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Abstract

The Peierls substitution in the energy functions of carbon nanotube’s sub-bands is carried out for

a carbon nanotube of arbitrary chiral indices subjected to a perpendicular uniform magnetic field.

The Peierls substitution represents a zero-order term of the asymptotically convergent power series

in the magnetic field. It provides a very good approximation for electron energy spectrum of a

carbon nanotube subjected to a perpendicular uniform magnetic field, for magnetic fields currently

accessible in laboratories.
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I. INTRODUCTION

There is hardly another single-electron problem in quantum mechanics that has attracted

as much attention as the behavior of Bloch electrons in a magnetic field. Since the pioneering

work of Peierls1 it has been customary to treat the motion of Bloch electrons in a magnetic

field using two different approaches, both of which are often referred to as the “Peierls sub-

stitution”. The first one amounts to multiplication of the zero-field matrix elements of the

nearest-neighbor tight-binding Hamiltonian by the phase factors, exp
[

− ie
~

∫

Adr
]

, contain-

ing the line integral of the vector potential, A, along the straight-line path connecting the

nearest neighbors. The second one involves substituting −i~∇ − e
c
A for ~k in the energy

function for a band. In the simplest case of the one-dimensional tight-binding Hamiltonian,

the equivalence of the two approaches can be readily established2. A discussion of higher

dimensions entails ambiguity of the path connecting neighboring atoms3–6, but the straight-

line choice can be justified by requiring gauge invariance of the tight-binding Hamiltonian5,6.

It can then be shown that the two approaches are exactly equivalent for a two-dimensional

tight-binding Hamiltonian on a square lattice, immersed in a uniform magnetic field per-

pendicular to it4,7–9.

The nearest-neighbor tight-binding model on a honeycomb lattice leads to the electron

energy spectrum where the conduction and valence bands touch at the K and K ′ points of

the two-dimensional Brillouin zone. One can make the Peierls substitution in the matrix

elements of the tight-binding Hamiltonian and expand resulting equations near the K and

K ′ points to lowest orders in the wave vector and the vector potential. This procedure is

equivalent to using the effective massless Dirac Hamiltonian with the Peierls substitution

made for the momentum operator10–14. This Hamiltonian can be used to analyze the low-

energy part of the electron spectrum in carbon nanotubes in applied magnetic fields11–14.

Beyond the limitations of the tight-binding approximation, numerous attempts have been

made to justify the Peierls substitution in the energy function for a band15,16. These at-

tempts culminated in the work of Blount17, who formulated the problem in the framework

of the crystal momentum representation17,18. In this representation the electron Hamilto-

nian comprises a matrix diagonal in the band indices, s, and crystal momenta, k, with the

elements εs(k). The difficulty in treating the problem of a Bloch electron in a uniform mag-

netic field is that the vector potential is a linearly growing function of the coordinates that
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can be very large. Lifshitz and Pitaevskii argued that, in the limiting case of a constant

vector potential (which corresponds to a zero magnetic field), the legitimacy of the Peierls

substitution in εs(k) follows from the gauge invariance18. Then εs(q − e
~c
Â), where q is

the generalized crystal momentum18, corresponds to the Hamiltonian describing the motion

of a Bloch electron from the s-th band in a weakly changing vector potential, or in the

“zeroth order” in the magnetic field, B. Blount devised a procedure yielding corrections to

this Hamiltonian of higher orders in the magnetic field17. This procedure is based on the

formalism of the pseudoclassical representation developed for treating perturbations which

may be large but vary slowly from cell to cell in a crystal lattice. Blount also showed that

this procedure converges asymptotically17.

In this work we will study the energy spectrum of a single-walled carbon nanotube with

the chiral indices (n,m)4 in a uniform magnetic field directed perpendicular to the nanotube

axis. For definiteness, we will choose the z axis along the nanotube and the y axis along the

magnetic field. Neglecting the atomic bond curvature and assuming nearest-neighbor tight-

binding approximation, one can obtain the electron energy spectrum of a carbon nanotube

in zero magnetic field in two different ways. On one hand, one can consider a unit cell of a

carbon nanotube containing N = 2 (n2 +m2 + nm)/dR hexagons, or 2N atoms, where dR

is the greatest common divisor of 2n + m and 2m + n4, and write down the tight-binding

Hamiltonian as a 2N ×2N matrix for each value of the one-dimensional crystal wave vector

k ≡ kz along z. We will refer to this Hamiltonian as the Hamiltonian in the tight-binding

representation. This Hamiltonian yields energy dispersion for N subbands in the conduction

band and N subbands in the valence band. On the other hand, one can consider a unit cell

of graphene containing just two atoms and the energy dispersion εc(kx, kz) = −εv(kx, kz)

of a graphene sheet oriented in such a way that rolling it up along the x direction (to

become the nanotube circumference) would produce a nanotube with given chirality indices.

Then εs(µ/R, k), where R is the nanotube radius and µ = 0, 1, ...,N − 1 will yield energy

spectra for the N subbands of the band s = c, v. This way of getting the nanotube electron

energy spectrum is known as “zone folding”4. The resulting 2N ×2N diagonal matrix, with

εs(µ/R, k) on the diagonal, comprises the electron Hamiltonian in the crystal momentum

representation.

Thus, carbon nanotubes provide a perfect proving ground to test the two kinds of the

Peierls substitution. Indeed, both ways of getting electron energy spectrum of a carbon
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nanotube can be modified to account for the applied uniform magnetic field directed per-

pendicular to the nanotube axis. Saito et al.19 modified the Hamiltonian in the tight-binding

representation using the Peierls substitution for its matrix elements resulting in the phase

factors induced by the magnetic field. Numerical calculations in Ref.19 were done for a (10, 0)

zigzag carbon nanotube for different values of the ratio R/aB, where aB =
√

~ c/|e|B is

the magnetic length. Their numerical results were reproduced in numerous textbooks and

review articles4,20–22. Similar approach was used in12,23,24. Most of these studies refer to

achiral (zigzag and armchair) carbon nanotubes12,19,24.

The aim of the present work is to account for the uniform perpendicular magnetic field,

applied to a carbon nanotube, by modifying the electron Hamiltonian in the crystal momen-

tum representation. We have demonstrated25,26 that, in the framework of this representation,

it is often possible to obtain straightforward derivations of analytical results having a “uni-

versal” form in the sense that they can be applied to nanotubes with arbitrary chiral indices,

not limited to achiral nanotubes.

For a nanotube in a uniform perpendicular magnetic field, one has a freedom to choose

the gauge condition. One possibility is A = B z ex. In this gauge, the vector potential

is a linearly growing function of the coordinate along the nanotube axis. Therefore, the

argument due to Lifshitz and Pitaevskii applies to nanotubes, and one can expect that the

“zeroth order” term in the electron Hamiltonian, corresponding to the Peierls substitution,

prevails at weak magnetic fields. Because of the gauge invariance, this should be true for

any gauge. Another possible gauge choice is A = −B x ez. This choice will be made in

the present study. Since, for a nanotube, |x| < R, the vector potential in this gauge is a

bounded function of the coordinates on the nanotube surface. Therefore, there is no need to

invoke the pseudoclassical approximation, and we can perform our analysis entirely in the

framework of the crystal momentum representation. Yet, the present treatment is based, to

a large extent, on the work of Blount17.
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II. CRYSTAL MOMENTUM REPRESENTATION FOR BLOCH ELECTRONSOF

A CARBON NANOTUBE WITHOUT MAGNETIC FIELD

The wave function of a Bloch electron in a carbon nanotube belonging to the band s = c, v

and having the subband index µ and one-dimensional wave-vector k can be written as

〈z, ϕ|s, µ, k〉 = us,µ,k(z, ϕ) e
ikz , (1)

where the periodic Bloch amplitude, us,µ,k within the zone-folding scheme is related to the

atomic orbital, Φb(r−Rb) by

us,µ,k(r) =
1√
N

∑

b=A,B

Cb(s, µ, k)
∑

Rb

eiµϕb eik(zb−z)Φb(r−Rb) .

Here the first sum is over the two atoms in the unit cell of graphene and N is the number of

graphene unit cells in a sample. Within the zone-folding scheme the coefficients CA(s, µ, q)

and CB(s, µ, k) are found to be4,26

(

CA(c, µ, k)

CB(c, µ, k)

)

=
1√
2

(

eiφ

1

)

,

(

CA(v, µ, k)

CB(v, µ, k)

)

=
1√
2

(−eiφ

1

)

, (2)

where

φ =



















arctan B
A , A > 0

arctan B
A
+ π, A < 0

, (3)

A = 2 cos (Kxa/2
√
3) cos (Kya/2) + cos (Kxa/

√
3) ,

B = 2 sin (Kxa/2
√
3) cos (Kya/2)− sin (Kxa/

√
3) ,

Kx = µ/R cosα − k sinα, Ky = µ/R sinα + k cosα, a is the lattice constant of graphene,

R is the nanotube radius, and the angle α is related to the nanotube chiral angle θ by

α = π/6− θ. The band energy is given by

εc(v)(k) ≡ εc(v)(µ, k) = ±γ0

√

1 + 4 cos

√
3Kx a

2
cos

Ky a

2
+ 4 cos2

Ky a

2
, (4)

where γ0 is the transfer integral of the tight-binding method and k = (µ/R, k).
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III. PEIERLS SUBSTITUTION IN THE BAND ENERGY DISPERSION

We consider a carbon nanotube parallel to the z-axis subjected to a uniform magnetic

field B directed along the y-axis. Then the vector potential can be chosen in the form

A = −B x ez. The essence of the Peierls substitution is18 (i) to introduce the generalized

quasi-momentum

q = k +
eA

~ c
= k+

2 π RB cosϕ

Φ0
ez , (5)

where ϕ is the polar angle, k = (µ/R, k) is the quasi-momentum in the absence of the

magnetic field with the quantized component along the nanotube circumference, Φ0 = hc/|e|
is the flux quantum, and (ii) to consider

εs

(

q− 2 π RB cosϕ

Φ0

ez

)

≡ εs

(

q− N B Shex cosϕ

Φ0 |T| ez

)

, (6)

where s = c, v is the band index, Shex is the area of a hexagon, T is the translational vector of

the nanotube4, as a Hamiltonian in the q-representation. The difficulty here arises from the

fact that, in this representation, the operator cosϕ has only inter-subband matrix elements

on the electron Bloch states. As a result, the electron Hamiltonian is non-diagonal even in

the “zeroth order” in the magnetic field. In order to formally circumvent this difficulty we

use the fact that εs(µ, k) is a periodic function of k:

εs (µ, k) = εs

(

µ, k +
2 π

|T|

)

.

Therefore, εs(µ, k) can be expanded into a Fourier series:

εs(µ, k) =
∑

m

Asm(µ) e
i km |T| , (7)

where

Asm(µ) =
|T|
2 π

π
|T|
∫

− π
|T|

dk εs(µ, k) e
−i km |T| .

Using the generating function for the Bessel functions in the form

e−i t cosϕ =
∑

l

(−i)l e−i l ϕ Jl(t) , (8)

we obtain

εs

(

q− 2 πRB cosϕ

Φ0
ez

)

=
∑

m

Asm(µ) e
i q m |T|

∑

l

(−i)l e−i l ϕ Jl

(N B Shexm

Φ0

)

, (9)
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where we used 2 π R |T| = N Shex, and N is the number of hexagons within a unit cell of

the nanotube. Eq. (9) represents an operator acting on the states in the crystal momentum

representation. However, we can interpret

〈s, µ, q|H|s′, µ′, q〉 =
∑

m

ei q m |T| Asm(µ) + As′m(µ
′)

2
(10)

×
∑

l

(−i)l 〈s, µ, q|e−i l ϕ|s′, µ′, q〉 Jl

(N B Shexm

Φ0

)

as the matrix element of the Hamiltonian in the q-representation (cf. the limit at B = 0).

The next step is then to calculate the matrix element 〈s, µ, q|e−i l ϕ|s′, µ′, q〉. We first

neglect the effect of the magnetic field on the electron wave function. Then, using the wave

function (1), we obtain

〈s, µ, q|e−i l ϕ|s′, µ′, q〉 =
∑

n

δµ′−µ−l,nN

∑

b

C∗
b (s, µ, q)Cb(s

′, µ′, q) . (11)

Here we used
1

N

∑

Rb

eimϕb =
∑

n

δm,nN . (12)

Eq. (10) can be rewritten as

〈s, µ, q|H|s′, µ′, q〉 =
∑

l

(−i)l 〈s, µ, q|e−i l ϕ|s′, µ′, q〉 |T|
2 π

π
|T|
∫

− π
|T|

dk
εs(µ, k) + εs′(µ

′, k)

2
(13)

×
∑

m

ei (q−k)m |T|Jl

(N B Shexm

Φ0

)

.

Summation over m in Eq. (13) can be performed using the identity

∞
∑

m=−∞

δ(x−m) =

∞
∑

n=−∞

e2π i nx . (14)

We obtain

∑

m

ei (q−k)m |T| Jl

(N B Shexm

Φ0

)

=
∑

n

∞
∫

−∞

dx Jl

(N B Shex x

Φ0

)

ei [(q−k) |T|+2π n]x

= 2 il
Φ0

N B Shex

∞
∑

n=−∞

Tl(yn)
√

1− y2n
θ(1− |yn|) ,
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where

yn =
(q − k) |T|+ 2 π n

N B Shex

Φ0 ,

Tm(y) = cos (m arccos y) is the Chebyshev polynomial, and we used the following integral27

∞
∫

−∞

dz Jl(c z) e
i p z = 2 il

Tl

(

p
c

)

√

c2 − p2
θ
(

1−
∣

∣

∣

p

c

∣

∣

∣

)

. (15)

We have two restrictions on the variable yn:

−1 < yn < 1

and

− π

|T| < k = q − yn N B Shex

Φ0 |T| +
2 π n

|T| <
π

|T| .

Because εs(µ, k) is a periodic function in k with the period 2 π/|T|, Eq. (13) reduces to

〈s, µ, q|H|s′, µ′, q〉 =
∑

l

〈s, µ, q|e−i l ϕ|s′, µ′, q〉 (16)

×1

π

π
∫

0

dθ
εs

(

µ, q − NBShex cos θ
Φ0 |T|

)

+ εs′
(

µ′, q − NBShex cos θ
Φ0 |T|

)

2
cos lθ .

This allows one to combine Eqs. (11) and (16) to yield

〈s, µ, q|H|s′, µ′, q〉 = 1

π

π
∫

0

dθ
εs

(

µ, q − NBShex cos θ
Φ0 |T|

)

+ εs′
(

µ′, q − N B Shex cos θ
Φ0 |T|

)

2
(17)

×
∑

b

C∗
b (s, µ, q)Cb(s

′, µ′, q)
∑

n

cos (µ′ − µ+ nN )θ .

Now we can use

∑

n

cos (µ′ − µ+ nN )θ =
2 π

N cos (µ′ − µ)θ
∑

m

δ

(

θ − 2πm

N

)

. (18)

Therefore, we obtain

〈s, µ, q|H|s′, µ′, q〉 =
∑

b

C∗
b (s, µ, q)Cb(s

′, µ′, q) (19)

× 1

N

N/2
∑

m=0

2− δm,0 − δm,N/2

2
[εs (µ, q − qm) + εs′ (µ

′, q − qm)] cos (µ
′ − µ)

2πm

N ,

where we have introduced the following notation:

qm =
NBShex

Φ0 |T| cos
2πm

N . (20)
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IV. BASIS TRANSFORMATION INDUCED BY A MAGNETIC FIELD

The wave function 〈z, ϕ|s, µ, q〉 is also affected by the magnetic field18:

〈z, ϕ|s, µ, q〉 →
〈

z, ϕ

∣

∣

∣

∣

s, µ, q − 2πRB cosϕ

Φ0

〉

= us,µ,q− 2πRB cosϕ
Φ0

(z, ϕ) eiqz .

We will follow Blount17 and introduce the following transformation matrix

S
(0)
s,µ;s′,µ′

(

q − 2πRB cosϕ

Φ0
; q

)

≡
〈

s, µ, q − 2πRB cosϕ

Φ0

∣

∣

∣

∣

s′, µ′, q

〉

. (21)

Using Eq. (1) we obtain

S
(0)
s,µ;s′,µ′

(

q − 2πRB cosϕ

Φ0
; q

)

=
∑

b

∑

Rb

ei(µ
′−µ)ϕbC∗

b

(

s, µ, q − 2πRB cosϕb

Φ0

)

Cb(s
′, µ′, q) .

(22)

Using the direct and the inverse Fourier tranforms, one can write

C∗
b

(

s, µ, q − 2πRB cosϕb

Φ0

)

=
1

π

1
∫

−1

dy C∗
b

(

s, µ, q − N B Shex y

Φ0 |T|

)

∑

m

eimϕbTm(y)
√

1− y2
, (23)

where y = (q−k) |T|
N B Shex

Φ0 and we used Eqs. (8) and (15). Then, using Eqs. (12), (18), and (23),

Eq. (22) can be easily transformed into

S
(0)
s,µ;s′,µ′

(

q − 2πRB cosϕ

Φ0
; q

)

=
2

N

N/2
∑

m=0

2− δm,0 − δm,N/2

2
cos (µ′ − µ)

2πm

N (24)

×
∑

b

C∗
b (s, µ, q − qm) Cb(s

′, µ′, q) .

V. ZEROTH ORDER HAMILTONIAN

In this section we give an explicit expression for the Hamiltonian describing Bloch elec-

trons of a carbon nanotube in a perpendicular magnetic field valid in the zeroth order in

the field (but not in the vector potential, cf. Refs.17,18).

Applying transformation (21) to the Hamiltonian (19) we obtain

〈s, µ|S(0)HS(0) †|s′, µ′〉 =
∑

s1,s2,µ1,µ2

〈

s, µ, q − 2πRB cosϕ

Φ0

∣

∣

∣

∣

s1, µ1, q

〉

(25)

×〈s1, µ1, q|H|s2, µ2, q〉
〈

s2, µ2, q

∣

∣

∣

∣

s′, µ′, q − 2πRB cosϕ

Φ0

〉

.
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A straightforward derivation leads to the following result:

〈s, µ|S(0)HS(0) †|s′, µ′〉 = 〈s, µ|S(0)H1S
(0) †|s′, µ′〉+ 〈s, µ|S(0)H2S

(0) †|s′, µ′〉 , (26)

where

〈c, µ|S(0)H1S
(0) †|c(v), µ′〉 = 1

2N

N/2
∑

m=0

2− δm,0 − δm,N/2

2
cos (µ′ − µ)

2πm

N (27)

×
[

ei φ(µ
′,q)−i φ(µ,q−qm) εc(µ

′, q − qm)± ei φ(µ
′,q−qm)−i φ(µ,q) εc(µ, q − qm)

]

,

〈c, µ|S(0)H2S
(0) †|c(v), µ′〉 = 1

N 2

N−1
∑

µ′′=0

N/2
∑

m=0

2− δm,0 − δm,N/2

2

N/2
∑

m′=0

2− δm′,0 − δm′,N/2

2
(28)

×
[

ei φ(µ
′′,q)−i φ(µ,q−qm) εc(µ

′′, q − qm′)± ei φ(µ
′,q−qm′)−i φ(µ′′,q) εc(µ

′′, q − qm)
]

× cos (µ− µ′′)
2πm

N cos (µ′′ − µ′)
2πm′

N ,

and qm is given by Eq. (20). We note, however, that, for numerical calculations, it is more

efficient to directly use Eq. (25) and perform matrix multiplication numerically.

In Fig. 1 by black dotted line is shown the energy spectrum of an electron in a (10, 0) zigzag

carbon nanotube without magnetic field. By blue dashed line is shown the electron spectrum

of the same nanotube in the perpendicular magnetic field for R/aB = 1 calculated using the

tight-binding Hamiltonian19. By red solid line is shown the same spectrum calculated using

Eq. (25). The results of the two calculations agree rather well, although the magnetic field

corresponding to R/aB = 1 is quite strong (B ≈ 4.3× 103 T.)

We also note that, as can be demonstrated by numerical calculations, the eigen energies

of the two terms in Eq. (26), S(0)H1S
(0) † and S(0)H2S

(0) †, are very close to one another.

VI. BLOUNT’S PERTURBATIVE PROCEDURE

One can check that the transformation matrix S
(0)
s,µ;s′,µ′

(

q − 2πRB cosϕ
Φ0

; q
)

is not unitary.

To be more precise, it is unitary only in the zeroth order in the magnetic field. Therefore,

one can calculate corrections to the unitarity condition up to a certain order in the magnetic

field and modify the transformation matrix as a means to eliminate these corrections in that

order. This is the essence of the perturbation procedure proposed by Blount17.
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FIG. 1. Electron energy spectrum for a (10, 0) zigzag nanotube in a perpendicular magnetic field

corresponding to R/aB = 1 calculated using tight-binding Hamiltonian (blue dashed lines) and

Eq. (25) (red solid lines). By black dotted lines is shown electron energy spectrum of the same

nanotube without magnetic field.

For example, up to the first order

〈s, µ|S(0) S(0) †|s′, µ′〉 = δs,s′ δµ,µ′ +
i

2

NBShex

Φ0 |T| C∗
A(s, µ, q)CA(s

′, µ′, q)

(

dφ(µ, q)

dq
− dφ(µ′, q)

dq

)

× (δµ′,µ+1 + δµ′,µ−1) ≡ δs,s′ δµ,µ′ + 〈s, µ|g(1)|s′, µ′〉 .

Therefore, one can define

S(1) = S(0) − 1

2
g(1) S(0) .

which will be unitary to the first order in the magnetic field.

However, this procedure has only asymptotic convergence17,28. For this reason, we will

not go beyond zeroth order in numerical calculations.

VII. CONCLUSIONS

We have shown how the perpendicular uniform magnetic field acting on a carbon nan-

otube can be introduced into the electron’s Hamiltonian in the crystal momentum represen-
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tation and discussed legitimacy of the so-called Peierls substitution in the energy function

for a band. This substitution is not exact but, for magnetic fields currently accessible in

laboratories, it provides a very good approximation. Generally speaking, the Peierls sub-

stitution represents a zero-order term of the asymptotically convergent power series in the

magnetic field. Due to a non-trivial geometry of a carbon nanotube, carrying out Peierls

substitution in the energy functions of its numerous sub-bands turned out to be a not so easy

task. We have shown how this task can be accomplished and derived analytical expressions

for the electron Hamiltonian in the crystal momentum representation in the “zeroth” order

in the magnetic field, valid for nanotubes of arbitrary chiralities.

This work was supported by the National Science Foundation (NSF-CREST Grant HRD-

1547754).

1 R.E. Peierls, Z. Physik 80, 763 (1933).

2 R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. III

(Addison-Wesley, Reading, MA, 1965), Pp. 21-1 - 21-3.

3 M. Graf and P. Vogl, Phys. Rev. B 51, 4940 (1995).

4 R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial

College, London, 1998).

5 T.B. Boykin, R.C. Bowen, and G. Klimeck, Phys. Rev. B 63, 245314 (2001).

6 T.B. Boykin, Am. J. Phys. 69, 793 (2001).

7 D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976).

8 I.I. Satija, Butterfly in the Quantum World (Morgan & Claypool, San Rafael, CA, 2016).

9 X.G. Wen and A. Zee, Nucl. Phys. B 316, 641 (1989).

10 Z.F. Ezawa, Quantum Hall Effects, 2nd Ed. (World Scientific, Singapore 2008).

11 H. Ajiki and T. Ando, J. Phys. Soc. Japan 62, 1255 (1993).

12 H. Ajiki and T. Ando, J. Phys. Soc. Japan 65, 505 (1996).

13 T. Ando and T. Seri, J. Phys. Soc. Japan 66, 3558 (1997).

14 H.-W. Lee and D.S. Novikov, Phys. Rev. B 68, 155402 (2003).

15 J.M. Luttinger, Phys. Rev. 84, 814 (1951).

16 W. Kohn, Phys. Rev. 115, 1460 (1959).

12



17 E.I. Blount, Phys. Rev. 126, 1636 (1962).

18 E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Part 2 (Pergamon, New York 1980).

19 R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 50, 14698 (1994); Erratum: Phys.

Rev. B 53, 10408 (1996).

20 J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007).

21 J. Kono, R.J. Nicholas, and S. Roche, High Magnetic Field Phenomena in Carbon Nanotubes,

in: A. Jorio, G. Dresselhaus, and M.S. Dresselhaus (Eds.): Carbon Nanotubes, Topics Appl.

Physics, Vol. 111 (Springer, Berlin Heidelberg 2008).

22 L.E.F. Foa Torres, S. Roche, and J.-C. Charlier, Introduction to Graphene-Based Nanomaterials

(Cambridge University Press, Cambridge, U.K., 2014).

23 J.P. Lu, Phys. Rev. Lett. 74, 1123 (1995).

24 N. Nemec and G. Cuniberti, Phys. Rev. B 74, 165411 (2006).

25 S.V. Goupalov, Phys. Rev. B 72, 195403 (2005).

26 S.V. Goupalov, A. Zarifi, T.G. Pedersen, Phys. Rev. B 81, 153402 (2010).

27 A.P. Prudnikov, Yu.A. Brychkov, and O.I. Marichev, Integrals and Series, Vol. 2: Special Func-

tions (Gordon and Breach, Amsterdam 1986) P. 185.

28 A.B. Migdal, Qualitative Methods in Quantum Theory (Westview Press, Boulder, CO, 2009).

13


