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We theoretically investigate a pure spin Hall current driven by a longitudinal temperature gra-
dient, i.e. the spin Nernst effect (SNE), in a paramagnetic state of a collinear antiferromagnetic
insulator with the Dzyaloshinskii-Moriya interaction. The SNE in a magnetic ordered state in such
an insulator was proposed by Cheng et al. [PRL 117, 217202 (2016)]. Here we show that the
Dzyaloshinskii-Moriya interaction can generate a pure spin Hall current even without magnetic or-
dering. By using a Schwinger boson mean-field theory, we calculate the temperature dependence of
SNE in a disordered phase. We also discuss the implication of our results to experimental realiza-
tions.

I. INTRODUCTION

Recent years have seen a surge of interest in issues re-
lated to spin transport in magnetic insulators. For prac-
tical purposes, the ability to transfer spin information
in the absence of charge flow holds great potential for
energy-efficient applications [1–9]. On the fundamental
side, spin transport measurements can also provide valu-
able information about the ground state and low-energy
excitations of correlated electronic systems [10]. In par-
ticular, a thermal Hall effect (THE) of spin excitations
has been predicted [11]. In this effect, a longitudinal
temperature gradient can drive a transverse heat current
carried by charge-neutral excitations such as magnons or
spinons. Since its prediction, the THE has been observed
in a number of magnetic insulators [12–15], accompanied
by extensive theoretical efforts [16–24]. It is now rec-
ognized that, microscopically, the THE originates from
nontrivial magnon dispersions due to either chiral spin
textures or non-symmetric spin-spin interactions, such
as the Dzyaloshinskii-Moriya interaction (DMI).

However, in certain class of magnetic insulators, the
THE is symmetry prohibited. Examples include mag-
netically disordered states at high temperatures and
collinear antiferromagnets with combined time-reversal
(T ) and inversion (I) symmetry. For these systems, a
spin Nernst effect (SNE) is symmetry allowed nonethe-
less. In the SNE, spin currents with opposite polarization
flow in the opposite transverse direction in response to a
longitudinal temperature gradient. As a result, the heat
current vanishes, and we are left with a pure transverse
spin current. The relation between the THE and the SNE
is akin to the relation between the anomalous Hall effect
and the spin Hall effect. The SNE has been predicted
for magnets on a honeycomb lattice, either in antifer-
romagnets (AFM) below the Néel temperature in which
the SNE is realized by magnons [25–27], or ferromagnets
(FM) above the Curie temperature in which the SNE is
realized by spinons [28]. Possible experimental signature
of the SNE has also been reported in the antiferromag-
netic insulator MnPS3 in the ordered phase [29].

Actually, the honeycomb magnets can display either

the THE or the SNE depending on their magnetic con-
figurations, as summarized in Table I. The key ingredient
here is a second nearest-neighbor DMI, which plays a sim-
ilar role in spin transport as the spin-orbit interaction in
electron transport. In the ordered phase of a honeycomb
FM, the broken time-reversal symmetry together with
the DMI leads to the THE [22, 28]. On the other hand,
in both the disordered phase of the FM and the ordered
phase of the AFM, the vanishing magnetization forbids
the THE, but the DMI still allows the SNE [25, 26, 28].
These results strongly hint that the SNE should also exist
in the high-temperature disordered phase of the honey-
comb AFM.

In this paper we present a detailed study of this ef-
fect using the Schwinger boson mean-field approach. We
show that the SNE is indeed enabled by the DMI in
the high-temperature disordered phase of a honeycomb
AFM, and the transverse spin current is carried by the
two pairs of conjugated spinon states connected by the
combined T I symmetry. Supplemented by a symmetry
analysis, we calculate the reduced mean-field order pa-
rameters of the spinons, establish the disordered phase
regime, and then identify the effect of a T I conjugate
pair on the pure SNE. Finally, we calculate the tempera-
ture dependence of the SNE coefficient in this disordered
phase, and discuss its realization in real materials.

This paper is organized as follows. In Sec. II, we intro-
duce the honeycomb AFM model with a second nearest
neighbor DMI, and present the mean-field solution to the

collinear order ordered disordered

FM THE a SNE b

AFM SNE c SNE d

a Ref. 22 and 28.
b Ref. 28.
c Ref. 25 and 26.
d This work.

TABLE I. Summary of the thermal Hall effect (THE) and the
spin Nernst effect (SNE) in honeycomb magnets with a second
nearest-neighbor Dzyaloshinskii-Moriya interaction. Depend-
ing on the symmetry, the system exhibits either a THE or a
SNE.
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FIG. 1. (a) An AFM honeycomb with DMI. The lattice vec-
tors are a1, a2, and a3, and the nearest bond vectors are d1,
d2 and d3. (b) The corresponding hexagonal Brillouin zone.

Schwinger boson Hamiltonian. This is followed by a dis-
cussion of the SNE in Sec. III, including its dependence
on the temperature, the staggered field, and the DMI
strength. Finally, we comment on the limitations of our
theoretical treatment and discuss possible material real-
izations of the SNE in Sec. IV.

II. MODEL AND METHOD

A. Honeycomb AFM

We begin with the following spin Hamiltonian on a
honeycomb lattice,

H = J1

∑
〈i,j〉

Si · Sj +D2

∑
〈〈i,j〉〉

vij ẑ · (Si × Sj)

− hst
∑
i

(−1)iSzi .
(1)

The first term describes the antiferromagnetic nearest-
neighbor (NN) Heisenberg exchange with J1 > 0. The

second term is a second-NN DMI. Here vij = 2
√

3(d1 ×
d2)z = ±1 with d1 and d2 the vectors connecting site i
to its second NN site j, as shown in Fig. 1. This second-
NN DMI is allowed by crystal symmetry [30, 31]; it is
intrinsic to the honeycomb lattice. The third term is a
staggered Zeeman field along the z-direction that stabi-
lizes the system in the collinear AFM ground state at low
temperatures [32]. Throughout this paper, we will use J1

as the energy and temperature unit.
In the high-temperature paramagnetic (PM) phase,

the low-energy spin dynamics can be described by
spinons. We introduce the Schwinger boson (SB) rep-
resentation for the spin operator [34]

Si ≡
1

2

∑
s,s′

c†i,sσss′ci,s′ , (s, s′ = ±1) (2)

with the constraint that the number of spinons must be

conserved at any given site,
∑
s c
†
i,sci,s = 2S. The index

s = ±1 denotes up or down spins. In Eq. (2),σ are

the Pauli matrices, and c†i,s (ci,s) denotes the creation

(annihilation) operator for a spinon with spin s at site i.
The spin amplitude S = 1/2 is considered in this paper.

Substituting Eq. (2) into the spin Hamiltonian (1), we
obtain

HSB = −2J1

∑
〈i,j〉

−→
A†ij
−→
A ij −

iD2

2

∑
〈〈i,j〉〉

∑
s

svijF†ij,sFij,−s

− hst
∑
is

(−1)i

2
sc†i,sci,s +

∑
i

µi

(∑
s

c†i,sci,s − 2S
)
.

(3)

where
−→
A ij ≡ (ci,↑cj,↓ − ci,↓cj,↑)/2 is the antiferromag-

netic NN bond operator, and Fij,s ≡ c†iscjs is the second
NN bond operator. µi is a Lagrange multiplier to im-
pose the local constraint at the mean field level. We note

that
−→
A ij = −

−→
A ji is antisymmetric. Next we perform

the mean-field decomposition of the quartic terms of the
spinon Hamiltonian. For the NN bond operator, we set

〈
−→
A ij〉 = −〈

−→
A ji〉 = χij . While in general χij is com-

plex, we work in the gauge in which χij is real. The
second-NN order parameter can be written as 〈Fij,s〉 ≡
ηSij,s + ivijη

A
ij,s = ηij,s, where ηSij,s = 〈Fij,s + Fji,s〉/2,

and ηAij,s = vij〈Fij,s − Fji,s〉/(2i). The resulting bosonic
Bogoliubovde Gennes (BdG) Hamiltonian is given by

HM
SB = −J1

∑
〈i,j〉

∑
s

(
sχijc

†
i,sc
†
j,−s + h.c.

)
+D2

∑
〈〈i,j〉〉

∑
s

ivij
2
sηSij,−s

(
c†i,scj,s − h.c.

)
+D2

∑
〈〈i,j〉〉

∑
s

s

2
ηAij,−s

(
c†i,scj,s + h.c.

)
+
∑
is

(µi −
(−1)ihst

2
s)c†i,sci,s,

(4)

where the trivial constant terms such as 2J1

∑
〈i,j〉 χ

2
ij

are neglected for simplicity.
This Hamiltonian can be simplified by symmetry con-

siderations. The spin Hamiltonian (1) has the combined
T I symmetry, which persists even in the low tempera-
ture AFM phase. Therefore, it is natural to expect that
the high-temperature PM phase also preserves the T I
symmetry. For the purpose of symmetry analysis, it is
convenient to introduce sublattice-specific notations. We
use ai,s and bi,s to denote the annihilation operators on
the A and B sublattices, respectively. The correspond-
ing second NN bond order parameter is then denoted
by Aij,s and Bij,s. The T and I symmetry are defined
as [35] (more details in Appendix A)

T ci,sT −1 = i(σ2)s,s′ci,s′ , (5)

I
[
ai
bi

]
I−1 = σ3σ1

[
a−i
b−i

]
. (6)
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FIG. 2. The solution of order parameters with staggered field
hst = 0 for (a) and (c), and hst = 0.1J1 for (b) and (d).

Imposing the T I symmetry on the mean-field Hamilto-
nian (4) yields

A∗ij,−s = B−i−j,s . (7)

We now assume that the bond order parameters and
the chemical potential are spatially uniform. They are
Aij,s = ASs + ivijA

A
s , Bij,s = BSs + ivijB

A
s , χij = χ0 and

µi = µ. Fourier transforming into the momentum space

Ψks = [ak,s, b
†
−k,−s]

T = (1/
√
N)
∑
i e
−ik·Ri [ai,s, b

†
i,−s]

T ,

and using the condition (7), we obtain the mean-field
spinon Hamiltonian in the momentum space

HM
SB =

∑
k,s,µ

Ψ†ksh
s
µ(k)σµΨks, (8)

where σµ = {I2×2, σx, σy, σz} and

hs0(k) = µ− shst
2

+
D2s

4
MA
−sgS(k), (9a)

hs1(k)− ihs2(k) = −J1χ0sf(k), (9b)

hs3(k) =
D2s

4
PS−sgA(k). (9c)

with MA
s ≡ AAs −BA−s and PSs ≡ ASs +BS−s. The structure

factors are gA(k) ≡ −2
∑
i sin(k·ai), gS(k) ≡ 2

∑
i cos(k·

ai), and f(k) =
∑
i e
idi·k. gA(k) is an odd function of

k, and gS(k) and |f(k)| are even functions of k.

B. Schwinger Boson mean-field solution

The spinon Hamiltonian (8) contains six parameters
that need to be determined self-consistently, namely, µ,
χ0, and MA

s and PSs (with s = ±1). To diagonalize
the Hamiltonian (8), we perform the Bogoliubov trans-

formation Φk,s = U−1
s (k)Ψk,s = [αk,s, β

†
−k,−s]

T , where
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FIG. 3. The dispersions along high symmetry lines Γ−M −
K − Γ for (a) hst = 0 and T = 0.1J1, (b) hst = 0.1J1 and
T = 0.1J1, (c) hst = 0 and T = 0.5J1, and (d) hst = 0.1J1
and T = 0.5J1. α(β)↑(↓) denotes the mode Esα(β)(k) with
s = ±1 for spin ↑ (↓).

U−1
s (k) is a paraunitary matrix given by

U−1
s (k) =

[
cosh θs(k)

2 sinh θs(k)
2 e−iϕs(k)

sinh θs(k)
2 eiϕs(k) cosh θs(k)

2

]
. (10)

Here the Bogoliubov angles θ and ϕ are defined by hs

in Eq. (9): hs1 = hs sinh θs cosϕs, h
s
2 = hs sinh θs sinϕs

and hs0 = hs cosh θs, with hs ≡
√
hs20 − hs21 − hs22 .

The diagonalized Hamiltonian has the form HM
SB =∑

ks(E
s
α(k)α†ksαks +Esβ(k)β†ksβks). It is clear that HM

SB

has two degenerate modes with Esα(k) = E−sβ (k) =

hs(k) + hs3(k),

Esα(k) =
D2s

4
PS−sgAk

+

√
(µ− shst

2
+
D2s

4
MA
−sgSk)2 − |J1χ0fk|2 .

(11)

The wave function of the αks (βks) quasiparticle are given
in Appendix C.

This degeneracy originates from the combined T I
symmetry of our mean-field Hamiltonian. We note that
the annihilation operator of a spinon αks transforms into
into sβk,−s under the T I operation defined in Eq. (5).
From this, we find

Esα(k) = E−sβ (k) . (12)

We call such a pair of degenerate modes as a T I sym-
metry conjugate pair. This conjugate pair is crucial for
the appearance of a pure transverse spin current as we
discuss below.

We compute mean-field order parameters by solving a
set of self-consistent equations detailed in Appendix B.
The temperature dependence of order parameters at
D2 = 0.24J1 with different hst are shown in Fig. 2, along
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with the spinon dispersion in Fig. 3. We first note that
all order parameters vanish above Tc ∼ 0.826J1. This
is an artifact of the mean-field approach, and Tc should
be interpreted as a characteristic crossover temperature
above which the system behaves as a paramagnet with
local moments [34]. On the other hand, as the tempera-
ture approaches zero, the spinon gap at the Γ point closes
(Fig. 3), and the system undergoes a phase transition into
the collinear AFM phase at the Néel temperature TN via
the spinon condensation [36].

For the current two-dimensional model, TN is strictly
zero because single-site spin anisotropy or anisotropic ex-
change coupling is absent. Spin ordering at finite T is
mimicked by nonzero staggered field hst.

III. SPIN NERNST EFFECT OF SPINONS

A. Spin conservation and mirror symmetry

With a firm understanding of the spinon spectra, we
now turn to the SNE. As a first step, we examine how
many spins are carried by the spinon modes. In general,
this is not a trivial question, because in the presence of
the DMI the spin angular momentum does not have to
be conserved. Fortunately, our model also has the mirror
symmetryMz about the lattice plane, which leads to the
conservation of the total spin Sz,

Sz =
~
2

∑
ks

sΨ†ksσzΨks =
~
2

∑
ks

sΦ†ksσzΦks. (13)

We see that αks and βk−s modes have oppo-

site angular momentum 〈0|αksSzα
†
ks|0〉 = ~s/2 and

〈0|βk−sSzβ†k−s|0〉 = −~s/2, respectively. Here |0〉 is the
vacuum state of spinons. The SNE is due to the oppo-
site transverse motion of the two spin species driven by
a longitudinal temperature gradient.

B. Spin Nernst Effect coefficient in disordered
state

Since spinons do not carry charge, they cannot be
driven by an external electric field, but they can respond
to a statistical force, such as the temperature gradient
∇T . Due to the conservation of Sz, spin current can
be written as JSN =

∑
s,λ s(~/2)Jsλ, where Jsλ is the

spinon current of mode λ and spin s. According to
Ref. [16, 17, 20, 25], the transverse Jsλ due to ∇T is
given by

Jsλ =
ẑ

~
×∇T

∫
dk

(2π)2
c1(nλs (k))Ωsλ(k) , (14)

where c1 is the weight function c1(x) = x lnx − (1 +
x) ln(1 + x), and nλs (k) and Ωsλ(k) are the Bose-Einstein
distribution function and the Berry curvature (defined
below) for the mode Esλ(k), respectively.

×10-2
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FIG. 4. The distributions of Berry curvature and spectrum
for αk,s spinon with spin s = −1 at temperature T = 0.1J1
without staggered fields: (a) The Berry curvature; (b) The
spectrum.

We now analyze the symmetry properties of the Berry
curvature, which for the mode Esα(k) is expressed as

Ωsα(k) = i∂ku
s†
α (k)× σ3∂ku

s
α(k)

=
1

2
∇k cosh θs(k)×∇kϕs(k),

(15)

where usα(k) is the wave function of the αk,s quasiparticle
as presented in Appendix C. Under the T I operation,
α → β, s → −s, and k → k. In addition, the Berry
curvature should also flip sign due to the factor i in its
definition. As such, under the T I operation, we have

Ω−sβ (k) = −Ωsα(k) . (16)

Together with the energy dispersion relation Esα(k) =
E−sβ (k) [see Eq. (12)], this relation indicates that Jsα and

J−sβ are always opposite in sign, resulting in a pure trans-
verse spin current.

Next we focus on a particular mode α. For bosonic
BdG equations, there is a general relation of the Berry
curvature between the α and β mode (See Appendix D)

Ωsβ(k) = Ω−sα (−k) . (17)

Combined this relation with Eq. (16), we have

Ωsα(k) = −Ωsα(−k) . (18)

This is clearly seen in Fig. 4 (a). If the spinon disper-
sion is inversion symmetric, the transverse current Jsα
would vanish. However, as we can see from Eq. (11),
the presence of the DMI breaks this symmetry, i.e.,
Esλ(k) 6= Esλ(−k) as illustrated in Fig. 4 (b). After
summing over all occupied states, there should be a net
spinon current. Therefore the second NN DMI is crucial
for the appearance of the SNE.

We numerically calculate the spin Nernst coefficient
given by [16, 17, 20, 25]

αxy =
∑
s

∫
dk

(2π)2
c1(nαs (k))Ωsα(k). (19)

where αxy is defined by the relation JSN = αxyẑ ×∇T .
The temperature dependence of αxy is calculated at dif-
ferent staggered field hst and DMI strength D2 in Fig. 5.
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FIG. 5. The spinon Nernst coefficients as a function of tem-
perature: (a) at different staggered fields hst and a fixed DM
interaction D2 = 0.24J1;(b) at different DM interaction D2

and without a staggered field.

We find that αxy will be zero at two ends of the temper-
ature zone, i.e., T = 0 and T = Tc. When T approaches
zero, the fluctuating component of spinons is decreased.
On the other hand, when the temperature approaches
T = Tc, Ps is reduced to zero. This will cause the SNE
to vanish because the vanishing of Ps effectively restores
the inversion symmetry of the spinon dispersion.

In addition, the peak of spin Nernst coefficient at a spe-
cial temperature results from the competition between
the enhancement of excited spinons engaging in transport
and the reduction of the second-NN order parameter Ps
and Ms as the temperature increases. The staggered field
will weaken the spin Nernst coefficient in opposite to that
of DMI, because the staggered field supports a collinear
configuration, but DMI favors a perpendicular one be-
tween two second-NN spin polarizations. In reality, TN
could be finite due to a variety of effects neglected here,
and the temperature dependence of the spin Nernst coef-
ficient is expected to depend on the competition between
these effects and the DMI, especially near TN . Neverthe-
less, the spin Nernst coefficient is shown to change con-
tinuously with increasing hst. This implies that the spin
Nernst coefficient changes continuously at the magnetic
transition temperature as long as it is the second-order
transition.

C. The relation between magnons and spinons in
antiferromagnets

We now explore the connection between the SNE in
the PM phase and the SNE in the AFM phase. In the
Schwinger boson picture, the transition from the PM to
AFM phase takes place via the spinon condensation [36].
Take Fig. 3(b) as an example. As the temperature is
lowered to the Néel temperature TN , the spinons will
condense into the α↑ and β↓ modes. Consequently, the
resulting state will have a macroscopic occupation of spin
up (down) at A (B) sites, giving rise to the AFM or-
der. At the same time, the two upper modes, α↓ and β↑,
will evolve into magnons. In fact, upon the spinon con-
densation, the order parameter MA

−s vanishes, and the

TI

T>TN

(a) (b)
TI

T<TN

FIG. 6. It illustrates the spin Nernst effect on a honeycomb
AFM carried by spin fluctuations: (a) at T > TN , the SNE is
carried by spinons in the paramagnetic phase; (b) at T < TN ,
the SNE is carried by magnons.

dispersion of the α↓ mode becomes

Eα↓(k) = −D2

4
PS+gA(k)+

√
(µ+ hst/2)2 − |J1χ0f(k)|2 .

(20)
Comparing the above expression with that of magnons
Em(k) = SD2gA(k) +

√
(J1S + hst)2 − S2J2

1 |f(k)|2 [25,
26], we see that they share the basic algebraic structure.
The slight difference is due to the incomplete condensa-
tion of spinons.

It is obvious that across the phase boundary between
the PM and AFM phase, the symmetries relevant to the
SNE, namely, the combined T I symmetry and the break-
ing of the spin rotational symmetry due to D2 remains
the same. Hence the SNE in both the PM and AFM
phase has the same microscopic origin, as shown in Fig. 6.

IV. SUMMARY AND DISCUSSION

In summary, we have studied the pure SNE in the PM
state on an antiferromagnetic honeycomb lattice with a
second-NN DMI, using the Schwinger boson mean-field
method. We found that the pairs of the combined T I
conjugate modes of spinons support a transverse spin
current without a transverse thermal current. Because
of the competition between the short-range spin correla-
tions, represented by the temperature-dependent mean-
field order parameters, and spin fluctuations, represented
by the thermal population of spinons, the spin Nernst co-
efficient shows a nontrivial temperature dependence for a
rather simple model considered here. This might suggest
that a paramagnetic insulator with AFM interaction of
spins could serve as a spintronics device even above the
magnetic transition temperature to generate or detect
the spin current.

Before closing, we would like to discuss several issues
left for future studies. Throughout this paper, we ne-
glected the fluctuations from the mean-field solution. In
fact, the Schwinger boson mean-field treatment is the
result of the zeroth order of O(1/N) in a large-N expan-
sion of a spin SU(N) model [34]. Rigorously speaking,
the low energy part of fluctuations, i.e., the phase fluc-



6

tuation of order parameters, could couple with the U(1)
gauge field, the dynamics of which may exhibit a confined
or deconfined phase. Exploring these effects of fluctua-
tions on spin transport will be an interesting problem in
the future [37, 38]. However, since our argument about
the finite SNE in the PM state of the honeycomb AFM
is based on the combined T I symmetry, our conclusion
would not be altered in a qualitative manner.

We did not use the full projected symmetry group
method to analyze the spinon Hamiltonian. Such analy-
ses would be necessary for spin liquid systems at low tem-
peratures described by fermionic spinons. On the other
hand, for investigating the pure SNE at high tempera-
tures, it is sufficient to consider only the combined T I
symmetry based on the unprojected spinon wave func-
tion.

So far we have only considered the so-called intrinsic
contribution to the spinon SNE due to the Berry cur-
vature of the spinon bands. Similar to the anomalous
Hall effect [39], there should be extrinsic effect due to
the scattering between spinons and other relevant phys-
ical degrees of freedom such as phonons. We note that
there is an analogous effect of electrons [40, 41] for which
the impurity scattering has been discussed [42].

In real materials, such as transition-metal trichalco-
genides, the situation is more complicated. In addition
to the interactions described in Eq. (1), longer-range
exchange interactions are present, stabilizing complex
magnetic ordered states [43]. Furthermore, single-ion
anisotropies and anisotropic exchange interactions could
exist, making finite-temperature magnetic ordering pos-
sible even for the two-dimensional limit [44]. These ef-
fects not only require solving a set of self-consistent equa-
tions for many order parameters but also require extend-
ing the current formalism as demonstrated in Ref. [33].
For S > 1/2 systems, hst is related to the single-ion
anisotropy K2 as hst ∼ K2(S − 1/2)/SMz with Mz =∑
s,s′(σ3)s,s′〈c†i,sci,s′〉 [33]. For MnPS3 as discussed in

Ref. [25], hst/J could become as large as 0.01 at low tem-
peratures. This value is an order of magnitude smaller
than the ones used in our analyses. Therefore, it is ex-
pected that the spin Nernst coefficient does not change
significantly across a magnetic transition temperature.
Detailed material dependence of the SNE including these
effects is left for future studies.
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Appendix A: Symmetry operations

We discuss symmetry operations on the spinon Hamil-
tonian in the momentum space. These symmetry opera-
tions include inversion operation I, time reversal opera-
tion T , and mirror operation Mz.

The spinon Hamiltonian matrix at each k point is given
by

Hs(k) =
∑
µ

hsµ(k)σµ. (A1)

For the inversion operation, we follow the definition
of Eq. (6) in the lattice space, which ensures that
ISi,A(B)I−1 = S−i,B(A). Accordingly, the Hamiltonian
matrix Hs(k) is transformed as

IHs(k)I−1 = σ2H
T
−s(k)σ2. (A2)

where T stands for the matrix transposition.

The time reversal operator T is defined in Eq. (5), and
transforms Hs(k) into

T Hs(k)T −1 = σ3H
∗
−s(−k)σ3. (A3)

Under the combined T I operation, Hs(k) is thus trans-
formed as

T IHs(k)(T I)−1 = σ1Hs(−k)σ1. (A4)

Therefore, if the system has the combined T I symmetry,
then Hs(k) should satisfy

σ1Hs(−k)σ1 = Hs(k) . (A5)

The mirror symmetry operatorMz with respect to the
lattice plane is defined as

Mzci,sM−1
z = i(σ3)s,s′ci,s′ , (A6)

which leads to MzS
z
iM−1

z = Szi and MzS
x,y
i M−1

z =
−Sx,yi . The Hamiltonian matrix is invariant under mirror
operation M

MHs(k)M−1 = Hs(k) . (A7)

Appendix B: Mean-field self-consistent equations

The mean-field order parameters and the Lagrange
multiplier µ are determined by minimizing the free en-
ergy involving these parameters. By differentiating the
free energy with respect to these parameters and equating
to zero, one arrives at the following set of self-consistent
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equations:

1+2S =
1

2N

∑
ks

[
hs0(k)

hs(k)
(nαk,s + nβ−k,−s + 1)

]
, (B1a)

4χ0 =
J1χ0

3N

∑
ks

[
|f(k)|2

hs(k)
(nαk,s + nβ−k,−s + 1)

]
, (B1b)

MA
s =

1

6N

∑
k

gA(k)(nαk,s − n
β
−k,−s − 1), (B1c)

−PSs =
1

6N

∑
k

gS(k)
hs0(k)

hs(k)
(nαk,s + nβ−k,−s + 1), (B1d)

where n
α/β
k,s = [exp (Esα,β(k)/T )− 1]−1 is the Bose distri-

bution function, and N is the number of unit cells.

Appendix C: BdG equation and Berry curvature

In this section we present a detailed discussion of the
bosonic BdG equation and the associated wave func-
tions. Our starting point is the spinon mean-field Hamil-
tonian (8), reproduced here for convenience,

H =
∑
k,s

Ψ†ksHs(k)Ψks , (C1)

where Ψks = [ak,s, b
†
−k,−s]

T with ak,s and bk,s being the
Fourier transform of the spinon operators on the A and B
sublattices, respectively. Introduce the Bogoliubov trans-
formation (

ak,s

b†−k,−s

)
= Us(k)

(
αk,s

β†−k,−s

)
. (C2)

The boson commutation relation dictates that Us(k) is a
paraunitary matrix, i.e.,

Us(k)σ3U
†
s (k) = σ3 . (C3)

By demanding that the Bogoliubov transformation diag-

onalizes the Hamiltonian, i.e., H =
∑

ks[E
s
α(k)α†ksαks +

Esβ(k)β†ksβks], we obtain the BdG equation

Hs(k)Us(k) = σ3Us(k)σ3∆(k), (C4)

where ∆(k) = diag(Esα(k), E−sβ (−k)) is the eigenvalue

matrix. We note that both the excitation energies Esα(k)
and E−sβ (−k) must be positive. Otherwise the mean-field

solution is unphysical. The explicit expression of Us(k)
is given Eq. (10).

For the purpose of calculating the Berry curvature, it
is necessary to clarify what the wave function of a spinon
quasiparticle is. Let us write Us(k) = [usα(k), u−s

β̄
(−k)],

where usα(k) and u−s
β̄

(−k) are two-component column

vectors. Inserting this expression into the BdG equa-
tion (C4), we have

Hs(k)usα(k) = Esα(k)σ3u
s
α(k) , (C5a)

Hs(k)u−s
β̄

(−k) = −E−sβ (−k)σ3u
−s
β̄

(−k) . (C5b)

It is clear that usα(k) and u−s
β̄

(−k) are the wave functions

of the quasiparticle αk,s with positive energy Esα(k) and
the quasihole β−k,−s with negative energy −E−sβ (−k),
respectively. We have denoted the quasihole wave func-
tions by the subscript ᾱ or β̄.

The above discussion suggests that to find the quasi-
particle wave function of the β−k,−s mode, we just need

to recast the spinon Hamiltonian in the basis Ψ̃ks =

[bk,s, a
†
−k,−s]

T . To do that, we make use of the particle-
hole conjugate operator, defined by

Cci,sC−1 = c†i,s. (C6)

Acting C on the basis Ψks, we have

CΨksC−1 = σ1

[
bk,−s
a†−k,s

]
. (C7)

Consequently,

H̃s(k) = CHs(k)C−1 = σ1H
∗
s (−k)σ1. (C8)

We can then deduce that

u−sβ (k) = σ1u
−s∗
β̄

(k) . (C9)

If the system has T I symmetry, according to Eq. (A4)

H̃s(k) = σ1H
∗
s (−k)σ1 = H∗s (k) . (C10)

Since H̃s(k) and H∗s (k) describe the same physical sys-
tem, we have

u−sβ (k) = us∗α (k) . (C11)

Appendix D: The property of Berry Curvature

The Berry curvature is generally defined by the pro-
jection operator

Ωn(k) = −iεijTr[P̄n(k)∂kiPn(k)∂kjPn(k)], (D1)

where Pn(k) is the projection operator for the n-th band
at the momentum k, and P̄n ≡ 1−Pn. Note that for the
generalized eigenvalue problem given by Eq. (C5), the
projector operator is defined by [19]

Pn =
|n〉〈n|σ3

〈n|σ3|n〉
. (D2)

For our disordered AFM described by the bosonic BdG
Hamiltonian Hs(k), this leads to the formula

Ωsλ(k) = i∂ku
s†
λ (k)×σ3∂ku

s
λ(k)/(us†λ (k)σ3u

s
λ(k)), (D3)

where uλ,s(k) is the wave function of λ-type quasiparticle

or quasihole, and the normalization u†λ,s(k)σ3uλ,s(k) =
±1 for quasiparticle and quasiholes, respectively.
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For a two-level system, it follows from Eq. (D1) that
the Berry curvature has the property

Ωn(k) = −Ωn̄(k), (D4)

where n and n̄ refers to the quasiparticle and quasihole
bands, respectively. This property is a special case of∑
n Ωn(k) = 0 with n ≥ 2. Applying this relation to our

Hamiltonian Hs(k), we have

Ωsα(k) = −Ω−s
β̄

(−k). (D5)

Using Eq. (C9), one can deduce the relation

Ω−sβ (k) = −Ω−s
β̄

(k). (D6)

The result can be also applied to a general reduced BdG
Hamiltonian.

In the presence of the T I symmetry, the Berry curva-
tures for the two modes α and β could be also related.
Using Eq. (C11), we find

Ωsα(k) = −Ω−sβ (k). (D7)
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