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We describe the coherent dynamics of electrical transport through a localized spin-dependent state, such as is
associated with a defect spin, at the interface of a ferromagnet and a non-magnetic material during ferromagnetic
resonance. As the ferromagnet’s magnetic moment precesses, charge carriers are dynamically spin-filtered by
the localized state, leading to a dynamic spin accumulation on the defect. Local effective magnetic fields modify
the precession of a spin on the defect, which also modifies the time-integrated total charge current through
the defect. We thus identify a new form of current-detected spin resonance that reveals the local magnetic
environment of a carrier spin located at a defect, and thus potentially the defect’s identity.

The emerging field of “quantum spintronics” seeks to en-
gineer and manipulate single coherent spin systems for the
sake of quantum-enhanced sensing/imaging technologies and
quantum computing.1 Defect spins in an insulating region
between a ferromagnetic metal and a nonmagnetic conduc-
tor produce an array of coherent spin-dependent phenomena,
including defect-associated spin pumping,2–4 thermal spin
transport,5 and small-field magnetoresistance under electrical
bias.6–8 Individual spin-coherent defects have even been elec-
trically detected in precisely-designed junctions.9,10 Charge
and spin dynamics have also been studied in systems consist-
ing of a quantum dot connected to ferromagnetic leads.11–13

However, the potential of a coherently-precessing source of
spins, readily available from a ferromagnetic contact under-
going precession (such as from a spin torque oscillator) has
not yet been explored; such a coherent source may be able to
reach a single-defect-spin regime of spin pumping or dynamic
spin polarization.

Here we predict observable coherent dynamics in the
charge and spin transport through a single defect in the junc-
tion between a ferromagnetic material and a second, non-
magnetic (NM) conducting material, when the magnetism of
the ferromagnet (FM) precesses in time such as during fer-
romagnetic resonance (FMR). During electrical transport the
defect can become dynamically spin polarized, and its spin
manipulated, even with negligible coupling between the de-
fect and FM from a magnetic dipolar field or exchange in-
teraction. This provides a single-defect-spin example of dy-
namic spin polarization. Analysis of the current through the
device reveals the local spin character of a defect and its en-
vironment without the need of a microwave cavity. These ef-
fects, in the single-defect limit, would be detectable with a
spin-polarized scanning tunneling microscope tip undergoing
FMR, and should persist even for sequential hopping trans-
port between the tip and the defect, as well as between the
defect and the second conducting contact. A slower transport
rate between the defect and the FM provides better resolution
of the defect’s local environment, so long as the defect spin
state’s coherence time is comparable to or exceeds the electri-
cal transport rate through the junction.

Here we focus on a defect electronic structure correspond-
ing to a single orbital state and two (oppositely-oriented)
spin states, either unoccupied or singly occupied by a spin-
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FIG. 1. (a) Diagram of the energy landscape of a ferromag-
net/nonmagnetic (FM/NM) metal junction. The darker box specifies
the NM metal and the middle planes represent the two energy levels
of the defect which are separated by an on-site Coulomb energy U .
The bias pushes electrons through the junction from the NM metal
(left) to the FM (right). The vertical direction is energy whereas the
lateral directions are spatial coordinates. (b) Schematic of the spatial
orientation of various spins: the FM’s polarization, PR(t) (green ar-
row) precesses around an axis ωωωFM (black arrow). The spin of the
defect sss(t) (blue arrow) precesses in the sum of an externally ap-
plied and a local magnetic field, at a frequency ωωωd = ωωω0 +ωωω`. In
this panel ωωωd = 0. The dynamical spin polarization of the defect fol-
lows the FM’s polarization. (c) For ωωωd 6= 0 the defect spin precesses
around the static (ωFM = 0) steady state spin orientation (indicated
by the orange line).

1/2 electron. The junction is shown schematically in Fig. 1.
Transport occurs as an electron spin, of arbitrary direction,
hops from the left contact to the previously empty defect site
and singly occupies the level. The electron’s subsequent mo-
tion will then be limited depending on the orientation of its
spin relative to the majority spin polarization at the Fermi level
in the FM; if parallel then the transport is rapid, while if an-
tiparallel the transport is slower. Similar behavior will occur
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for hole spin transport, with opposite bias voltage and when
the hole hops to a defect site that is empty (of holes, and thus
doubly-occupied by electrons), or for defects with different
electronic state ordering, so long as the transport through the
defect states depends on spin. For example, a ground-state
spin-1 defect, such as a silicon carbide divacancy,14 will ex-
hibit essentially the same features as our spin-1/2 system, but
with opposite dynamic spin polarization. We focus on the case
shown in Fig. 1.

A heuristic picture helps visualize the resonance condition
for transport through the defect state during precession of the
FM’s spin polarization. The spin polarization of the FM’s
Fermi-level carriers, PPPR(t) (green arrow), precesses around an
axis ωωωFM (black arrow), depicted parallel to ẑ in Fig. 1. The
cone angle is the angle between PPPR(t) and ωωωFM . The equi-
librium polarization of the FM when not undergoing FMR is
PPPR||ẑ. The probability for a carrier at the defect to enter the
FM depends on the relative orientation of the carrier’s spin,
sss(t) (blue arrow), and PPPR(t). For the simplest picture consider
the FM to be 100% spin polarized, for which only a carrier
with some spin component parallel to PPPR(t) may tunnel into
the FM. For the case of a small FM, the FM remains as a single
domain when undergoing FMR.

The spin on the defect site, associated with the carrier, can
also precess due to the influence of an applied magnetic field
as well as a local effective field arising from hyperfine inter-
actions, exchange interactions with neighboring sites, or other
effects. The directions of precession vectors will be described
using a polar angle θ relative to ωωωFM ‖ ẑ and an azimuthal an-
gle φ relative to the x̂ axis, with a subscript corresponding to
the specific precession vector. The local field is considered to
be independent of the applied magnetic field, and causes the
defect spin to precess according to the precession vector ωωω`.
The applied magnetic field precesses the defect spin accord-
ing to the precession vector ωωω0, and the total precession will
be ωωωd = ωωω0 +ωωω`. To distinguish this precession frequency
from apparent precession due to spin filtering, the precession
frequency ωd will be referred to as the defect spin’s Larmor
frequency.

Dynamic spin polarization emerges on the defect site, and
is largest when ωωωd = 0, shown in Fig. 1(b). Under bias the
defect occupation is continually replenished, until the carrier
spin on the defect is oriented antiparallel to PPPR and no further
transport occurs until the carrier spin decoheres or the FM po-
larization changes. This spin filtering process results in the de-
fect spin tracking approximately antiparallel to PPPR(t), there-
fore blocking the current through the junction. Figure 2 illus-
trates the details of the spin-coherent effects on charge current
during FMR, beginning with an unoccupied defect spin state.
Figure 2(a) demonstrates (orange line) that sss(t) ·PPPR(t)→−1
after transient dynamics.

Figure 1(c) shows the changing dynamics for a non-
vanishing Larmor precession of the carrier spin on the defect,
and for ωωωd perpendicular to ωωωFM . For ωωωFM = 0 the defect
spin precession causes the dynamic spin polarization gener-
ated from spin filtering in transport into the FM to rotate in
the zy plane and be oriented along the orange line, which is
determined by the relative precession frequency and spin fil-

(b)

�FM t

i/
e�

R
P

R
(t

)
·s

(t
)

,

(a)

0 100 200 300 400 500

0

0.5

1

-1

-0.5

0

ωFM t

i/e
k R
,P

R
(t)
·s
(t)

(c)

!d = 0

!d = 1.1!FM

!d = !FM

✓d = ⇡/2

✓d = ⇡/2

FIG. 2. (a) Charge current [Eq. (5)] when the defect spin’s precession
frequency, ωd , is zero. The current (black line) decreases to zero as
the carrier spin at the defect (orange line) becomes polarized opposite
that of the FM. Once the defect is completely antiparallel, no further
charge can occupy or leave the defect. (bc) Charge current from two
choices of ωd , (b) non-resonant and (c) resonant, with ωωωd oriented
along the x-axis in Fig. 1. The orange curves depict the projection
of the carrier spin, s(t), onto the rotating polarization, PR(t), which
determines the current (black lines). Parameters are φd = 0, cone
angle between PPPR(t) and ωωωFM of 0.05 radians (∼ 10%), γL = 10ωFM
and γR = 0.01ωFM , PR = 1, and PL = 0. For clarity, each amplitude
is enhanced by a factor of 10.

tering rate to be

sss(t) =−2γL[γ
2
RPPPR + γRωωωd×PPPR +(ωωωd ·PPPR)ωωωd ]

(γR(1−P2
Rχ(ωωωd))+2γL)(γ

2
R +ω2

d)
, (1)

with

χ(ωωωd) =
γ2

R +(ωωωd · P̂R)
2

γ2
R +ω2

d
, (2)

where γL is the hopping rate from the left conductor to the
defect and γR the hopping rate from the defect to the FM.

For ωωωFM 6= 0 the dynamical defect spin polarization sss(t)
precesses at the frequency ωFM around the orange line, as
indicated in Fig. 1(c). Figure 2 displays the current for
this configuration off resonance [Fig. 2(b)] and on resonance
[Fig. 2(c)]. When off resonance some beating occurs in the
transient stage until the defect spin sss(t) is syncronized with
PPPR(t).15 On resonance, corresponding to ωFM = |ωωω0 +ωωω`|=
ωd , the amplitudes of the defect spin’s precession and the cur-
rent oscillations increase.
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FIG. 3. (a) Power spectra for the resonant (black) and non-resonant
(red) currents in Fig. 2, each normalized with respect to the resonant
peak. The off-resonant spectrum shows a transient peak at ωd =
1.1ωFM , in addition to a persistent peak at ωd = ωFM with width
governed by a damping rate Γ = 0.005ωFM . Integration times are 5
(dotted), 10 (dashed), and 20 (solid) ×103 ω

−1
FM . (Inset) dependence

on the integration time of the off-resonant ratio of the power at the
Larmor frequency to that at the FMR frequency (Pωd/PωFM ). (b)
PωFM versus ωd , for several angles (θd) between ωωωd and ωωωFM . PωFM

is independent of φd . Parameters are identical to those in Fig. 2.

The off-resonant power spectrum (red) of the current os-
cillations, Fig. 3(a), shows peaks at both the FMR frequency
(ωFM) and the defect spin’s precession frequency (ωd); the
peak at ωd is a transient, as shown with integration times of
5, 10, 20 ×103 ω

−1
FM , and in the inset. When on resonance

(black), ωFM = |ωωω0 +ωωω`| = ωd , s(t) and PR(t) are synchro-
nized and s(t) increases, producing larger amplitude current
oscillations. Figure 3(b) shows the dependence of the cur-
rent’s power spectrum at the FMR frequency, PωFM , on ωd for
several different orientations θd .

We now describe how the charge current through the junc-
tion during FMR is calculated including the spin-coherent dy-
namics of the defect. The current operators involving the two
contacts, from the NM contact to the defect (‘left’ current),
and from the defect to the FM (‘right’ current), are explic-
itly constructed and combined with a coherent density matrix
treatment of the carrier spin dynamics. The following ansatz
describes the ‘right’ current operator

îR(t) =
e
2

γR

[
P̂R(t)ρ(t)+ρ

†(t)P̂ †
R(t)

]
, (3)

where PR(t) is the polarization operator of the FM and ρ(t) the
density matrix of the defect’s carrier spin. The second term of
Eq. (3) ensures hermiticity. P̂R(t) = 1

2 (I+PR(t) ·σ) describes
an imperfect spin filter (P̂R(t) is not idempotent unless PR =

1).16 PPPR, determined by Tr(P̂ σ), precesses around ωωωFM and
is determined by

˙̂PR(t) =−
1
2

i
~
[~ωωωFM ·σσσ, P̂R(t)]. (4)

An analytic solution for P̂R(t) is available using an algebraic
solver. The explicit form of the matrix P̂R(t) is found in Ap-
pendix A. To account for the finite line width of the FMR,
the power spectrum is convolved with a Lorentzian function
of width Γ. A description of the convolution is found in Ap-
pendix B.

îR represents the movement of charge combined with spin
information encoded in the matrix elements. Charge (spin)
current is iR = TrîR (iiis,R = TrîRσσσ). The right charge current
once the defect site is filled,

i = Tr(îR) =
1
2
(1+ sss(t) ·PPPR(t))eγR, with sss = Tr(ρσσσ), (5)

which illustrates the dependence of the current on the relative
alignment of the defect spin and FM’s polarization. For γL�
γR the defect state is predominately filled. For a spin-polarized
contact that is an STM tip, the tip can be moved away from the
impurity until γL� γR. The amplitude of current oscillations,
for small cone angles and γL� γR, scales as P2

R.
The ‘left’ current (NM contact to defect) can be derived in

a similar fashion after constraining the defect to be at most
singly occupied. For a left conductor with a static magnetiza-
tion,

îL(t) = eγL[1−Trρ(t)]P̂L, (6)

where P̂L =
1
2 (I+PL ·σ) is the polarization operator of the left

conductor. This formalism can be generalized to include dy-
namic magnetization of the left conductor, although here we
present results only for a NM, i.e. PL = 0. Charge conserva-
tion demands that the ‘left’ current be the same as the ‘right’
current for a time-independent PPPR(t) or when the current is
averaged over a precession period of PPPR(t), so TrîL = TrîR.

Construction of the defect density matrix ρ(t) consistently
connects the currents and determines their sensitivity to spin
and applied magnetic fields. The stochastic Liouville equation
is suited well for this type of problem,17,18 so

ρ̇(t)=− i
~
[H ,ρ(t)]−γR{P̂R(t),ρ(t)}+2γL[1−Trρ(t)]. (7)

The first term of Eq. (7) produces the coherent evolution of
the spin, the second term (curly braces are anti-commutators)
the spin-selective nature of tunneling into the FM. The last
term describes hopping onto the defect site from the left con-
tact. H = (~/2)ωωωd ·σσσ is the spin Hamiltonian at the defect
site. In typical insulators the localization length of the defect’s
wave function is wide enough to encompass a large number of
randomly oriented nuclei, so a local hyperfine field ωωω` can be
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accurately approximated as a classical vector. The spin den-
sity matrix is obtained from a numerical solution to Eq. (7),
and the current from either Eq. (3) or Eq. (6).

Although the resonances always occur when ωFM = ωd , in-
dependent of precession axis direction, it is possible to deter-
mine ωωω` by measuring ω0 at resonance, for several different
directions of ωωω0, as ω0 at resonance will vary with direction
from ωFM−ω` to ωFM +ω`. In Fig. 4(a) the current’s power
spectrum at the FMR frequency, PωFM , is shown as a func-
tion of ω0 for three different directions of ωωω0, for an example
hyperfine local field ωωω` = (−0.3,0.1,0.2)ωFM . This theory
applies also to two independent defects through which paral-
lel currents run. Fig. 4(b) displays sweeps of ω0 at θ0 = π/2
and three different φ0, similar to the single defect scenario.
Now resonances occur at two different applied fields for each
sweep. Further description of the resonant detection is located
in Appendix C. These resonant features are not contingent on
θ0 = π/2 but remain for θ0 < π/2.
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FIG. 4. (a) Plots showing the integrated current at ωFM when the ap-
plied field, ω0, is swept. Resonances occur when ωd = |ωωω0 +ωωω`|=
ωFM . Here ωωω` = (−0.3,0.1,0.2)ωFM . (b) Two resonance features
appear when two defects are probed. Each colored curve corresponds
to an independent sweep of the magnetic field in the x− y plane at
an angle φ0. For the two defects, ωωω`,1 = (−0.3,0.1,0.2)ωFM and
ωωω`,2 = (0.4,0.1,−0.1)ωFM . Curves in (a) and (b) are normalized to
the highest peak and labeled by the applied field’s azimuthal angle
φ0. Parameters are identical to those used in Fig. 3.

ωFM is fixed in Figs. 3(b) and 4 as ω0 varies. For a fer-
romagnetic thin film with the easy axis of the contact in the
film plane, the component of the applied magnetic field along
the hard axis, if sufficiently small, does not influence ωωωFM
but does change ωωω0 and ωωωd . We assume the magnetic field
component along the hard axis is varied in order to vary ωωωd
leaving ωωωFM fixed.

The relevant timescale for differential precession of the
carrier spin and the FM is the timescale for hopping from
the defect to the FM. For typical scanning tunneling mi-

croscopy measurements with currents of 0.1− 30 nA,19 the
timescale for hopping from a defect to a ferromagnetic tip
would be 0.05–1.6 ns. For spins on the defect coherent on
this timescale, which is known to be the case for many ex-
amples of localized spins,20 the features described here will
emerge. By comparing this hopping time to the precession
time of the carrier spin on the defect in a local magnetic field,
the sensitivity to local fields can be estimated to be of the or-
der of ∼ 10 mT, characteristic of hyperfine fields for many
types of defects. Local fields in the range of 1-100 mT corre-
spond to FMR frequencies ωFM = 0.1−10 GHz which is not
an uncommon range for a wide range of materials.21 Smaller
currents will improve sensitivity to ωωω`.

Spin-coherent evolution of a carrier spin at a defect pro-
duces resonant features in the charge conductivity of a ferro-
magnet/insulator/nonmagnet junction. From this, small num-
bers of defects, or a single defect, can be identified by matches
between the ferromagnetic resonance frequency of a contact
and the local precession of the spin(s) of the defect(s). The ap-
proaches described here would also permit the preparation of
specific desired defect spin states through appropriate choices
for the ferromagnet’s precession frequency, leading to con-
trolled studies of the coupled dynamics of two coherent spins.
We have purposely chosen small currents in our model to
mimic tunneling between the defect and a spin-polarized scan-
ning tunneling microscope. An interesting extension would
be to investigate larger currents where spin-torque effects be-
tween the defect spin and FM become important.
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Appendix A: Ferromagnet Polarization Dynamics

The matrix describing the evolution of the ferromagnet’s
polarization is P̂R(t) which can be determined by solving Eq.
(4) of the main text which we rewrite here:

˙̂PR(t) =−
1
2

i
~
[~ωωωFM ·σσσ, P̂R(t)]. (A1)

In general ωωωFM has spherical angle coordinates (α,β) and PPPR
is initially pointed in the direction (α0,β0). The full solution
is too large to express here but can be determined with a com-
puter solver such as Mathematica.

The form reduces considerably for certain values of the an-
gles. For α = β = β0 = 0 (which we assume throughout the
main text), the cone angle between PPPR(t) and ωωωFM is α0, and

P̂R(t,α→ 0,β→ 0,β0→ 0) =
1
2

(
1+ PRv

2 PRu
PRu∗ 1− PRv

2

)
(A2)

where v = 2cos(α0) and u = sinα0(cosωFMt− isinωFMt).
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The polarization vector is found through the standard relation
Pi = TrσiP̂R(t):

PPPR = PR

 sinα0 cos(ωFMt)
sinα0 sin(ωFMt)

cosα0

 .

Appendix B: Power spectrum convolution

Equation (1) here gives a single ferromagnetic resonance
(FMR) frequency whereas the FMR spectrum has a line width
in actuality. The line width of the resonant peak in the power
spectrum (Fig. 3 (a) in main text) is governed by the FMR line
width, Γ. To account for the finite FMR line width we con-
volve the pure power spectrum with a Lorentzian line shape.
If p∗ is the raw power spectrum, then

p(ω) =
∫

∞

−∞

p∗(y)
Γ2

Γ2 +(y−ω)2 dy (B1)

is the power spectrum displayed in Fig. 3 (a) of the main text.
Γ = 0.005ωFM is taken as the FMR line width. The power at
the frequency ωFM is PωFM = p(ωFM).

Appendix C: Determining Local Field using the Resonance
Condition

As ω0 is swept, resonances may occur in the range ωFM−
ω` to ωFM +ω`. These bounds are found by solving for ω0

using the resonance condition ω2
FM = ωωωd ·ωωωd = ω2

0 +ω2
` +

2ωωω0 ·ωωω`.

The three ‘measurements’ of Figure 4(a) yield three differ-
ent resonance conditions which can be used to ascertain the
magnitude of each local field component via the resonance
condition

ω
2
FM = (ωωω0 +(ω`,x,ω`,y,ω`,z)) · (ωωω0 +(ω`,x,ω`,y,ω`,z)).

(C1)
The sign of ω`,z is ambiguous, but a fourth measurement with
the applied field slightly canted out of the x− y plane can re-
solve the sign. To do so may force ωFM to change linearly
with ω0 in which case the resonance conditions would change.
However we do not expect the magnitude of ωFM to vary
strongly with ω0 if the angle of inclination is small so, for
simplicity, we assume ωωωFM to be constant in this case as well.

For two or more defects the process is identical to that of a
single defect once each peak is assigned to a specific defect.
The defect assignment is possible since the peak for a particu-
lar defect can be tracked as the azimuthal angle is changed for
each measurement.
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