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In the presence of a finite interlayer displacement field bilayer graphene has an energy gap that
is dependent on stacking and largest for the stable AB and BA stacking arrangements. When the
relative orientations between layers are twisted through a small angle to form a moiré pattern,
the local stacking arrangement changes slowly. We show that for non-zero displacement fields the
low-energy physics of twisted bilayers is captured by a phenomenological helical network model
that describes electrons localized on domain walls separating regions with approximate AB and BA
stacking. The network band structure is gapless and has of a series of two-dimensional bands with
Dirac band-touching points and a density-of-states that is periodic in energy with one zero and one
divergence per period.

I. INTRODUCTION

The electronic structure of bilayer graphene is sensi-
tive to strain, interlayer potential differences, and the
stacking arrangement between layers [1, 2]. For the en-
ergetically favored Bernal stacking configurations, either
AB or BA, Bloch states have 2π Berry phases, quadratic
band-touchng, and a gap that opens when a displacement
fields is applied by external gates. The gapped state
is characterized by nontrivial valley-dependent Chern
numbers and supports topological confinement of elec-
trons on domain walls that separate regions with oppo-
site signs of displacement field [3–6] or different stacking
arrangements [7–9]. The presence of confined electronic
states, which occur in helical pairs with opposite prop-
agation directions in opposite valleys, has [10–12] been
confirmed experimentally. Control of these domain walls
and of their intersections has attracted attention recently
[13–18] because of its potential relevance for valleytron-
ics [19].

While engineering of a network of helical states with
tunable geometry is a challenging problem, the network
of helical domain walls states localized on the links of a
triangular lattice expected in misoriented graphene bilay-
ers [20–41] has in fact been observed very recently [42].
In the presence of a twist local stacking arrangement
changes slowly in space in a periodic moiré pattern in
which regions with approximate AB and BA stacking are
separated by domain walls with helical states. The mea-
sured local density of states at a domain wall is strongly
energy dependent with a single peak within the gap, that
demonstrates the importance of an interference between
helical states propagating along network. Because the
moiré pattern is well developed only when its period
greatly exceeds graphene’s lattice constant, theories of
its electronic structure [43, 44] often employ complicated
multi-scale approaches to advantage.

In this Letter, we derive a phenomenological helical
network model for the electronic structure of gated bi-
layer graphene moirés valid in the energy range below
the AB and BA gaps where only topologically confined

FIG. 1. Helical model band structure over half of the rhombic
Brillouin zone (BZ) defined in Fig. 3-(c). The bands in the
other half of the BZ can be obtained by the reflection. The
model’s band energies εn0

q are given by Eq. (11) and depend
on a single controlling parameter α which was set to α = 1.1
in this illustration. The bands touch at Dirac points located
at high symmetry K, K′ and Γ points.

domain wall states are present. The model is related
to Chalker-Coddington type models [45–47] introduced
in theories of the quantum Hall effect. The spectrum
of the network model consists of a set of minibands con-
nected by Dirac band touching points, which repeats and
is gapless. A single period of the model’s band structure
is illustrated in Fig. 1.

II. DOMAIN WALL NETWORK

To describe the electronic structure of gated bilayer
graphene with a small twist angle θ . 1◦ [48] between
layers, we start from the continuum model Hamiltonian
derived in Ref. [20], which is valid independent of atomic
scale commensurability

H0 =

(
vσtp− u T (r)
T+(r) vσbp + u

)
. (1)

The Hamiltonian for a valley K acts in the sublattice
space ψ = {ψt

A, ψ
t
B, ψ

b
A, ψ

b
B}, where t and b refer to
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FIG. 2. Spatial distribution of the the gap parameters in Eq.(4): (a) the gap minimum δ−; (b) the angle θ(r) which specifies the
direction in momentum space at which minima are achieved; (c) the gap maximum δ+. The dashed lines highlight the network
of domain walls that separate regions in which the hybridization is dominated by TAB from regions in which it is dominated
by TBA.

the top and bottom layer, v is the single-layer Dirac
velocity; σt(b) is the vector of Pauli matrices rotated
by the angle ±θ/2 in top and bottom layers, and 2u
is the potential difference between layers produced by
the gates. The spectrum is valley and spin independent,
while electronic states in two valleys K and K ′ trans-
form to each other by the time-reversal transformation.
The sublattice-dependent inter-layer hopping operator is
given by

T (r) =
w

3

3∑
i=1

e−ikir Ti, (2)

where w is a hybridization energy scale. The vectors
k1 = −kθey, k2,3 = kθ(±

√
3ex + ey)/2 all have magni-

tude equal to the twist-induced separation between the
Dirac points of the two-layers, kθ = 2kD sin(θ/2) where
kD = 4π/3a0 is the magnitude of the Brillouin-zone cor-
ner vector of a single layer and a0 is the corresponding
Bravais period. The matrices Ti are given by

T1 =

(
1 1
1 1

)
, T2 =

(
e−iζ 1
eiζ e−iζ

)
, T3 =

(
eiζ 1
e−iζ eiζ

)
,

with ζ = 2π/3. The diagonal matrix elements of the
hopping operator are identical, TAA = TBB ≡ Td, and
correspond to tunneling between atoms on the same sub-
lattice, while the off-diagonal matrix elements TAB and
TBA correspond to the tunneling between opposite sub-
lattices. Their spatial dependence is periodic with the
period of the moiré pattern L = a0/(2 sin(θ/2)).

The network model we derive has its widest range of
applicability in the large gate voltage regime εL � u ∼ w
where εL = 2π~v/L is the energy scale of the network
mini-bands, as we explain below. When hybridization is
neglected the conduction band of the low-potential top

layer and the valence band of the high-potential bottom
layer intersect on a circle of radius pu = u/v. After pro-
jection of the full four band Hamiltonian (1) to these
bands we find that

H =

(
v(p− pu) tP + tS
t∗P + t∗S −v(p− pu)

)
. (3)

where v(p−pu) is the isolated conduction band dispersion
of the top layer, −v(p − pu) is the valence band disper-
sion of the bottom layer. In Eq. (3) we have separated the
tunneling matrix element into two parts, an anisotropic
part with p-wave symmetry tP(φp, r) = [TBAe

−iϕp −
TABe

iϕp ]/2, where ϕp is the direction of a momentum
p, and an isotropic part tS(r) = −iTd(r) sin(θ/2) inde-
pendent of ϕp that can be neglected [49] for θ � 1. The

resulting local spectrum εp± = ±
√

(vp− u)2 + ∆2
p has

an anisotropic gap

∆2
p = δ2

− cos2[ϕp −Θ] + δ2
+ sin2[ϕp −Θ]. (4)

which achieves minima |δ−| = |(|TAB| − |TBA|)/2| at mo-
mentum orientations ϕI = Θ and ϕII = Θ + π, where
Θ(r) = (arg[TBA] − arg[TAB])/2. The gap is maximized
at δ+(r) = (|TBA| + |TAB|)/2 at the two perpendicular
orientations. The spatial distributions of these quantities
are illustrated in Fig. 2 where the domain walls clearly
appear as change in sign of δ−.

It follows from the preceding analysis that the gap in
the local electronic spectrum (4) closes if |TAB| = |TBA|.
This condition is satisfied along the domain walls speci-
fied by dashed lines in Fig. 2-(a), where we illustrate the
spatial pattern of δ−(r). The domain walls separate re-
gions where the inter-layer hybridization is dominated by
the TAB from regions in which it is dominated by TBA.
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The local valley Chern number of Hamiltonian (3)

C =

∫
dp

4π
d

[
∂d

∂px
× ∂d

∂py

]
=

δ−
|δ−|

, (5)

where d = h/h and the vector h is defined by the Pauli
matrix expansion of Eq. (3), H = (σ · h). The local ap-
proximation for the electronic structure calculates local
quantities from the local continuum model band Hamil-
tonian, and the corresponding momentum space integra-
tion is therefore over the full momentum space, and not
over the Brillouin zone of the moiré pattern. The val-
ley Chern number difference across the domain wall is
CAB −CBA = 2, guaranteeing that two helical electronic
channels are present in the gaps per valley and per spin.

In the vicinity of each domain wall the low-energy
states are concentrated around the minima located at
orientations ϕI(II), which are perpendicular to the do-
main wall as illustrated in Fig. 2-(b). By expanding the
Hamiltonian (3) in the vicinity of these minima, making
a unitary transformation to place the mass terms on the
diagonal, we are able to write the Hamiltonian as the sum
of two identical anisotropic Dirac cones with the spatially
dependent mass δ−(r⊥):

HD =

(
δ−(r⊥) vp̂⊥ − iv||p̂||

vp̂⊥ + iv||p̂|| −δ−(r⊥)

)
. (6)

Here we have promoted the momenta to be operators,
letting p → pu + p̂⊥ and δ+φp → v||p̂||. The veloc-
ity for momenta p̂⊥ perpendicular to the domain wall is
the single-layer graphene Dirac velocity v. The velocity
for momenta p̂|| along the domain wall and Dirac mass
δ−(r⊥) are approximated by their values at the domain
wall center as follows

v|| =
δ+
pu
≈ 2wv

3u
, δ− ≈

√
3w sin

(
2πr⊥√

3L

)
. (7)

Each Dirac point carries one half of the valley Chern
number CD = δ−/2|δ−|, and is responsible for a single he-
lical state. The Dirac mass δ−(r) changes sign across the
domain wall and Eq.(6) therefore has a Jackiw-Rebbi [50]
solution that describes helical electronic states with dis-
persion εp|| = v||p||, and wave function up to the normal-
ization factor is given by

ψp||(r⊥) =

(
1
i

)
exp

[
i
p||r||

~
− wL

π~v
sin2

(
πr⊥√

3L

)]
, (8)

The center of AB/BA region, where wave functions of he-
lical states from different domain walls overlap, are dis-
tanced at length r0

⊥ = L/2
√

3 from them. The domain
wall network is well developed if the overlap of wave func-
tions |ψp||(r0

⊥)|2|/|ψp||(0)|2 = exp[−w/εL] � 1 is weak.
Here εL = 2π~v/L is the character energy scale of the
moiré pattern.

These helical states are the only electronic degrees of
freedom present when |ε| � u,w. Three sets of parallel
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FIG. 3. (a) Elementary cell of the network. The wavefunction
amplitudes are links 1, 2 and 3 are ψij =

{
ψ1

ij , ψ
2
ij , ψ

3
ij

}
. (b)

Node with three incoming and three outoing channels charac-
terized by the scattering matrix Ŝ. (c) First Brillouin zone of
the network in hexagonal and rhombohedral representations.

domain walls with orientations differing by 120◦ surround
AB and BA regions and intersect at a set of points with
local AA stacking. The considerations we have discussed
to this point establish the physical picture we use to mo-
tivate our phenomenological helical network model for
domain wall states.

III. PHENOMENOLOGICAL NETWORK MODEL

Our phenomenological helical network model consists
of the links and nodes illustrated in Fig. 3-(a) and (b),
which connect to form the domain wall pattern. We as-
sume ballistic propagation along links and scattering only
at nodes. The dispersion law along links, εq = v||q, is con-
sistent with the Jackiw-Rebbi confined mode solution.
For εL � w . u, the two Dirac cones on opposite sides
of the ring at ϕI and ϕII are well separated in momentum
space, allowing scattering between them to be neglected.
This simplification allows us to consider a network with
a single helical channel per link.

The full domain wall network can be constructed by
placing the set of three elementary nodes on a tri-
angular lattice with elementary lattice vectors l1,2 =
L(±
√

3ex+ey)/2. The wavefunction amplitudes on links
1, 2 and 3 of the cell centered at Rij = il1 + jl2 are illus-
trated in Fig. 3-(a) and denoted by ψij =

{
ψ1
ij , ψ

2
ij , ψ

3
ij

}
.

Each node has three input and three output channels
and therefore has a 3 × 3 unitary scattering matrix Ŝ
whose detailed form depends in a complex way [51] on
the spatial profile of the domain walls intersection. We
follow a simpler phenomenological approach. By observ-
ing that the straight-forward scattering amplitude mag-
nitudes |S11| = |S22| = |S33| and the 240◦ deflection
scattering amplitudes |S12| = |S13| = |S21| = |S23| =
|S31| = |S32| must be equal due to symmetry, it fol-
lows that the unitary matrix T can be parametrized by
an angle α ranging between 0 and αM = arccos[1/3],
and 6 phases φS, φ

R
1 , φ

L
1 , φ

R
2 , φ

L
2 , φ3 ranging between 0

and 2π: S = eiφTSL
φ S̄S

R
φ , where φS is the average

phase shift; SL
φ = diag[ei(φ

R
2 +φR

1 +φ3), e−iφ
L
2 , e−iφ

L
1 ] and
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SR
φ = diag[ei(φ

L
2 +φL

1−φ3), e−iφ
R
2 , e−iφ

R
1 ] are phase shifts be-

fore and after scattering, which are not independent, and
S̄ is the unitary matrix

S̄ =


cos(α)eiχ sin(α)√

2

sin(α)√
2

sin(α)√
2

− 1+cos(α)e−iχ

2
1−cos(α)e−iχ

2
sin(α)√

2

1−cos(α)e−iχ

2 − 1+cos(α)e−iχ

2

 . (9)

Here χ = arccos[{3 cos2(α) − 1}/2 cos(α)]. The elec-
tron flow conservation requires Pf + 2Pd = 1, where
Pf = cos2(α) and Pd = sin2(α)/2 are probabilities of
an electron to be scattered to forward and two symmet-
ric deflected channels. They are parametrized only by

the angle α and are independent of scattering phases.
To find the electronic spectrum of the network we fol-

low the tranfer matrix approach. The outgoing ψout

and incoming ψin electronic waves with energy ε at any
node are connected by ψout = e−iφE Ŝψin, where ψout =
(ψ1
i+1,j , ψ

2
i,j−1, ψ

3
i,j) and ψin = (ψ1

i,j−1, ψ
2
i,j , ψ

3
i+1,j). Here

φE = εL/~v|| is the dynamical phase accumulated by
electrons while propagating between links. Bloch’s theo-
rem connects wave function amplitudes in different cells
by ψij = eiqRij ψ̄, where ψ̄ ≡ {ψ̄1, ψ̄2, ψ̄3} and q is the
moiré momentum. The connection between input and
output waves can be rewritten as [λ−Uq]ψ̄ = 0, and has
a nontrivial solution only if λ = ei(φE−φT) is equal to one
of eigenvalues of the matrix

Uq =


cosαei(χ+φR

1 +φR
2 +φL

1 +φL
2−ql1−ql2) sinα√

2
ei(φ

R
1 +φ3−ql1) sinα√

2
ei(φ

R
2 +φ3)

sinα√
2
ei(φ

L
1−φ3) − 1+cosαe−iχ

2 ei(ql2−φ
R
2 −φ

L
2 ) 1−cosαe−iχ

2 ei(ql1+ql2−φR
1 −φ

L
2 )

sinα√
2
ei(φ

L
2−φ3−ql2) 1−cosαe−iχ

2 e−i(φ
R
2 +φL

1 ) − 1+cosαe−iχ

2 ei(ql1−φ
R
1 −φ

L
1 )

 . (10)

It should be noted that the network spectrum can be
approached within discrete evolution method [46], and
the matrix Uq plays the role of the discrete evolution
operator. Its three eigenvalues λnq are labeled by n =
−1, 0, 1 and correspond to three bands that periodically

repeat with energy ε
||
L = 2π~v||/L and are given by

εnmq = ε
||
L

(
arg[λnq]

2π
+
φT

2π
+m

)
. (11)

The phase φT just results in a rigid shifts of all bands in
energy, while m is integer and ensures their periodicity.
The energy periodicity of the electronic structure is a
feature of network models that distinguishes them from
standard tight-binding models.

Since the matrix Uq is also unitary U+
q = U−1

q and
det[Uq] = 1, its eigenvalue problem can be written in a
compact way

λ3
q − tr[Uq]λ2

q + tr[U+
q ]λq − 1 = 0. (12)

The electronic spectrum therefore depends only on the
trace of the matrix Uq that is given by

tr[Uq] = cos(α)eiχei(Φ1+Φ2−ql1−ql2)

−1

2

[
1 + cos(α)e−iχ

] [
ei(ql1−Φ1) + ei(ql2−Φ2)

]
.

(13)

Here we have introduced phases Φ1 = φL
1 + φR

1 , Φ2 =
φL

2 + φR
2 . These phases Φ1 and Φ2 can be eliminated by

the shift of the momentum space origin, and therefore
do not influence the density of states of the network and
electronic transport through it. The latter remarkably

depend only on α, which in turn characterizes the dis-
tribution of scattering probability between forward and
deflected channels.

It has been numerically shown [52] that, contrary
to classical intuition, because nearby paths have larger
wavefunction overlap with the incoming electron, deflec-
tion is the more likely outcome. For presentation of re-
sults we chose α = 1.1 corresponding to probabilities
Pf ≈ 0.2 and Pd ≈ 0.4. We also use the set of phases
φT = Φ1 = Φ2 = (π − 2 arcsin[3 sinα/2

√
2])/3 that en-

FIG. 4. The energy dependence of the density of states ν(ε)
per valley, spin and per Dirac point in the ring. It has three
dips and three maxima separated from each other by ∆εD =

ε
||
L/3. The primer correspond to Dirac points, while the latter

to saddle points of the moiré pattern band structure presented
in Fig. 1. The corresponding scale for the density of states is

νL =
√

3π/ε
||
LL

2 .
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sures the discrete rotational symmetry of the network
respect to 120◦ around any node.

The first Brillouin zone of the network has a hexag-
onal shape and is illustrated in Fig.3-c where we also
illustrate an equivalent rhombic primitive cell. The spec-
trum has the mirror symmetry across the KK′ line since
tr[UqM−qx,qy ] = tr[UqM+qx,qy ], where qM = 2πex/

√
3L is

the position of the M-point in the Brillouin zone. A sin-
gle period εn0

q of the repeating band structure is plotted
in the half of the rhombic Brillouin zone in Fig. 1, where
we see that it is gapless because of Dirac band touching
points situated in Γ, K, and K′ high symmetry points.
They are separated by momentum ∆kD = 4π/3L and

energy ∆εD = ε
||
L/3. The density of states of the network

is presented in Fig. 4 and is periodic with period ∆εD.
It is three time smaller than the period of the network

band structure ε
||
L, that reflects the symmetry between

three links in an elementary cell of the model. The sin-
gle period contains one zero at the Dirac point, and one
saddle-point logarithmic divergence. The latter reflects
the van Hove singularity due to the presence of saddle
points in the network band structure, which are clearly
visible in Fig. 1.

The gapless nature of the electronic spectrum of the
network originates from its triangular symmetry. The
momenta and energies of Dirac points are independent on
α. Really, the discriminant D = 27+4tr[Uq]3 +tr[U+

q ]3−
18|tr[Uq]|2 − |tr[Uq]|4 = 0 of the cubic eigenvalue prob-
lem (12) vanishes in Γ, K, and K′ high symmetry points
for any α. Moreover the Dirac velocity in the vicinity
of these points vD = v||/2 is also α independent. The
latter determines the positions and strength of van Hove
singularities of the network density of states.

IV. DISCUSSIONS

The helical network model proposed here describes the
electronic structure of twisted bilayer graphene in the
regime of small twist angles and large strong displace-
ment field. Recently it has been argued that there is
a separate regime in graphene bilayers that can be also
be described a honeycomb lattice network model [55]. In
that case the network is not helical and does not require a
displacement field, and is dependent instead on a special
large twist angle close to commensuration.

Previous numerical calculations have addressed the
electronic properties of twisted bilayer graphene in the
same regime studied here [43], and have discovered a set
of sharp features in the density of states which are nearly
periodic in energy. For the case of twist angle θ = 0.2◦

and potential difference between layers 2u ≈ 180 meV,
the numerical features are separated by ∆εD ≈ 21 meV.
Because the circumstance studied numerically are not
fully in the regime in which our network model applies,

our expressions for v|| do not apply. If we make the ap-
proximation v|| ≈ v, we find ∆εD ≈ εL/3 ≈ 20 meV, in a
good agreement with the numeral calculations. Although
further numerical work is necessary to fully test our the-
ory, this comparison does seem to suggest that it provides
an explanation for the unexpected set of density-of-states
peaks in Ref. [43].

In a recent experiment [42] a small twist-angle θ =
0.245◦ has been applied between layers to produce moiré
patterns with period L ≈ 58 nm. The resulting energy
scale of the pattern εL = 2π~v/L ≈ 72 meV is compa-
rable with the gap induced by the applied displacement
field, εg ≈ 60 meV. Again our model, which predicts a
periodic set of density-of-states peaks, is not fully appli-
cable. At this relatively small displacement field, only
one density-of-states feature has been observed within
the gap [42]. For the largest gaps εg ≈ 250 meV achiev-
able in bilayer graphene [53, 54], our model applies over
a wide range of energies. Using the hybridization energy
w = 400 meV [1] we estimate that the velocity of helical
states v|| = 1.6 106 m/s is larger than the velocity of
electrons in graphene v = 106 m/s. The period of the

network is equal to ε
||
L ≈ 115 meV and the the period of

the density of states ∆εD ≈ 38 meV. Because the density
of states period is much smaller than the gap, we expect
a set of features due to van Hove singularities of network
spectrum to be well resolved in experiments. Alterna-

tively, the condition ε
||
L � εg can be achieved at smaller

twist angles θ.
The electronic band structure of twisted graphene bi-

layer in the absence of a displacement field is very sensi-
tive to a twist angle θ, with vanishing Dirac velocities and
flat moiré bands emerging at a set of magic angles. [20].
We predict that magic angle behavior is absent at strong
displacement fields. Instead the only low-energy degrees
of freedom are helical states propagating along domain
walls separating regions of different stacking. When the
domain wall network is well developed the low energy
part of its band structure is universal and weakly de-
pend on θ, apart from the twist angle dependence of the
energy scale εL.

To conclude, we have introduced a new phenomeno-
logical network model that captures the electronic struc-
ture of twisted bilayer graphene with a large displace-
ment field in the energy range below the AB and BA
gaps where only topologically confined domain wall states
are present. Motivated by the recent observation of the
domain wall network in STM experiments [42] we have
focused on its band structure and density of states. Very
recently signatures of the network formation have been
found in magneto-transport experiments [56], which can
be addressed theoretically using the model developed in
this work.

This material is based upon work supported by the De-
partment of Energy under Grant No DE-FG02-ER45118
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