dated: July 9, 2018)

Quantum phase coherence lengths were experimentally measured in nanolithographic wires to
investigate the effects of wire length on quantum decoherence, which can be limited by mechanisms
such as coupling to an external classical environment. The work demonstrates that device geometry
and coupling to the environment have to be taken into account in quantum coherence, of relevance
in quantum technologies using electronic nanostructures. The low-temperature measurements of
the quantum phase coherence lengths use quantum transport, specifically antilocalization, on wires
fabricated from an InGaAs/InAlAs heterostructure. It is observed that longer wire lengths result
in longer quantum phase coherence lengths, tending to an asymptotic value in long wires. The
results are understood from the observation that longer wires average out the quantum decoherence
introduced at the end sections by coupling to the external environment. The experimental results
are quantitatively compatible with a model expressing reduced backscattered amplitude due to
quantum interference at the wire ends.

PACS numbers: cfr Physics Subject Headings

I. INTRODUCTION

The study of quantum coherence of charge carriers
in the solid-state has attracted increasing attention for
the insights it provides into the fundamental properties
of quantum systems and into quantum measurement
theory, and for the importance it carries for the field of
quantum information processing. Solid-state systems
that are larger than the atomic scale but still of a
length scale preserving quantum phenomena, constitute
a ready platform to study mechanisms limiting quan-
tum coherence of electrons. Such solid-state quantum
systems find distinctive use as nanoelectronic devices,
and hence quantum electronic transport approaches, as
used in this work, are in this application intrinsically
suited to study quantum coherence. In particular,
the spatial extent along which quantum coherence is
maintained in mesoscopic conducting wire geometries
is of relevance today due to the interest in hybrid
semiconductor-superconductor nanowires for the study
of solid-state Majorana quasiparticles, where the Ma-
jorana states are localized at the ends of a wire, along
the length of which quantum coherence of the Majorana
states must be preserved1,2. The carrier quantum phase
coherence length Lφ is defined as an average length
scale over which quantum coherence is maintained,
and thus beyond which the relative quantum phases
of the carrier states are randomized. In mesoscopic
electronic systems several decoherence mechanisms
limit Lφ. Among these are inelastic or quasi-elastic
scattering mechanisms such as electron-phonon and
electron-electron scattering3–5. Decoherence can also
result from energy level broadening beyond the Thou-

less energy, thermally or due to excitation voltages
or currents, causing averaging over independent and
incoherent channels6. At low temperature T , many
decoherence mechanisms dependent on energy exchange
are suppressed5,7, and Lφ reaches values sufficiently
long to study electronic transport phenomena relying
on quantum interference in nanoscale and mesoscopic
devices6,8. Yet geometrical effects also play a role9, e.g.
via environmental coupling decoherence4,7,10–13 originat-
ing from the fact that measurement of a quantum system
necessitates coupling to the external environment, taken
as a classical system7,10,14,15. Environmental coupling
decoherence can be regarded as the effect of dynamical
degrees of freedom disregarded in the definition of the
original Hamiltonian describing the quantum state, and
added in retrospect to more completely define the state.
The present work demonstrates the general importance
of device geometry -particularly wire length- and of
environmental coupling decoherence in studying and
using quantum-coherence phenomena, among others in
the characterization of new quantum states of matter
realized in nanoscale systems. Previous studies relating
to the dependence of quantum decoherence on device
geometry and size have been performed in quantum
wires16–24, quantum rings25–27, quantum ring arrays or
cylinders3,28–30, and quantum dots9,12,31–33.

In this work parallel arrays of wires of various lengths
were fabricated on an InGaAs/InAlAs heterostructure.
The heterostructure is essentially free of any magnetic
impurities, and is thus a good host for studying intrinsic
decoherence mechanisms12,33. Each wire array consists
of 20 parallel quasi-one-dimensional (Q1D) wires of
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given wire length L. Q1D denotes that the conducting
wire width W is shorter than the mobility mean-free-
path and than Lφ, but substantially larger than the
Fermi wavelength λF such that lateral quantization and
subband transport physics can be neglected. Lφ as a
measure of quantum coherence is in this work extracted
as function of L and T by the quantum interference effect
of weak antilocalization (WAL)19,21,34–37. As a quantum
interference effect, WAL is a sensitive probe of quantum
coherence and originates in quantum coherence correc-
tions to the conductance, caused by interference between
backscattered time-reversed electron trajectories. The
interference leads to a conductance with a characteristic
dependence on the magnetic field B applied normally to
the surface, as modified (in the case of WAL) by strong
spin-orbit interaction (SOI)38. Due to the existence of
SOI in the InGaAs/InAlAs heterostructure, analysis of
the characteristic magnetoresistance due to WAL affords
a path to extract values for Lφ. The WAL correction de-
pends on the random quantum phase accumulated over
the time-reversed trajectories, leading to a sensitivity of
the magnetoresistance to Lφ. In mesoscopic geometries
communicating with the wider environment, the WAL
correction also depends on the return probability of
those time-reversed pairs that originate in the geometry
and partially sample the environment18,39,40. Given
the relatively higher importance of such trajectories in
shorter wires, the smaller average return probability at
the end of shorter wires tends to reduce Lφ in shorter
wires when compared to longer wires. The lower return
probability equates to decoherence due to coupling to
the environment. Coupling to the environment can
equivalently be expressed in terms of a dwell time τd in
the mesoscopic structure, with shorter τd equivalent to
stronger coupling and associated with shorter quantum
phase coherence time τφ. Previous work12,33 has noted
that a larger lateral quantum dot size leads to a longer
τφ, explained by invoking τd proportional to system

size, limiting τφ at low T . A longer Lφ =
√
Dτφ

(where D denotes the carrier diffusion coefficient) is
then expected in systems of larger size such as in longer
Q1D wires. In the present experiments, Lφ indeed has a
positive correlation with L over a range of T , consistent
with environmental coupling decoherence quantifiable
using WAL. The dependence of Lφ on T in the present
experiments is consistent with Nyquist scattering due
to quasi-elastic electron-electron interactions5,28,29,41, a
main decoherence source at low T . In Nyquist scattering
a random phase is accumulated by the fluctuations of the
electromagnetic field generated by the other electrons.

II. MATERIAL AND SAMPLE PROPERTIES

Hall bar mesas were defined on the InGaAs/InAlAs
heterostructure by photolithography and wet etching,
and subsequently arrays of 20 parallel Q1D wires were

FIG. 1: (a) Scanning electron micrograph of a typical
array of parallel wires, here with L = 11.0 µm. Etched
trenches (darker regions) form insulating barriers for
the 2DES, thus delineating the conducting wires. The
lithographic wire width is 0.70 µm for all wires. (b)
RXX (black) and RXY (red) at 0.38 K on a Hall bar
fabricated on the InGaAs/InAlAs heterostructure, with
the heterostructure layer sequence depicted in the inset.

defined on the mesas by electron-beam lithography
and wet etching (Fig. 1. a). Wire lengths were L=
4.0 µm, 6.0 µm and 11.0 µm, with lithographic width
Wlith = 0.70 µm (Table I). As quantified below from
the measured wire resistance, the effective conducting
width W is narrower than Wlith due to side etching
and existence of a depletion layer. A typical set of
Q1D wires is depicted in the micrograph of Fig. 1. a.
Measuring a large number of wires in parallel (here
N=20) suppresses universal conductance fluctuations,

the amplitude of which scales as 1/
√
NLW 42. The

suppression is beneficial, since strong universal conduc-
tance fluctuations can impede the WAL analysis. The
longitudinal magnetotransport coefficient RXX and the
Hall coefficient RXY as measured on a macroscopic
Hall bar at T = 0.38 K are depicted vs B in Fig. 1.
b, showing Shubnikov-de Haas oscillations and an
incipient integer quantum Hall effect at higher B. The
inset of Fig. 1. b contains the heterostructure layer
sequence, which was grown by molecular-beam epitaxy
on semi-insulating InP (001) substrate. From bottom to
top the lattice-matched layer sequence consists of a 500
nm In0.52Al0.48As buffer, a 6 nm Si-doped In0.52Al0.48As
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layer, a 7 nm In0.52Al0.48As spacer, the 10 nm wide
In0.53Ga0.47As electron quantum well (QW), a 17 nm
In0.52Al0.48As spacer, and a 2 nm undoped InP cap
layer. Electrons are provided to the QW by 6 nm
Si-doped In0.52Al0.48As, and the two-dimensional elec-
tron system (2DES) is hosted in QW with areal carrier
density Ns = 1.58× 1016 m−2 as determined on the Hall
bar at T = 0.38 K from both RXY and Shubnikov-de
Haas oscillations (Fig. 1. b). The unpatterned 2DES’
sheet resistance is obtained as R�2D = 1

Nseµ2D
=287

Ω/�, with mobility µ2D = 1.38 m2/(Vs). In the range
0.38 K ≤ T ≤ 10.0 K of the measurements both µ2D

and Ns do not vary significantly. Other parameters
depending on µ2D and Ns are evaluated accounting for
nonparabolicity in the InGaAs conduction band43,44,
with a ratio of Γ-point effective mass m∗ to free-electron
mass of 0.0353 and a low T band gap of Eg = 813 meV.
In the unpatterned 2DES we have the elastic scattering
time τe2D = 0.81 ps, the mean-free-path `e2D = 0.59
µm, the Fermi energy EF = 80.4 meV, λF = 19.9 nm
(� W ), and the diffusion constant D2D = 0.11 m2/s.
D2D is calculated using the 2D degenerate expression
D = 1

2vF `e2D, where vF is the Fermi velocity derived
from Ns. Situating the In0.52Al0.48As doping layer below
the In0.53Ga0.47As QW results in asymmetry in the QW
confinement potential for the 2DES and in a substantial
SOI, yet also depresses µ2D compared with other
In0.53Ga0.47As/In0.52Al0.48As heterostructures45,46.
Measurements occurred in a 3He cryostat using four-
contact low-frequency lock-in techniques under constant
current I = 20 nA, sufficiently low to avoid heating the
2DES. For each array of parallel wires, the measured
magnetoresistance Rm(B) includes a magnetoresistance
R(B) of each of the 20 identical wires in the array
and a series magnetoresistance of the unpatterned

2DES regions. Hence Rm(B) = R(B)
20 + L2D

W2D
R�2D(B),

where L2D and W2D are the dimensions of the un-
patterned regions known from pattern design, and
the unpatterned sheet magnetoresistance R�2D(B)
is measured on the Hall bar. R(B) is then obtained
as R(B) = 20(Rm(B) − L2D

W2D
R�2D(B)), and R(B)

yields the wire magnetoconductance G(B)=1/R(B)
required for WAL analysis. As an example, Fig. 2
shows ∆G(B) = G(B) − G(B = 0) for the 6.0 µm
wires at T from 0.38 K to 10.0 K. The sharp negative
magnetoconductance for B . 12 mT followed by a
positive magnetoconductance is characteristic of WAL.

The following discussion introduces the WAL analysis
appropriate for Q1D wires. The quantum correction to
the 2D conductivity σ2D = (L/W )G is proportional the
length over which a wave packet retains coherence. In
the absence of SOI for a system of width W at B = 0 the
quantum correction per spin channel δσ2D is expressed
as42,47:

δσ2D = −1

2

e2

π~
Lφ
W

(1)

FIG. 2: Magnetoconductance ∆G(B) vs B for the wires
with L = 6.0 µm parametrized in T .

Under applied B, the Aharonov-Bohm phases for
time-reversed paths differ in sign, and hence time-
reversal symmetry breaking due to the accumulation
of Aharonov-Bohm phases will reduce the effective co-
herence length. An effective time-reversal symmetry
breaking length known as the magnetic length LB is
introduced, which forms a limit for the effective coher-

ence length 1/
√
L−2φ + L−2B . The effect of LB is to de-

lay accumulation of a magnetic flux and its associated
Aharonov-Bohm phase to higher B in a narrow wire,
and hence to spread out the magnetoresistance features
over higher B. The Aharonov-Bohm phase weakens
the constructive interference of time-reversed paths and
leads to the negative magnetoresistance characteristic of
weak-localization. Under SOI however, the effective vec-
tor potential due to SOI also introduces spin-dependent
Aharonov-Casher phase shifts, leading to spin decoher-
ence (properly dephasing) with a characteristic length
scale Lso

48. The pairing of time-reversed trajectories
(Cooperons) then leads to singlet and triplet contribu-
tions to the quantum correction δσ2D. Under SOI Lφ is
thus replaced by a combination of length scales catego-
rized as singlet and triplet lengths19,21,47–52. The singlet
length scale L0,0 is expressed as:

L0,0 =
(
L−2φ + L−2B

)− 1
2

(2)

The singlet L0,0 does not contain Lso and is not sensi-
tive to spin decoherence under SOI since the correspond-
ing total spin adds to zero19,21,48,52. Only Lφ and LB
limit L0,0. The triplet length scales L1,m (m = ±1, 0)
are expressed as:
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TABLE I: Lengths and lithographic widths of the wires, quantum phase coherence lengths at T = 0.38 K, and
exponent p of the T -dependence of the quantum decoherence rate for T varying from 1.0 K to 10.0 K.

Wires
L=11.0 µm

Wlith=0.70 µm
L=6.0 µm

Wlith=0.70 µm
L=4.0 µm

Wlith= 0.70 µm

Lφ (µm) 1.42 1.27 1.04
τ−1
φ ∼ T p p = 0.690 ± 0.030 p = 0.679 ± 0.056 p = 0.716 ± 0.052

L1,±1 =
(
L−2φ + L−2so + L−2B

)− 1
2

L1,0 =
(
L−2φ + 2L−2so + L−2B

)− 1
2

(3)

The difference between L1,±1 and L1,0 lies in
anisotropic spin decoherence in 2D systems34, and does
not exist in 3D systems47,51. The triplet contributions
to δσ2D will be negative (leading to positive magneto-
conductance) while the singlet contribution will be posi-
tive and will reverse weak-localization to WAL (negative
magnetoconductance at low B). In wide, laterally un-

constrained 2D systems, LB = lm ≡
√

~/eB. When
the 2DES is narrowed to a Q1D wire with W . lm
the accumulation of Aharonov-Bohm phases is impeded
(equivalently, the wave function boundary conditions are
modified). If also the mean-free-path & 0.6W , ballis-
tic magnetic flux cancellation has to be considered due
to self-crossing of time-reversed trajectories in narrow
wires. Considered together, for low B, LB is then modi-
fied to19,21,29,48,53:

LB = lm

√
C1l2m`e1D

W 3
(4)

Here C1 = 4.75 for specular boundary scattering and
C1 = 2π for diffusive boundary scattering19,21,53, while
`e1D is the mean-free-path in the Q1D wire. From
Eq. (1), the quantum correction δσ2D is finally expressed
as:

δσ2D = −1

2

e2

π~
1

W
(
∑

m=0,±1
L1,m − L0,0) (5)

The measured conductance correction δG(B) =
G(B)−G0, is related to δσ2D by δG(B) = (W/L)δσ2D,
with G0 the classical conductance of the wire (G0 6= G(0)
due to the effects of Lφ and Lso). The dependence of
δG(B) on B thus reduces to a combination of length
ratios19,21,47,48,51:

δG(B) = −1

2

e2

π~
1

L
(L1,+1 + L1,−1 + L1,0 − L0,0) (6)

The experimental data can be directly compared to fits
to Eq. (6) since ∆G(B) = G(B)−G(0) =δG(B)−δG(0).

With the presence of an electronic depletion layer in
InGaAs structures, a smooth potential is formed at the
wire edges, and we expect boundary scattering to be
specular. Hence C1=4.75 is used21,53,54. Values for Lφ,
Lso and `e1D (entering in Eq. (4)) are used as fitting
parameters to fit the experimental data for ∆G(B) to
Eq. (6). It is to be noted that similarly to previous
work21, we expect `e1D < `e2D, a drop in electron
mean-free-path in the wire compared to the unpatterned
2DES (in Ref.21 equivalently expressed via a drop in D).
The WAL analysis depends on `e1D and on W , neither
of which are known a priori. While `e1D is obtained
as a fitting parameter, W can be calculated as follows.
A first estimate W0 is obtained by assuming the sheet
resistance in the wires R�1D equals R�2D, and using
RB=0 = L

W0
R�2D at T=0.38 K. By a least squares

fitting over L, we obtain W0 = 0.34 µm. By using the

known wire resistance R = ~
e2

√
2π
Ns

L
W`e1D

and assuming

constant Ns, we obtain W → `e2D
`e1D

W0. By consistent
fitting over the 3 wire sets, we arrive at `e1D = 0.50 µm
and W = 0.41 µm, common to the 3 wire sets.

III. DATA ANALYSIS AND RESULTS

Fig. 3 depicts examples of fits of Eq. (6) to ∆G(B) for
the Q1D wires with L = 11.0 µm, 6.0 µm and 4.0 µm.
It is apparent that the model captures the experiments
well. The fluctuations in magnetoconductance are due
to universal conductance fluctuations surviving the
averaging process, aggravated by the subtraction of the
series resistance of unpatterned areas and the calculation
of the magnetoconductance correction ∆G(B). Since
the characteristic magnetoresistance due to WAL occurs
predominantly at lower B, the fitting is not affected by
the fluctuations.

In Fig. 4 the extracted Lφ is plotted vs T , parametrized
in L. Prior to discussing the dependence of Lφ on L and
T , we briefly discuss Fig. 5 where extracted fitting values
of Lso are plotted vs T , parametrized in L. Values for
Lso vary from ∼ 0.4 µm to 0.2 µm over the ranges of
L and T , short lengths compatible with expectations for
a 2DES with substantial SOI. A systematic dependence
of Lso on L cannot readily be concluded, although it is
tentatively observed that Lso increases with increasing
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FIG. 3: (a) Magnetoconductance ∆G(B) vs B for wire
with L = 11.0 µm at T = 2.89 K (data in black, fitting
of Eq. (6) in red). (b) Magnetoconductance ∆G(B) vs
B for wire with L = 6.0 µm at T = 0.38 K (data in
black, fitting of Eq. (6) in red). (c)
Magnetoconductance ∆G(B) vs B for wire with L =
4.0 µm at T = 2.04 K (data in black, fitting of Eq. (6)
in red).

L. A weak decrease of Lso with increasing T is noted for
L = 4.0 µm and L = 11.0 µm. The weak decrease with
increasing T was previously observed16,20,21 and hitherto
not fully explained.

Fig. 4 shows that Lφ decreases with increasing T ,
in agreement with other work, both theoretical and
experimental4,5,19,20,55,56. At lower T < 1 K a sat-
uration of Lφ appears, also previously observed and
discussed5,19,20,57–61. While the origin of the saturation
is under debate, several causes can be ruled out in our
experiments. Magnetic impurities possibly present in
metal samples are typically absent in semiconductor
heterostructures grown by molecular-beam epitaxy12,33.
To rule out thermal causes due to sample current, we
measured the wire magnetoresistance at T = 0.38 K
with 10 nA ≤ I ≤ 100 nA. The magnetoresistance
remained identical for 10 nA ≤ I ≤ 50 nA, and at
100 nA showed a smaller WAL amplitude, implying
that for I ≤ 50 nA electron heating can be neglected.

FIG. 4: Phase coherence lengths, Lφ vs T extracted
from ∆G(B) using 1D WAL analysis for the Q1D wire
sets with L = 4.0 µm, 6.0 µm and 11.0 µm. Solid lines
for T > 1 K represent fits to Lφ ∼ T−p/2 with values
for p as listed in Table I.

FIG. 5: Spin coherence lengths due to spin-orbit
interaction, Lso vs T extracted from ∆G(B) using 1D
WAL analysis for the Q1D wire sets with L = 4.0 µm,
6.0 µm and 11.0 µm. Lines are guides to the eye.

Present results were all measured at I = 20 nA. Further,
T in the measurement system is calibrated using a
Dingle analysis of Shubnikov-de Haas oscillations in a
high-mobility 2DES in GaAs/AlGaAs. The analysis of
Shubnikov-de Haas oscillations can also largely rule out
non-equilibrium electrical noise62 (e.g., injected into the
sample via the wiring and the measurement system)
as a dominant source of decoherence in the range of
T of the experiments. Indeed what is measured via
Shubnikov-de Haas oscillations63,64 is the broadening
of quantum levels, specifically Landau levels, due to
either thermal effects or electrical noise by an amount
∼ ~/τφ. Electrical noise would likely limit the visibility
of Shubnikov-de Haas oscillations as well as the visibility
of WAL, because in both cases quantum levels would
be broadened by the electrical noise by ∼ ~/τφ. Since
the value of the effective T indicated by Shubnikov-de
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Haas analysis is a measure of the level broadening,
Shubnikov-de Haas analysis would register a lowering
of τφ due to electrical noise as a discrepancy between
the measured T and the effective T experienced by the
2DES in a sample. The saturation of Lφ is not the focus
of the present work and won’t be discussed hereunder.
A drop in Lφ with increasing T for all samples is present
in Fig. 4 for T > 1 K. Analysis shows that for T >
1 K, the results fit Lφ ∼ T−p/2 with p/2 ≈ 0.34 ±
0.02, leading to a decoherence rate τ−1φ ∼ T p with
p ≈ 0.69 ± 0.03. Values for p are listed in Table I.
The dependence on T of τ−1φ can have several causes.
Electron-phonon scattering leads to a decoherence rate
τ−1ep ∼ T q with q experimentally determined as 2...45,20.

Electron-electron scattering4,5,20,31 with large energy
transfer leads to a decoherence rate τ−1ee ∼ T 2 in 1D
and 2D, while quasi-elastic Nyquist scattering leads to
a decoherence rate τ−1N ∼ T 2/3 in 1D20,61 and τ−1N ∼ T
in 2D4,31,42,65. Averaging of transport phenomena over
incoherent channels, expressed as broadening of energy
levels beyond the Thouless energy, leads to a decoherence
rate τ−1T ∼ T 1/2, and can result from thermal effects or
excitation by applied voltages or currents6. For the Q1D
wires by fitting Lφ ∼ T−p/2, we obtain p =0.69, 0.68
and 0.72 respectively (Table I), consistent with Nyquist
scattering in 1D with τ−1N ∼ T 2/3. An analysis of Lφ
on the unpatterned 2DES in the Hall bar (not shown)
shows Lφ ∼ T−p/2 with p ≈ 1.04, consistent with a

2D Nyquist decoherence rate τ−1N ∼ T . According to
discussion above and results in Fig. 4, we can conclude
that quasi-elastic Nyquist scattering plays a role in
limiting Lφ in our samples.

FIG. 6: Phase coherence lengths Lφ vs L at T = 0.38
K. Black dots are data, the red line represents the fit to
Eq. (7) with Lφ∞ = 1.73 µm.

Figure 4 shows that Lφ maintains a positive correla-
tion with L, whereby as L increases, Lφ also increases.
The saturated values of Lφ for T < 1 K obey the same
dependence on L as observed over 0.38 K < T < 10.0
K. For T < 1 K, Lφ of the wire with L = 11.0 µm,

reaches 1.42 µm, substantially longer than Lφ = 1.04
µm for the wire with L = 4.0 µm. Figure 6 shows the
Lφ measured at T = 0.38 K (saturated value) plotted
vs L. The positive correlation of Lφ with L finds an
explanation in the interaction of the quantum states
in the wires with the classical environment18,39. With
the wires connected to the environment, taken as a
macroscopic classical system, environmental coupling
decoherence is introduced at the endpoints of the wires,
while the decoherence is weaker into the wires away
from the endpoints. Averaging over L then shows
that shorter wires are more sensitive to environmental
coupling decoherence and will exhibit shorter Lφ.

The dependence of Lφ on both L and on T in Fig. 4
point to the importance of geometrical effects, expressed
in environmental coupling decoherence. In general,
the observations illustrate the sensitivity of quantum
coherence in nanoscale structures to interactions with
wide neighboring regions. Environmental coupling
decoherence can be quantified using a dwell time τd, via
a total decoherence rate given by τ−1φ = τ−1φ0 + τ−1d . The

term 1/τd quantifies an escape rate out of the quantum
system, associated with environmental coupling, and
hence denotes the environmental decoherence rate. The
term 1/τφ0 equals the decoherence rate for an isolated
system where τd →∞. The dwell time has been invoked
for decoherence in lateral quantum dots12,33, while ex-
periments show that the wider the aperture connecting
the quantum dots to the environment, the shorter is τφ
due to shorter τd

7,13. In the present wires it is possible
that the limit imposed on τφ by τd is responsible for
the saturation of Lφ at low T , where other decoherence
mechanisms play a lesser role.

The effect of environmental decoherence (and equiva-
lently of τd) on the effectively measured Lφ in a wire of
length L can be quantified using expressions derived for
the backscattered amplitude of a diffusing electron due to
quantum interference18,39,40. This approach bears a close
similarity to the concept of escape rate, in that an elec-
tron diffusing from the wire into the wide 2D connecting
regions at the endpoints of the wire, thereby escaping the
quantum system, has a reduced probability of returning
to its starting point and contributing to the quantum in-
terference correction to conductance. Assuming perfect
contacts between the wire and the wide 2D connecting
regions at the endpoint, such that the backscattering am-
plitude for an electron diffusing into the environment is
zero, one obtains19,39:

Lφ = Lφ∞(coth

(
L

Lφ∞

)
− Lφ∞

L
) (7)

Here Lφ denotes the effectively measured coherence
length in a wire of length L, and Lφ∞ denotes the coher-
ence length in a wire with L → ∞ for which interaction
with the environment can be neglected. As depicted in
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Fig. 6, Eq. (7) can remarkably well reproduce the depen-
dence of Lφ on L for the values of L in this work. The fit
to the data yields Lφ∞ = 1.73 µm (T = 0.38 K). Since
Nyquist scattering due to quasi-elastic electron-electron
interactions dominates decoherence for T & 1.5 K, it is
expected that a value close to Lφ∞ = 1.73 µm will result
from the expression for Nyquist scattering evaluated for
T = 1.5 K, at the onset of saturation of Lφ. For Q1D
wires, Lφ limited by Nyquist scattering is theoretically
described by19,26,29:

Lφ =
√

2

(
~2D2

1Dg(EF )W

kBT

)1/3

(8)

illustrating the characteristic dependence Lφ ∼ T−1/3.
Here g(EF ) represents the 2D density of states at
EF , D1D ≈ (`e1D/`e2D)D2D represents the diffusion
constant in the wires, and kB is Boltzmann’s con-
stant. A nonparabolic band approximation43,44 predicts
g(EF ) = m∗

π~2 (1+ 2EF

Eg
). Evaluation of Eq. (8) for T = 1.5

K then yields Lφ = 1.95 µm, indeed close to the value
Lφ∞ = 1.73 µm derived from the measurements and
Eq. (7). The consistency between the data in Fig. 4 and
Fig. 6, with Eq. (7) and Eq. (8) strengthens the inter-
pretation presented for the dependence of Lφ on L and T .

IV. CONCLUSIONS

In conclusion, quantum phase coherence lengths Lφ as
function of wire length L were obtained via a 1D WAL

analysis, with ballistic transport corrections, for wires
fabricated on a 2DES in a InGaAs/InAlAs heterostruc-
ture. It is observed that the measured Lφ increases with
increasing L, effectively explained by the quantum deco-
herence effect introduced at the wire endpoints by envi-
ronmental coupling. The decoherence effect of the cou-
pling between the wire and the wide 2D connecting re-
gions at the endpoints can be quantified by an expression
for reduced coherent backscattering at the endpoints.
The dependence of Lφ on T is consistent with the effects
of quasi-elastic Nyquist scattering in the 1D regime. The
work underlines the influence of sample geometry and in-
teractions with external neighboring regions on quantum
decoherence in nanostructures, with particular emphasis
on decoherence in nanowires with relevance to the study
of new quantum states of matter, and with relevance in
quantum technologies.
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