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We investigate the quantum mechanical origin of resistive phase transitions in solids driven by a
constant electric field in the vicinity of a metal-insulator transition. We perform a nonequilibrium
mean-field analysis of a driven-dissipative symmetry-broken insulator, which we solve analytically
for the most part. We find that the insulator-to-metal transition (IMT) and the metal-to-insulator
transition (MIT) proceed by two distinct electronic mechanisms: Landau-Zener processes, and the
destabilization of metallic state by Joule heating, respectively. However, we show that both regimes
can be unified in a common effective thermal description, where the effective temperature T,g
depends on the state of the system. This explains recent experimental measurements in which the
hot-electron temperature at the IMT was found to match the equilibrium transition temperature.
Our analytic approach enables us to formulate testable predictions on the non-analytic behavior
of I-V relation near the insulator-to-metal transition. Building on these successes, we propose an
effective Ginzburg-Landau theory which paves the way to incorporating spatial fluctuations, and to
bringing the theory closer to a realistic description of the resistive switchings in correlated materials.

PACS numbers: 71.27.+a, 71.10.Fd, 71.45.Gm
I. INTRODUCTION

Phase transitions driven by out-of-equilibrium condi-
tions is one of the most fascinating and challenging topics
of modern condensed matter. The phenomenon of resis-
tive switching (RS) refers to the sudden massive drop
of resistivity experienced by many insulating materials
when subject to a voltage bias or to an electric field.
RS materials, from semiconductors to transition-metal
compounds with wide-ranging insulating energy gapst,
have different physical mechanisms for the switching and
the physical origin for the phenomena has been intensely
debated. Transition-metal oxides and transition-metal
chalcogenides belong to a group with the insulating gap of
order 1 eV and surprisingly small switching electric field
of 1 ~ 10 kV/cm, and the RS transitions are often as-
sociated with metal-insulator transitions in equilibrium.
The insulator-to-metal transition (IMT) on an up-sweep
of the electric field and the metal-to-insulator transition
(MIT) on the down-sweep take place at much different
electric field scales, resulting in hysteretic I-V charac-
teristics. The growing interest for this phenomenon over
the last decades has been stimulated by the perspective
of designing logic devices for digital computation™, In
particular, memristor physics has turned into a full-blown
research effort to create novel reliable non-volatile logic
devices such as the artificial neural networks out of Mott
insulators®.

In addition to its appeal for applied physics, resis-
tive switching is a fundamental physics problem, as a
prototypical nonequilibrium phase transition of quantum
many-body systems. Despite its importance, the the-
oretical understanding of RS has remained unsatisfac-

tory. A rather successful heuristic approach is the re-
sistor network theory™@ 8 which models the materials
by a classical network of resistors with empirical electric
and thermal properties, and where an electric filament
can percolate across the insulating matrix. However, the
vast diversity of the systems displaying RS, from intrin-
sic semiconductors to transition metal compoundst, pos-
sibly through various microscopic mechanisms, together
with the formidable theoretical difficulty in solving the
nonequilibrium dynamics of quantum many-body sys-
tems, are to be blamed for our current lack of a uni-
fying quantum theory of RS. It is only recently that the
community has started developing the methodologies to
combine strong electronic interactions and nonequilib-

rium drives?.

In the past few decades, the theory of quantum
nonequilibrium dynamics in general has made impor-
tant progress. Far-from-equilibrium transport the-
ory has found countless applications in nano-junctions,
based on the Landauer-Biittikker formalism!. Recently,
stimulated by progress in ultrafast measurement tech-
niques™* . the relaxation dynamics of electrons at the
femto-second scale has been extensively studied in solids
and optical lattices'®. The general idea behind our work
is rather to understand how the electronic state continu-
ously evolves away from equilibrium when a steady finite
electric field is adiabatically turned on. Our strategy
in this work is to focus on the subclass of RS materials
where the resistive transition is controlled by an order
parameter and to provide a basic theoretical framework
for nonequilibrium phase transitions.

Quantum phase transitions driven out of nonequilib-
rium™ 19 is a fascinating subject. Perturbative studies



starting from a metallic state under a DC fieldl%12 have
exposed the importance of Joule-heating, whereby the
electric field acts as an effective temperature. This has
lead to classify RS in the same universality class as the
continuous Ising transition that characterizes the equi-
librium paramagnetic-to-anti-ferromagnetic transition at
the Néel temperature. In contrast to the previous ef-
forts, we investigate the insulator-to-metal RS and find a
discontinuous nonequilibrium phase transition, in stark
differences with the Ising class.

We study here insulating transition-metal oxides or
transition-metal chalcogenides with a relatively small
bandgap, Ay < 1 eV, and for which the measured switch-
ing fields are in the range of Eyyt ~ 1 — 10 kV/cm. RS
in those correlated insulators poses two major puzzles:
(1) the typical switching field (or voltage drop per unit
cell) is sub-meV, much smaller than the bandgap, there-
fore incapable of turning the insulator band structure
into a metal, (2) there is a controversy over the nature
of the underlying mechansim: electronict22%2l v ther-
mal?225 scenarios.

The electronic scenarios support the idea that the
RS is due to the electric-field driven acceleration of the
electrons which triggers a sudden change of the elec-
tronic transport properties. Various ideas such as the
formation of in-gap states?0"2? Tandau-Zener tunnel-
ing®U31l avalanches of impact ionization events®) and
multi-band interacting model?!! have been proposed to
resolve the aforementioned energy-scale problem. On the
other hand, the thermal scenarios support the idea that
the electronic current created by the electric field causes
an overall temperature increase via Joule-heating, essen-
tially bringing the system to undergo a thermally-driven
equilibrium phase transition rather than a truly nonequi-
librium phase transition. Such a mechanism would be
effective in overcoming the large energy gap discussed
above, but it is considered to require a long time to build
up the necessary temperature, in contradiction with the
fast switching times of RS. Altogether, the experimental
evidences give partial support to each scenario and the
debates between the two camps have remained inconclu-
sive for decades.

In this work, we analytically elucidate the above puz-
zles and explain how the electronic and thermal scenar-
ios are in fact different sides of the same coin, by solv-
ing explicitly the case of an ordered insulator driven by
an electric field. Our scenario consists in the electric
field FE effectively coupling to the order parameter A via
a state-dependent effective temperature, Tog(A). Ulti-
mately, this sets the small energy scale of the switching
fields, and yields testable predictions on the critical scal-
ing of the I-V curves at the IMT.

We work with a model of a driven-dissipative quan-
tum anti-ferromagnet that we have recently identified in
Ref52 as a minimal model for RS. A similar model had
already been introduced and studied in the pioneering
work of Sugimoto et al33. The numerical study of the
nonequilibrium steady states in Ref2 showed that it re-

produced most of the experimental features of RS, such
as the existence of a bi-stability region between of the
metallic and insulating solutions, the S-shaped I-V char-
acteristics, the formation of hot metallic filaments across
the sample whose dynamics are responsible for a nega-
tive differential-resistance*343°, Although much insight
could be gained from the numerics, a comprehensive and
unambiguous analytic understanding for the inner work-
ings of the results was needed.

The paper is organized as follows. In Section II, we
start off with a simple single-band metal subject to an
electric field and dissipative medium at zero temperature.
We compute the Keldysh Green’s functions (GFs) in the
nonequilibrium steady state, and we obtain an explicit
expression of the nonequilibrium distribution function.
We then generalize the approach to a driven-dissipative
anti-ferromagnet. The corresponding GFs are derived
by means of a mean-field approximation where the order
parameter is taken to be the charge gap, A. In Sec-
tion III, we analyze the insulating solutions in both the
small and large gap regimes. In Section IV, after a brief
review of the equilibrium case, we derive and solve the
self-consistent equation on the nonequilibrium mean-field
order parameter, and we identify the switching fields of
the insulator-to-metal and the metal-to-insulator tran-
sitions, Fiyrt and Eyzpr, respectively. Since most RS
experiments are realized at 200-300 K, we later general-
ize our results to finite-temperature baths. In Section V,
we reformulate the nonequilibrium mean-field theory in
terms of an effective free energy F(A). In Section IV, we
conclude and give additional discussions.

II. QUANTUM NONEQUILIBRIUM
FORMULATION

We first present our analytical approach, how we in-
corporate the nonequilibrium drive and the dissipation,
within the case of a non-interacting single-band metal.
We later move to the more complex case of an or-
dered insulator. While we limit our discussions to one-
dimensional models, most of our conclusions are also
valid in higher dimensions as long as low-dimensional cor-
relation effects remain unimportant.

A. Elementary Case: Single-Band Metal

Let us consider a tight-binding model of electrons set
in motion by a DC electric field E. To prevent the sam-
ple from accumulating indefinite amount of excess energy,
it is necessary to couple it to a large environment that
can effectively dissipate its excess energy. As a rudimen-
tary mechanism, we employ a simple thermal bath of
fermions which create Ohmic dissipation and satisfy the
basic requirements consistent with the Boltzmann trans-
port theory™ 3657 Besides dissipation, the baths are
also a crucial element because they allow to explore the



RS in finite temperature environments, and thus to make
the connection with experiments. We first introduce the
problem on a one-dimensional lattice, then later linearize
the dispersion relation to work with a continuum version.

1. Lattice Model

The total Hamiltonian of a simple metallic chain
readb% Htot H + Hbath with

H=—tY (d} d¢+He) = EY_ tdldy, (1)
l 4

ﬁbath :Z(ea - Ef)c;acéa_ %Z(Czadf + H'C')’ (2)
L j2e%

Lo

where d;[ is the creation operator of an electron at site ¢,

and cza the creation of an electron in the fermion bath
coupled to site £, with the continuum index oo. We set the
lattice constant a = 1, the electric charge e = 1, and h =
1. The coupling between the orbital at site £ and its local
bath is given by the coupling constant g, and it yields the
local hybridization function I'(w) = (¢%/L) > (w — €q).
We assume the baths to be identical at all sites, and with
a structureless spectrum such that I'(w) =T

The DC electric field is incorporated in the Coulomb
gauge via the static electric potential —F¢. For simplic-
ity, we consider E' > 0. In this gauge, the thermal statis-
tics of the bath degrees of freedom, the ¢y, ’s, is given by
the Fermi-Dirac distribution function where the original
zero chemical potential is shifted by —FE/ at site ¢,

folw + LE) = [e@HE)/To 4 1)1, 3)

and where T}, is the bath temperature. In the fol-
lowing, we consider a zero-temperature environment by
setting T, = 0, except in Section [V.C| Within the
Keldysh Green’s function formalism, the dissipation by
the fermion baths is exactly incorporated in the retarded
and lesser self-energies at site £ as

S (w) = —i,  Sf(w) = 2T fo(w + (E),  (4)

respectively. One defines the retarded and lesser Green’s
functions, G7;(w) and G75(w), respectively, as

T A ’ Ty
Gi(t, 1) = —i0(t — ) ({di(t), d;(t')}), ()
< AN 1 o)
G5 (t, 1) = i(d(t')d;i(t)). (6)
Once the steady state has been reached, the Green’s func-
tions are time-translational invariant (though they are
not space translational invariant due to our choice of

gauge). Using Dyson’s equation on the lesser Green’s
function, its local component can then be computed as

loc Z G ) Sé(w)*
f=—c0
= 2il" Z Gho(W) P folw +EE).  (T7)
{=—o00

This problem has been solved numerically in Ref27,
which led to identification of an effective temperature for
the electrons driven by a small electric field and coupled
to a zero-temperature bath

V6tE

Teg = —T" (8)
While a current-carrying steady-state cannot be strictly
considered as a thermal state, this simple characteriza-
tion of the electronic excitations by a finite temperature
proportional to E/T", i.e. drive over dissipation, never-
theless exposes clearly the driven-dissipative nature of
the electronic steady state.

2. Continuum Model

In this paper, we work in the continuum limit where
analytic approaches become more amenable. In the
presence of dissipation, the Fermi sea is adiabatically
shifted®? as predicted in the Boltzmann transport the-
ory, and it is reasonable to focus on the states near the
equilibrium Fermi energy. Therefore, we linearize the
tight-binding dispersion relation for simplicity. Setting
aside the dissipation for a moment, we obtain the Hamil-
tonian

=3 [dr il @hi()on). (9)
A=+

where 1) (x) is the electron field operator of right (A =
+) and left (A = —) movers evolving according to the
Hamilonian density

ha(z) = —iAv0y — Ex, (10)

and vy > 0 is the group velocity. In our numerics, we
use (fi/a)vg as the unit of energy by setting it to unity.
Re-incorporating the dissipation by using the hybridiza-
tion to the baths in Eq. (4)), the Dyson equation for the
retarded GF reads

(10 — ha(z) +i0)GA (2, 2'5t) = 6(8)6(x — '),  (11)

whose solution can be expressed in the spectral represen-
tation as

Oa(z,w" )P (2, w') dw'’
w—w +il 27y’

G (z,2';w) (12)

where ¢, (z,w) is the eigen-function of the dissipationless

Hamiltonian in Eq. at energy w, i.e.
hA(x)@\(x,w) = w¢>\(wi)' (13)

The continuum version of the local lesser GF given in
Eq. , with a bath temperature T}, = 0, now reads

7w/E 1
GE(w )—2iF/ S IG5 0 mw)Pdr. (1)
A

— 00



The local energy distribution function f(w) can be ac-
cessed via

Gy (w
flw) = _QiIInIOCC?(’” o

loc (CU) (15)

In equilibrium (at £ = 0), the fluctuation-dissipation
theorem between retarded and lesser GF's ensures that
the energy distribution is governed by the usual zero-
temperature Fermi-Dirac distribution. Out of equilib-
rium (E > 0), one simple way to quantify the amount of
nonequilibrium excitations around the chemical potential
is to introduce an effective temperature, Teg. In regimes
with relatively few excitations concentrated around the
chemical potential, it is quite convenient to use the fol-
lowing definition of the effective temperature based on
the Sommerfeld expansion®?,

6 oo

=53 .

w[f(w) = B(-w)]dw. (16)

o0

This definition is consistent with the equilibrium temper-
ature when f(w) is the Fermi-Dirac distribution.

3. Analytic Solution

Owing to the linearized dispersion relation,
Gy (z,2";w) and Gj.(w) can be computed explic-
itly. Indeed, the Schrodinger equation in Eq. has a

simple solution reading

ox(7,w) = exp [1)‘ (wx - ;Eﬁﬂ : (17)

Vo

After performing a contour integral in Eq. , we obtain

Gi(z, 2" w) = —vi@()\(x - J;'))e_%lﬁ_l/lei)@, (18)
0

with the phase ¢ = [w(z — ') + $E(2? — 2/?)]/vo. The
local retarded GF reads

foe(w) = —1/(2v0). (19)

Note that, unlike in the lattice calculations, the spectral
function —7~'Im G}, (w) = 1/(27vy) does not feature
Bloch-Zener peaks equally spaced in energy by eFa, due
to the lack of a finite lattice constant in the continuum
model.

Using Egs. , and , the local lesser GF

reads
S (w) = Uiof(w), (20)

with the local energy distribution function

Lle—2Tw/(voE) for w >0
f(OJ) = { ]2_7 %e2Fw/(v0E) forw<0 ° (21)

This expression is in agreement with the quantum Boltz-
mann theory of Mitra and Millist®.

The above expression for f(w) shows that the steady-
state carries nonequilibrium excitations above the chem-
ical potential, on an energy scale controlled by voE/T.
More quantitatively, using Eq. , it corresponds to an
effective temperature

3UOE
Tog = 1/ = ——, 22
fr \[2 nl’ (22)

which agrees with the expression in Eq. that was ob-
tained using linear response theory in the half-filled lat-
tice model with vy = 2637,

B. Driven-Dissipative Ordered-Insulator

We now turn to the case of an ordered-insulator with
an example of an anti-ferromagnet. We consider a stag-
gered phase, where the one-dimensional lattice is split in
two sublattice, A and B, the energy levels of which are
alternating by +A with A > 0. While in this Section, the
value of A is considered arbitrary, it can be seen as origi-
nating from a mean-field treatment of a local interaction
between the electrons. This will be the topic of the next
Section, where the value of A will be set self-consistently
and the emergence of anti-ferromagnetism will be studied
systematically via a mean-field approach.

1. Continuum Model

Setting aside the dissipation for a moment, we consider
the continuous Hamiltonian

i = / dz ' (2)h(z)é(z), (23)

with the local fermion degrees of freedom ¢(z) =
(pa(x),¢5(x))T and the two-band Hamiltonian density

h(z) = ( A el ) . (24)

—iUo@x
We note that the lattice constant in this model is dou-
bled by the ordering, and the electric field (the voltage
drop across a unit cell) is effectively twice of that in the
previous section.

It is useful to work with the rotated wavefunctions
¢+ = 1/v/2(¢pa £ ¢p) by performing a unitary trans-

formation
- 1 1 1
oo (1), -

In this basis, the dissipationless Schrédinger equation
reads

w +ivgd, + Ex A b+ -0
A w —ivg0, + Ex O



When A = 0, ¢ satisfy the same differential equations
as in the previous single electronic band of left- and right-
movers. Therefore, we parametrize the solutions ¢* =
(qﬁi, #™ )T of the above equations by the superscript A =
L, R. This problem can be understood as the Schwinger
effect®® where particle-antiparticle pairs are created from
the one-dimensional massive Dirac field (with mass A) by
a static electric field.

Once these eigen-functions of the dissipationless
Hamiltonian are computed (see below), they can be used
to construct the GFs in the presence of dissipation. The
retarded GF is given by (a,b = %)

pab(x?xl;w/) do’
ar oy 27
ab(z, 2 w) / w—w +ill 27y’ @)

with the dissipationless spectral function

= Y QWi w . (28)

A=R,L

par(x, 2’5 W)

Generalizing Eq. to a two-band electronic structure,
the lesser GF at x = 2’ is given by

< (w) :ZiF; /
(29)

where we recall that the bath temperature is set to zero.
We define the local retarded and lesser GFs as equal-
weight averages of the A and B sublattice,

w/E
dz GL (0, z; w)Gy, (0, z;w) ",

G (@) + G5 (@) _ GUE W) + 675 (w)

G (@) = 5 =

(30)
The energy distribution function f(w) and the effective
temperature Tog are then defined exactly like in the case
of the single-band metal, see the equations and .

2. Analytic Solution

We can solve for the eigen-function q[)ﬁ‘r by eliminating
¢ in the coupled equations to obtain the second-
order differential equation

V020 +

Similarly to Zener’s original paper?

[(w+ Ex)? —ivgE — A%} =0.  (31)

, we use the variables

2= (2E/v0)Y?™4(z + w/E) and n = iA?/(2v0E) — 1
(32)
to transform Eq. (31)) to the standard form

RO (

1z Nt i22> 2 (z)=0.  (33)

2

The solutions of this equation can be expressed in terms
of the parabolic cylinder function D, (z)*%4! as

¢ (x +w/E) oc D_y_q(£iz), (34)

| 2A = AFM gap

reflected wave .
transmitted wave

S S
rd o rd

\fEx

incoming wave

energy
I—> X

FIG. 1. Energy diagram of the anti-ferromagnet subject to
a DC electric field. A staggered order in lattice develops a
bandgap given by the order parameter A. A uniform electric
field F is incorporated as a potential ramp throughout the
system. Thus, the gap acts as a potential barrier for an inci-
dent wave approaching with the velocity vo, which splits into
a reflected and transmitted wave. In the small-gap large-field
limit, the amplitude of the transmitted wave is proportional
to the square-root of the Landau-Zener factor e ™*/? with
a=A?/wE.

with D_,,_1(iz) decaying to zero for z — e7™/* x 0o and
z — e 1637/4) » 0. We choose the sign in the argument
of the parabolic cylinder function in Eq. accord-
ing to the boundary condition of right- or left-incident
wavefunction. A more detailed discussion is given in Ap-
pendix [A] The normalized solution for the right-moving
wavefunction can be written down as

QSE(‘T)W) = e73”0[/81)—1(1/2 (211@7”/4) ) (35)

where we introduced the dimensionless parameters

A? | E
azﬁandyf 20(x+E) (36)

Similarly, the eigen-function ¢* (z,w) is given by

T —3rx —im
¢}j($,w) = Y 56 /46 8 /8D—ia/2—1 (2ye /4) .
(37)
The left-moving solutions are obtained by symmetry:

fbf (z,w) = [gﬁf(fg;’ —w)]* = eiswa/SDia/Q (72y ei7r/4) ’
qbi(wi) = _[¢E(—!L‘, —w)}*. (38)

III. LANDAU-ZENER VS. IN-GAP TUNNELING
REGIMES

We shall now distinguish two regimes: (i) the weakly
gapped case, when a = A?/vgE < 1, for which the
nonequilibrium excitations will be shown to be domi-
nated by Landau-Zener tunneling events; (ii) the strongly
gapped case, when a > 1, dominated by the excitation
of dissipative in-gap states.
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FIG. 2. (a) Local density of states —Im Gi, (w) at E =
0.05, I = 0.01, with A varying from 0.05 (blue) to 0.5 (red)
in steps of 0.05. The energy unit is set by vo = 1. While
the energy gap rapidly develops with increasing A, the inset
(blown up near zero energy) reveals the presence of a finite
density of in-gap states on the order of I'/(2Awg) (see text
for details). (b) Distribution functions f(w). The inset shows
the agreement with the analytic result f(w) ~ %e_mw/“oE
(black line) computed for large A, already at A = 0.25.

The distinct behaviors in these two regimes of (a) the
local density of states and, (b) the energy distribution
function, are illustrated in FIG. |2| which gives the nu-
merical solutions computed at a fixed E = 0.05 for in-
creasing values of A. Quite naturally, the local density of
states in FIG. a) continuously develops an energy gap
on the order A. In the small gap (or large field) limit,
the gap is filled up by the nonequilibrium-generated elec-
trons, as shown by the smearing of the gap. Perhaps less
obvious is the presence of a small but finite density of
in-gap states at |w| < A in the large-gap (or small-field)
limit. We shall see that they are due to the dissipation
which, in our model, broadens the two bands and make
them leak inside the gap. They could also be due to the
presence of impurities in the system. The distribution
functions in FIG. b) displays a gradual crossover be-
tween a hot nonequilibrium steady state at small A, and
a cooler state where excitations are localized in |w| < A
at large A.

Below, we elucidate the different mechanisms at stake,
and their associated energy scales, by deriving the ana-
lytic solutions of the nonequilibrium steady states in the
two regimes.

A. Landau-Zener Tunneling Regime

In the small o = A%/yE < 1 regime, an asymptotic
expression of the wave function in Eq. can be worked

(a)
z=w+il
Cy .
prTerTm—— v t
C z=—-Fx

FIG. 3. (a) Singularities in the integral of the retarded GF,
Eq. , in the Landau-Zener regime using the asymptotic
expansion of the parabolic cylinder function. (b) Nonequilib-
rium distribution function f(w) of the driven-dissipative AF
computed numerically in the Landau-Zener tunneling (LZT)
regime, and compared to the expression derived in Eq. ,
showing a number of nonequilibrium excitations which is re-
duced by the factor e compared to the single-band metal.
The dashed line is the Fermi-Dirac function at the effective
temperature given by Eq. . Parameters are £ = 0.1,
I' =0.01 and A = 0.15.

out when |y| 2 a, reading

. o ome~ala—) o
6By < 0) = (295 4 Yo Temiv7|gyfis
rcg)
SRy > 0) = e Felv' (29) 1%, (39)

where T'(z) is the Gamma function. For convenience,
let us focus on w > 0. The first term in the above ex-
pression of ¢f(y < 0) is the incident wave from —oo.
Indeed, it becomes the free propagating wave computed
in Eq. in the limit o — 0. See also FIG. [1] for
a brief discussion. The second term is the reflected
wave which is scattered from the gap. The term in
qbf(y > 0) represents the transmitted wave. For small
a, the amplitude of the reflected wave is small with
|v2me= /% T (ia/2)|? ~ ma?/2 and it can be neglected
for |y| > 1. We may then combine the positive and neg-
ative y and approximate the right-moving wavefunction
for all |y| 2 « by

8 (z,w) ~ elv’ (2y e~im)Tia/2, (40)

y is analytically continued to the complex plane with its
phase restricted to 0 < arg(y) < m, with the branchcut
on the negative real axis. Then, on the positive real axis
y > 0, the factor (e~'™)~1%/2 = ¢~7/2 gives the Landau-
Zener amplitude reduction while on the negative axis the
factor is cancelled out.

For w > 0, and in the small-a limit, the right-moving
wavefunctions traveling from = < 0 contribute the most
to the lesser GF's in Eq. . We may therefore approx-
imate the retarded GF by

> p+(0,250") dw’

G (0,75w) = / (41)

. )
oo W —w +iI' 27y
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FIG. 4. Number of electronic excitations nex(A, E). (a) In
the small-gap (or large-field) regime, it follows the Landau-
Zener theory (black line). (b) In the large-gap (or small-
field) regime, the excitations are limited inside the gap with
Nex (A, E) = TE/(41A?).

with

_ —izE (2% 422w’ /E
it (0, 30w') e~ 1 2ug (¢ T2/ B)

x w72 (W + Bx) e (42)

As represented in FIG. a), there are two branchcuts:
C = (—ie, —oo—ie) for w*/2 and Cy = (—x+ie, —0o+ie)
for (w'+Ex)~'*/2. This choice of branchcuts ensures that
the complex power functions coincide with the integrand
everywhere on the real axis. The main contribution to
the integral is the residue at w’ = w+il", and we detail its
computation in the Appendix [Bl The resulting retarded
GF for = < —(2v9/E)'/?a is approximately

—1 _iEs?  (T—iw)|a|
G" (0. 2:w) ~ —e 20 w0
++( 7337(")) voe 0 0
w+iF —iO(/2 N
X | ——— —ap/2 (43
‘wE|z|+iF em™, (43)
where
r r
=m—tan~' — —tan"" ————. 14
=T an o an E|x\—w ( )

Note that Eq. is invalid at z = 0 and therefore can-
not be used to compute G}, (w). As shown in FIG. [2[a)
for small «, the spectral function approaches the simple-
metal limit, —ImG] (w > A) = 1/(2vy), away from the

gap.
In the small damping limit, we get ¢ ~ 7, and the
local lesser GF can be approximated as

i
Giielo > 0) = — f(@). (45)
The energy distribution function then becomes
1
flw>0)~ 5e*me*m/vo’f. (46)

The numerical effective distribution in FIG. [3[b) shows
an excellent agreement with the analytic result. The

step-like drop of f(w) near w = 0 by the Landau-Zener
factor demonstrates a clear departure from a thermal
distribution and highlights the electronic nature of the
population inversion. Compared to the driven-dissipative
single-band metal studied in Section see Eq. ,
the number of excited sates is reduced by the Landau-
Zener factor e~™*. This factorization of the above distri-
bution function in two independent factors highlights the
two different time scales involved: the LZ transition is in-
stantaneous compared to the dissipative process. Once
electrons are promoted to the upper-band near the band-
edge, the subsequent evolution is nearly free, only subject
to the dissipation which sets the lifetime of the inverted
population.

The energy excitation in the inverted population is re-
flected in the effective temperature

Svl _ .,
To(la < 1) = \/;;Fe 2 (47)

which is also reduced compared to the single-band metal
in Eq. (22)). The Fermi-Dirac function (dashed line) with
the temperature given as Eq. shows a poor agree-
ment between their lineshape, and an attempt to fit to
a Fermi-Dirac function would lead to unreliable estimate
of Teﬂ‘.

The numerical calculations in FIG. a) display the
total number of excitations

D
nex (A, E) = 2/0 G (w)

The excitation density nex(A, F) is defined as the elec-
tron and hole excitations from the zero-field electron dis-
tribution. Here, we introduced an energy cutoff D (set
to 10wy throughout the paper) to regularize the linear
dispersion relation. For small «, the agreement with the
Landau-Zener factor (black line) is excellent, as also pre-
viously demonstrated in the lattice model calculationsZ.

Note that in the regime o — 0, the distribution func-
tion in Eq. naturally boils down to the one of the

single-band metal in Section see Eq. (21).

dw

= (48)

B. In-Gap Tunneling Regime

In the opposite regime of large a = A?/voE > 1,
i.e. with a large gap or a small field, the electronic
transport proceeds quite differently. This is illustrated
in FIG. [d{(a) which shows a strong deviation of the to-
tal number of excitations from the Landau-Zener the-
ory. The spectral weight inside the gap is now controlled
by the dissipation, bounded from below by the zero-field
spectral weight —Im GJ _(0) = I'/(2vpA). The spectral
properties deep inside the gap can be approximated by
the zero-field retarded GF, as detailed in Appendix [C]
The electronic excitations are most efficient within the
gap, as demonstrated by the energy distribution func-
tion f(w) displayed in FIG. b). The shape of the dis-
tribution function in this regime can be understood as



follows. In the case of the single-band metal studied in
Section [[TA] the damping rate I' was controlling the en-
ergy window of the nonequilibrium excitations. In the
presence of a gap, the gap acts as a potential barrier and
provides a decay rate similar to the WKB theory. There-
fore, the gap parameter A replaces I" in Eq. , leading
to the energy distribution function

1
f(w > 0) ~ 5672Aw/v0E (49)

for large a. It is interesting to note that while dissipa-
tion is essential to create the in-gap states, the distribu-
tion function has negligible dependence on the damping
parameter I'. Noteworthy enough, while FIG. [{{a) indi-
cates that the deviation from the Landau-Zener theory
starts around o ~ 1 — 2, the inset of FIG. 2(b) shows
that the distribution function in Eq. computed for
a > 1 is already valid at A = 0.25.

The corresponding effective temperature can be com-

puted as
3UOE
T, )=/ z——, 50
wla> 1) \fhw (50)

that is much smaller than in the LZ regime: Teg(a >
1) « Tegr(v < 1). The total number of nonequilibrium
charge excitations is then well approximated by

Dy B
2w A YT A

Nex (A, E) ~ Q/Ooodw (51)

which is confirmed by the numerical calculations pre-
sented in FIG. [4b).

Note that the effective temperature above is seemingly
independent of I" with the distribution function in the
regime |w| < A described by Eq. [{9). At large fre-
quencies w > A, however, f(w) is expected to behave
as %e’mefzr‘”/voE. This tail contributes a correction
term proportional to e=™*(A/I")2, which grows large in
the I' — 0 limit. This is consistent with the previous
works?243l in which the effective temperature has been
shown to diverge in dissipationless driven systems. In
the following Section, however, we limit the energy inte-
grals at the cutoff energy D and, furthermore, the decay-
ing integrand in the gap equation renders insignificant
the effect of the f(w) tail, particularly in the large «
limit as shown in the inset of FIG. b). Therefore, the
contribution from |w| > A does not affect the following
mean-field discussion.

IV. MEAN-FIELD THEORY OF RESISTIVE
SWITCHING IN ORDERED INSULATORS

In the previous Section, we discussed how, upon in-
creasing the electric field and keeping the gap parameter
A fixed, the electrons are initially excited via in-gap tun-
neling events, and then undergo Landau-Zener tunneling

processes as the field is further increased. In a recent pa-
per by the Authors32, it has been shown that an inhomo-
geneous mean-field (MF) approach on a two-dimensional
Hubbard model could capture the hysteretic nature of the
true resistive switching transition: sweeping up and down
the voltage bias applied on a finite-size two-dimensional
lattice resulted in an insulator-to-metal transition (IMT)
and a metal-to-insulator transition (MIT), separated by
a region of bi-stability. Importantly, this nonequilibrium
bi-stability was found to be crucial to explain the abrupt
nature of the resistive switching, independently whether
the equilibrium counterpart is continuous or discontinu-
ous.

Below, we develop the mean-field theory for a driven-
dissipative anti-ferromagnet (AF). This approach may
be extended to other types of order without much dif-
ficulty. We start with the standard single-orbital Hub-
bard model, with on-site repulsive Coulombic interaction
V = U}, (ny —n)(n;, —n) with the electron number
operator N;, = d;rgdw, the Coulomb parameter U, and
the on-site occupation expectation value (averaged over
spin) 7i. The emergence of an AF phase corresponds to
the breaking of the translational invariance of the lat-
tice into a staggered order. The energy levels of the two
resulting sublattices A and B get shifted alternately by
+A, the AF order parameter which opens a charge gap.
The corresponding mean-field decoupling of the Hubbard
interaction consists in replacing

m=A/B im0

(=D)"ohi, 00 (52)

with the sublattice index m and (—1)"™ =+1form = A
and B, respectively. 7, is the electron occupation on
the 4,,-th site within the m-sublattice. The resulting
theory is invariant under A — —A, and we may work
with A > 0. Since the MF Hamiltonian is diagonal
in the spins, we may also afford to ignore the spin de-
grees of freedom in what follows. The nonequilibrium
self-consistent equation on the AF order parameter, of-
ten referred as the gap equation, reads

o ({na) — () (53)
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A. Equilibrium Phase Transition

For reference, let us briefly review the conditions for
the equilibrium, temperature-driven, phase transition.
The mean-field approach predicts a second order phase
transition®®. As described in Appendix |C] for |w| > Ag
and at zero temperature, the gap equation becomes

27V —Ao dw

1 (QD) (55)
—~In|— |,
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FIG. 5. Nonequilibrium mean-field self-consistent condition
on the order parameter A. The solutions correspond to the
intersection of the curves at different E-field with the 1/U
line. The finite-A solutions with a negative slope are the sta-
ble solutions. The solution at A &~ 0.25 abruptly disappears
at Ermr = 0.044. The crosses at A = 0 are calculated as
discussed in Appendix @ The damping parameter I" is 0.01.

in the small gap limit, Ay < D. This yields the familiar
expression for the order parameter at zero temperature
and zero-field

2
A ~ 2D exp (— 7;]1}0> . (56)

The transition temperature Ty is set by the finite-
temperature gap equation

27’(’00 b Wfo(w) 2D
— [ L) g am (22
U /Dw2+F2 wan| =+ (57)

where fo(w) is the Fermi-Dirac distribution at the tem-
perature Ty and v ~ 0.577 is the Euler constant.
This allows to relate the Néel temperature to the zero-
temperature gap via

e
™

B. Nonequilibrium Phase Transitions
1. Numerical Results

The numerical solutions of the nonequilibrium mean-
field self-consistent gap equation are presented in FIG.
where the (rRHS)/(UA) of Eq. is plotted as a func-
tion of A. A =0 is always a trivial solution, marked by
crosses in the figure. It corresponds to an ungapped,
metallic, phase. The intersections of the curves with
1/U at finite values of A are non-trivial solutions that
correspond to anti-ferromagnetic states. In equilibrium

(E = 0), the curve (dotted line) is monotonic in A
and thus supports a single AF solution. As U is var-
ied, the single-valued order parameter A evolves contin-
uously from a vanishing to a finite value. This is the
second order equilibrium phase transition??. However,
as F is turned on, the curve becomes non-monotonic and
allows two AF solutions at small enough E. A stability
analysis indicates that the solution with the smaller A is
unstable while the other one is stable. When F becomes
larger than a critical value (Enyr = 0.044 in the figure
with U = 1.5), the two AF solutions suddenly disappear,
leaving A = 0 as the only solution. This is the IMT:
a strongly discontinuous nonequilibrium phase transition
which emerges out of a continuous transition in equilib-
rium=2.

Below, we discuss the quantitative criteria for the
switching electric fields at the IMT and MIT.

2. Insulator-to-Metal Transition

As discussed above, the IMT occurs when the sta-
ble finite-A solution abruptly ceases to exist, at the
field Eryr. We first determine in which of the regimes,
Landau-Zener or in-gap tunneling, the IMT occurs. In
FIG. Bl the IMT occurs at apyt ~ 1.25, thus in the
crossover region between the two limiting regimes. How-
ever, as shown in the inset of FIG. b)7 the distribu-
tion function in Eq. describes the numerical solu-
tion fairly well. We use it, together with the approxi-
mation that the off-diagonal components of the GFs can
be replaced by their equilibrium components (see Ap-
pendix D)), to re-write the gap equation as

27 e—QAw/voE

—A oo
dw
_ W e g,
U /_D Vo = A /A N vh

or, equivalently,

A 2A?

0—ln(A0>+Ko <U0E>. (60)
See the derivation of Eq. in Appendix C for more de-
tails. K, () is the modified Bessel function of the second
kind. The first term of the (RHS) in Egs. and is
the equilibrium contribution, and the second term is the
reduction of the order parameter due to the nonequilib-
rium excitations where the main contribution originates
from the edge of the gap w ~ A.

Threshold field. The condition for the IMT is that the
derivative of the RHS of the above equation with respect
to A vanishes at the solution, i.e. 1+ 4aK((2a) = 0.
This yields apt ~ 0.63. Note the relative discrepancy
with the numerical result given above, amnt ~ 1.25. It
shows that the analytic derivation underestimates Ayt
and overestimates Fryr, due the piece of integral that
was neglected inside the gap. Substituting the analytic
result amnvt =~ 0.63 into Eq. , we obtain

(59)

Apyr ~ e KoCamnm) A § .74 A, (61)



and

A? A2
—IMT_ ~ .88 =2, (62)
aiMT V0 Vo

Emnr =

From the numerical calculations with U = 1.5, we have
AO = 030, EIMT = 0.044 and AIMT = 0237 yleldlng
the ratios Apyr ~ 0.76 A¢ and Engr ~ 0.49 (A3/vg),
which are in a reasonable agreement with the analytic
estimates. As previously noted in Section [TB] these es-
timates of Epyr should be further reduced by half due
to the unit-cell doubling.

Importantly, these results elucidate a long standing
problem: the puzzling small values of the electric field
that are needed to achieve the IMT. Indeed, our solution
shows that

EIMT/AO ~ Ao/vo < 1, (63)

i.e. that the energy scale of the switching field can
be up to one order of magnitude smaller than the en-
ergy gap. However, with a typical Ay ~ 0.1 eV and
hvg/a ~ 1 eV, this corresponds to switching fields on
the order of Enpyr ~ 102 kV/cm which are still one to
two orders of magnitude larger than what is observed ex-
perimentally. We have seen in the previous work®? that
nucleation of conducting filament in spatially inhomoge-
neous systems reduces Epyr significantly. We shall also
argue in Sect. [V C| that the remaining discrepancy can
be much reduced by working with an environment at a
finite temperature 73, < Tx rather than T3, = 0, i.e. by
bringing the equilibrium system closer to its Néel transi-
tion, which is the case in most experiments.

Effective temperature at the transition. Another cru-
cial test for the theory is the ability to predict that the
effective electronic temperature at the IMT matches the
equilibrium transition temperature T, as it has recently
been demonstrated experimentally??. From Egs. (16))
and , we obtain the analytic estimate
V6 vo By

Tivt = —

~ 0.46 Ag =~ 0.81 x Ty. 64
27T AIMT 0 XN ( )

The numerical results give Tyt = 0.163 = 0.54 Ag =
0.95 x Ty, in very good agreement with the previous nu-
merical work32 on discrete lattices. This proves that the
effective temperature at which the IMT occurs is simply
controlled by Ty, the equilibrium transition temperature.
This is one of the main result of this work, which justifies
recent experimental observations made in Ref/22.

The IMT condition can be roughly understood as the
situation when the tail of the electron distribution in
Eq. begins to overlap with density of states at the
edge of the gap, voF/(2A) ~ A ie. a ~ 0.5, and the
number of nonequilibrium excitations is about to prolif-
erate. It is remarkable that, despite the IMT occurring
in the crossover region between the Landau-Zener and
the in-gap tunneling regimes, the IMT conditions do not
depend sensitively on the dissipation parameter I'. This
clearly indicates that the IMT is fundamentally an elec-
tronic process, while it also permits a thermal interpre-
tation.
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I-V scaling near the IMT. Based on the gap equation
in Eq. , we can analyze the limiting behavior near
the IMT. Writing A = Apur + 0A and F = Epgr + 0F,
and expanding the gap equation to the lowest orders, we
obtain

(68) | OB
2AZ o 2By’

0=1.86 (65)

which can be massaged to the typical MF scaling relation
OA ~ anyr(—vg 6E)Y? for 6A >0, 6E < 0. (66)

Furthermore, the GF's do not have any singularities when
A and E pass through Apyr and Epygr, as can be seen
in FIG.[2] Therefore, we may expand the electric current
J around its value right before the IMT in powers of A
and 0 F,

J(E,A) ~ JmmT + ag 0E + an 6A
~ Jiur — amrlaal(—ve SE)Y2, (67)

where agp and aa are expansion coefficients. Since the
current is reduced when the gap increases, we must have
an < 0. While the precise value of the above criti-
cal exponent in the current characteristic is the result
of a mean-field approach, and might therefore get final-
dimensional corrections, such a non-analytic and rapid
increase of the current close to the IMT is a universal pre-
diction of the theory. As a matter of fact, it has already
been observed in our previous numerical lattice simula-
tion>2 and in recent experiments?®42 and deserves closer
scrutiny.

8. Metal-to-Insulator Transition

Threshold field. The MIT is determined by the loss of
stability of the A = 0 solution. In FIG. [f] the threshold
Eyvir corresponds to when the curve at A = 0 (black
cross) matches 1/U. The stability of the metal is given
by the condition
E > lim L(n —ng) (68)

U~ a>02A" 4 B/
We can easily and accurately pinpoint the MIT by using
perturbation theory in the small A limit. The details are
given in Appendix [El Equation can be estimated as

1 1 2e¢'T'D
- > 1 69
U ™ 27y n( vl ) ’ (69)

which typically overestimates the exact numerical inte-
grals by less than 5%. It yields a switching field

r
FEyiir = 1.78 — Ay. (70)
Vo
From the numerical calculations with U = 1.5 and

I' = 0.01, we obtained Fyirr = 0.0044 yielding the ratio



Eyit = 1.46 (T'/ug)Ap which is, again, in good agree-
ment with the analytic estimate. Equation reveals
that, unlike the IMT, the MIT crucially depends on the
dissipation, which is not surprising since the transition
is initiated from a metallic phase where Joule heating
is dominant. Most importantly, this also shows that
Eynr ~ (I'/Ag) Emvr, therefore predicting the hierarchy

Eurr <€ Erur < AO. (71)

Effective temperature at the transition. Coming from
a metallic regime, the effective temperature corresponds
to the one computed in Eq. . We obtain the following
analytic estimate

TMIT ~ 1.22 x TN, (72)

where Ty is the equilibrium Néel temperature. Once
again, this validates the idea that the resistive transitions
can be interpreted in the language of thermal transitions
where the temperature is replaced by an effective temper-
ature accounting for the number of excitations above the
chemical potential. Noteworthy, while our homogeneous
mean-field approach cannot capture it, the bi-stability
region has already been shown to support the formation
of metallic filaments (and insulating domains) at lower
effective temperatures®Z, i.e. at lower threshold fields
than the above mean-field prediction .

C. RS at Finite Bath Temperature

So far, we have limited our theoretical analysis to the
case of a zero-temperature bath, 73, = 0, and found
switching fields one to two orders of magnitude larger
than what is typically observed in experiments (see
the discussion in Sect. . However, the experimen-
tal measurements of the RS are often conducted close
to room temperature. Indeed, at low temperature the
switching fields tend to be fairly large, which is difficult
to realize and can damage the samples. Moreover, two
experimental observations are worth mentioning. First,
as reported previously?®8, the switching fields Fryr and
Enpr show a significant temperature dependence, for in-
stance with Epyr varying by a factor of two over 30 K
interval near the equilibrium transition temperature in
V0222, Second, it has recently been reported in the
superconductor-insulator switching?® that the nonequi-
librium phase transition displays critical behaviors sim-
ilar to the equilibrium liquid-gas transition close to its
critical temperature, with a strong temperature depen-
dence of the switching electric field. All these consid-
erations motivate us to investigate the case of a finite-
temperature bath, T}, > 0. We shall show that increasing
Ty, naturally corresponds to a higher effective tempera-
ture Tog (Th ), bringing the system closer to its transition,
therefore reducing the threshold fields and the intensity
of the nonequilibrium effects. As the bath temperature
reaches the Néel temperature, T}, — T, the threshold
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fields must vanish, Ernr/mive — 0, and the nonequi-
librium RS is expected to progressively evolve into the
continuous Ising transition of the equilibrium Néel tran-
sition.

1. Single-Band Metal

We first discuss the impact of a finite temperature
of the environment in the case of the single-band metal
studied in Section The equation is generalized
to

o 1
G (w) = QiF/ dx §Z|G§\(O,x;w)\2fo(w+Ew),
oo )\

(73)
where fy(w) is the Fermi-Dirac distribution function at
temperature T},. Using the definition of the effective tem-
perature in Eq. and the following identity”

/000 w[fo(w+ Ezx)+ fo(w— Ex)]dw = %(Eac)2 + é(ﬂ'Tb)2

(74)
for an arbitrary bath temperature Ti,, we obtain the
following effective temperature for the -electric-field
driven one-dimensional electron gas coupled to a finite-
temperature bath

3 (wE\’
Tog(T1)? = 5 <;F) + T2 = T (0> + T2, (75)

Note that this relation can also be obtained by using
the energy balance between the Joule heating and the
heat dissipation that compensate each other in the steady
stated®,

2. Finite-Temperature IMT

We now turn to the case of the driven-dissipative anti-
ferromagnet. To compute the temperature dependence of
the threshold field, Enyr(Th), we use perturbation the-
ory in T}, around the previous results obtained at T, = 0.
Using the small-field approximations developed in Ap-
pendix [C] we can generalize the gap equation in Eq. (60))

to
A 2 (7T, A\ 2A2
=In(— 142 Ko [==).
o= (5 )+ 13 (T80 |k (2). (o
where we assumed Ty, < Tog(0) ~ voE/A. Using the

same criteria as Section [[VB] the IMT can be paramet-
rically solved as

voEimr 2e’h(")

il N ,
Aj u

2
LCTb — 3(1 — 2U’K1) 1/ e—h(u)/2 (77)
AO u2(uK1 - Ko) ’
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FIG. 6. Phase diagram in (electric field)-(bath temperature)
space. Numerically computed switching fields are shown as
circles at the bath temperature Tj, for the IMT (black) and
MIT (red). The dashed line is the analytic result Eq. ,
and the red solid line Eq. . T is the Néel temperature at
equilibrium, and Emnvr(0) = 0.044 the numerically estimated
value at zero bath temperature.

with Ky = Ko(u), K1 = Ki(u) and h(u) = (1 —
2Ky)Ko/(uK;—Kjp). The solution is plotted with a black
dashed line in FIG.[6] By expanding the relations around
Ty, = 0, we obtain the following expression for the Eyyr,

2

EIMT(Tb) >~ EIMT(O) [1 —0.88 (;;2) ‘| for Tb < TN-

(78)
A numerical evaluation of Enyr(7h), represented by
black circles in FIG. [0 confirms its relatively slow de-
crease as the bath temperature is increased. At higher
temperatures, Ty, ~ Ty, the parametric solution in
Eq. ceases to be valid, and the numerical calcu-
lations are very hard to converge, preventing us from
resolving how Ernyr(T}) approaches 0 when T, — Tn.
However, measurements in Ref4% reported that the rela-
tion Ervr(T}) displays an exponential dependence with
the bath temperature close to Ty, and therefore a rapid
decrease of Enyr(T},) near Ty, &~ Ty is expected.

3. Finite- Temperature MIT

The temperature dependence of the MIT is easier to
analyze. Since the MIT concerns the stability of the
metallic phase, the effective temperature relation derived
in Eq. holds at the MIT. This yields

27l
Enrr(Th) = \/;UO\/TEI - T¢, (79)
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FIG. 7. (a) Shape of the effective free energy F(A) proposed
in Eq. when varying the electric field E. (b) Correspond-
ing spontaneous order parameter A, when varying E. The
hysteresis, and the bi-stability region between the MIT and
the IMT, emerge naturally from the two regimes of effective
temperature given in Eq. . Local minima of the free-
energy in (a) are marked on the A — E curves in the forward
and backward sweep of the electric field in (b).

and at high temperatures close to Tk, it yields the scaling

relation
TN — Tj
Enirr (Th) ~ Envrr(0)4/ %- (80)

Our theory thus successfully reproduces the square-root
behavior Envir(T},) near Ty which had been observed ex-
perimentally?%. Numerically, the same procedure as de-
scribed in Appendix [E| can be used, computing the off-
diagonal GF in Eq. as

o 2FAM 72]62‘1'
[m A k%)e folw+ Ez)dz, (81)
with k1 given in Eq. (C3) and the Fermi-Dirac func-
tion fo(w) at temperature Ty,. The oscillatory parts of
the off-diagonal GF are ignored in this calculation. The
numerical results for Eypr(T},) are shown with red cir-
cles, validating furthermore the above square-root scaling
relation.

The mean-field theory seems to predict a very slow de-
crease of Frvr(Th < Tn), as depicted in FIG. @ Conse-
quently, it predicts a wide bi-stability region where both
metallic and insulating phases can coexist. One has to
keep in mind that a mean-field approach typically exag-
gerates the domain of stability of ordered states, and only
a more sophisticated diagrammatic theory could resolve
this issue. We emphasize that the bath-temperature de-
pendence at the RS is significant even when the under-
lying mechanism is electronic, and a large reduction of
the switching field over an order of I'/Aq should be care-
fully taken into interpretation when the energy scale of
switching field is examined.

V. TOWARDS AN EFFECTIVE FIELD
THEORY OF RESISTIVE SWITCHING

In this Section, we leverage the teachings of the pre-
vious mean-field analysis to propose a low-energy effec-
tive theory description of the local order parameter A at



both the MIT and the IMT. This could provide a practi-
cal path to developing an effective field theory capturing
the spatial fluctuations of the order parameter, which are
critical to the understanding of realistic resistive switch-
ing phenomena. The problem being far from equilib-
rium, such an effective theory should not only determine
the gap A (a spectral quantity obtained from G"), but
also the nonequilibrium excitations (such as the quantity
Tofr, obtained from the ratio of G< and G”). In prin-
ciple, only a fully nonequilibrium approach such as the
quantum Schwinger-Keldsyh formalism or the classical
Martin-Siggia-Rose formalism??! can tackle both order
parameters, A and Teg, on an equal footing. However,
we aim at a simpler description by constructing an ef-
fective Ginzburg-Landau free energy for A alone, F(A),
under a finite electric field. Instead of being a dynam-
ical quantity, the effective temperature will be fixed by
using an educated ansatz, Teg(A), based on the results
of the previous Sections. Although certainly less rigor-
ous than a Schwinger-Keldsyh or Martin-Siggia-Rose ap-
proach, this static approach does not require solving time
dynamics, giving a huge computational advantage when
extending the theory to large heterogeneous systems in-
cluding phase segregation2.

The functional form of F(A) is dictated by the Zs sym-
metry of the order parameter, i.e. F(A) = F(—A), and
its minima and their stability should match the one ob-
tained with the self-consistent mean-field gap equation.
The latter requirements can be formally expressed as

7eros { 47 (4) } =

dA
Zeros {A — U/_DDS‘::i (G, (w) + G5_(w)] } , (82)
sign {did}—A(QA) zeros} B (83)

zeros} '

Another constraint on F(A) comes from the equilibrium
limit (E = 0) for which the Ginzburg-Landau free energy
is an Ising ¢*-theory reading

D
. dw d < <
Slgn{l U/D%E I:G7+(UJ)+G+7(UJ):|

Feq(A) = (T —Tn) A2+ XA* 4 ... (84)

where T is the temperature of the system, and Ty is
the Néel temperature at which the equilibrium transition
occurs. The interaction parameter A > 0 can be set by
requiring that A = Ay at zero temperature, yielding A\ ~
Tn/2A3. All these constraints lead us to propose the
following effective Ginzburg-Landau free energy

F(A) = (Tog(A) = Tn) A2+ XA + ... (85)

with the state-dependent effective temperature given, at
zero bath temperature, by the expressions in Egs. (22)
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and 7

voE /T in the small A regime,

voE /|A| in the large A regime. (86)

Ter(A) ~ {

Importantly, the electric field now enters the problem
solely through the renormalization of the temperature
to a gap-dependent effective temperature Tog(A). This
constitutive relation is the only remainder of the nonequi-
librium nature of the problem. The distance to the Néel
temperature Tx in the A2 term controls the stability of
the metallic phase at A = 0. In the spirit of an effective
field-theory description, the coefficients of the higher or-
der terms are expected to play an irrelevant role near the
transitions, merely renormalizing the transition temper-
atures.

Interestingly enough, in the large A regime, the elec-
tric field couples to the order parameter linearly via the
non-analytic term F|A|, which transforms the contin-
uous equilibrium phase transition into a discontinuous
resistive switching. In this Ginzburg-Landau language,
the MIT and IMT correspond to the destabilization of
a metastable solution, i.e. to the disappearing of a lo-
cal minimum of F(A) to the profit of a global mini-
mum. For example, at the IMT the insulating solution
at A~ A/ \/3 is destabilized when the effective temper-
ature reaches

4
Tivr =~ gTN, (87)

which is naturally consistent with our previous findings,
see Eq. , up to small differences in the numerical
factors due to the truncation of the free energy to lowest
orders. The conclusion that Tyyr is controlled by Tx
is valid regardless of the precise F-field dependence in
Eq. as long as Teg(A) < 1/A at large A.

FIG. [7] sketches the evolution of the shape of F(A),
when increasing F starting from a stable insulating state
(A > 0), rapidly developing a second stable minimum at
A = 0 which becomes the only stable minimum at Eryr,
when the insulating state becomes unstable. When de-
creasing the electric field from this metallic state, the
stability of the latter is lost at a much lower electric field
Eniir ~ (T'/Ao) Ervr.

VI. CONCLUSIONS

We have worked out an analytic window into the in-
ner workings of RS in correlated insulators close to an
equilibrium phase transition by means of a mean-field
(MF) treatment of a minimal driven-dissipative model
of an ordered insulator. This allowed to unambiguously
resolve the age-old debate on whether the RS is mainly
electronically driven or thermally driven: both scenarios
were reconciled in a unified picture where the nonequi-
librium electronic excitations were characterized by a
state-dependent effective temperature Teg. While the



underlying physical mechanism is different between the
insulating state (mostly electronic Landau-Zener events)
and the metallic state (mostly thermal heating caused by
the dissipative mechanisms), both the IMT and the IMT
were shown to occur when Teg reaches Ttq, the equilib-
rium phase transition temperature. Concomitantly, our
analytics also provided an elegant resolution to the puzzle
posed by the disconcertingly small threshold fields when
compared to the typical spectral energy scales: the elec-
tric field does not affect substantially the spectrum of the
materials, but enters the problem through the effective
temperature Teog.

While the analytic MF approach makes the theory
transparent, the range of validity of the MF approxi-
mation in nonequilibrium situations is largely untested.
Although the agreement with many salient experimen-
tal features is very encouragingZ, our theoretical ap-
proach can only be taken as an initial reference point in
the construction of a more comprehensive theory of RS.
Given the existence of a bi-stability region between the
IMT and the MIT, the possibility for the system to de-
velop spatial inhomogeneities is a crucial element of the
resistive-switching transition®?. Experimental and nu-
merical studies revealed that the electron conduction is
often carried through metallic filaments and the details
of the I-V characteristic strongly depends on the fila-
ment dynamics. Therefore, the next step of this program
should be to question the influence of spatial fluctuations
on the critical points by upgrading the above Ginzburg-
Landau free energy to a full-fledged functional of the or-
der parameter field A(x), and perform a renormalization-
group treatment. Another important step should be to
investigate the role of the fluctuations around the mean-
field solution, classically and quantum mechanically. Fi-
nally, exploring diverse RS phenomena to guide the de-
sign of possible devices will require improving the numer-
ical methodologies in order to perform realistic calcula-
tions of material-specific models.
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Appendix A: Numerical Calculation of Wavefunction

The parabolic cylinder function*?4 in Eq. can be
expressed as

Dy(z) = 2¢/%e=="/4 [F ®

P
2
SEe(RD)] W

r'(z)
with the confluent hypergeometric function ®(a,b;z).
The equality ®(a,b;0) = 1 is useful. Directly comput-
ing the parabolic cylinder function numerically from the
hypergeometric function, however, turns out very unre-
liable, especially with a complex index ia/2. Instead,
we obtain the solution to the Hamiltonian by integrating
the differential equation, Eq. . Since we expect rapid
oscillations due to the electrostatic potential, we absorb
the fast oscillation as

$7(z) = a(2)e @ T3 and ¢F (z) = b(z)e et B

(A2)

with the differential equations
—id'(z) = Ab(a:)e_Qi(“’””Jr%Exz) (A3)
it/ (z) = Aa(z)e?@otaBe®) (A4)

Since x and w always appear as z+w/E, one only needs to
compute for w = 0 and later translate z — x+w/E at any
non-zero w. Setting the boundary condition is crucial to
produce the physical solution and avoid any divergent re-
sults. The best method is to set the wavefunction values
at = = 0 by Egs. (35), and D,(0) = 2°/2/7 /T (132)
from Eq. 7 and integrate the equations outwards to
+o0.

The local spectral weight in the limit I' — 0 can be
evaluated from Eq. as p4+(0,0;w) + p—_(0,0;w).

At w = 0, only the imaginary part is non-zero for
foe(0) and Im GY,(0) = —(4vo) ~*[|#(0)]*+|¢% (0)* +
B0 + [¢Z(0)] = —(2v0) [SF(0)]* + [9%(0)[].

Using the definition of the parabolic cylinder func-
tion* ™ —Tm GJ._(0) = (21}0)71673”‘/4[\D_ia/g(())|2 +
21D _i0/2-1(0)*] = (2v9)"te™™%/2. As shown in the in-
set of FIG. a)7 the spectral weight at w = 0 decays
exponentially with a until the damping-induced in-gap

weight becomes more dominant.

Appendix B: Integrals for Retarded GF in the
Landau-Zener Regime

From Eq. (29)), < 0 has finite contribution for w >
0, and with this the first exponential factor decays as
we enclose the w’-contour in the upper-half-plane. To
obtain the integral we organize the integral contour
as shown in FIG. [8] The desired integral is Iy + I5. The
integral Iy can be rotated to I’ which converges much
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FIG. 8. Contour for the integral Eq. .

faster than I due to the exponentially decaying factor
in e 1B/ (2v0)(@*+220"/B) for 3 < 0 and W' = iy (y > 0).
The integral above the contour Cy with the contribution
Ie™ combines with I’ to give the residue integral at
w' =w+il,

LieT™ + 1" = —(i/vo) p4++(0, z;w + il'). (B1)
Therefore G7, , (0, z;w) can be expressed as
e —(i/v0)ps 4 (O, miw +iT) = ']+ I (B2)
The term proportional to the residue becomes
. . —ia/2
_ A gy ot il —av/2 (B3
Vo ¢ w— Elx|+ ¢ - (B3)

The remaining term (e — 1)I’ can be easily evaluated
due to the contour rotation in I’,

Lo —ia/2 _
/Oo ozl ’%yﬂ ea/2(tan " (y/Elz|)~7/2) idy
0 w— El|z|+iy+il 27’
(B4)

whose integral range is set by |z|~! and the integral is
then well approximated by
_iefﬂa/4

2 (Bl —w)l7] (B5)

(Ez?)~ie/27 (1 n i%) '
In the small damping and « limit, the residue contribu-
tion dominates (€™ — 1)I’ and we arrive at Eq. (43)).

Appendix C: Small-Field Approximation

In the limit of large a with £ < A, approximating
the retarded GF by that of zero-field limit may be a rea-
sonable approximation. The justification of this idea is
discussed further in the next section. The calculation of
the lesser GF, however, is done with the full nonequilib-
rium Dyson’s equation . The zero-field retarded GF
can be written down in the A/B sublattice basis as

w+ A+il’

—Vop

G () = ( et ) (1)
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with the momentum p. Therefore, the retarded GF on
the A-sublattice is given as

* (w—A+iD)e””  dp

Ga(ow) = [

oo (WHIT)2 — A2 —02p? 27

— i MJ ikiz—ka|z|

a 21}0 k1 + ko ’
r — 7 ikiz—ka|z| )
GAB(LL',OJ) 2,006 ’ (C )

with
1/2
’Uok'g = |:(U2 + W2F2)1/2 — ’LL:|

vakiky = wl and u = (W? — A% —T%)/2.  (C3)

Then, the local lesser GF at z = 0, Eq. (29)), is rewritten
a

w)|?] dz.
(C4)

—w/E
G5 a(w) = 2T / (G a (. 0)? + |Gy (2,

— 00
After straightforward calculations, one obtains

_(w - A)k‘l + ko
vp (kF + k3)

—2in (-1 Gha(0.0)) fw)  (C3)

Gialw) = f(w)

with the distribution function

@) = e (222 ) o)

+ [1 - %exp (W)] O(-w).  (C6)

The distribution function assumes the same form as the
free 1-d model, Eq. with the inverse penetration
depth ko(w) replacing T'. In the A — 0 limit, ko be-
comes I'. With a finite field with |w| < A, the gap acts
like a potential barrier and the wavefunction decays un-
der the gap with the rate proportional to A, leading to

ko(w) ~ AJvg. Therefore the distribution function and
the retarded GF are expected to behave as
f(CU) ~ %e72Aw/voE
1 1 T r
——Im G", ,(0) = — = c7
T m G (0) 271'1)(2) ko 2T A (C7)

for 0 < w < A in the large « limit, as verified in FIG.
For the gap equation, the order parameter is calculated
self-consistently as

A—U’rlA—nB)
f/(; ey

ki f(w)
__AQTFU()/U()(k +I€%)dw

(i —A) 2

2mi




Appendix D: Off-Diagonal Green’s Functions

The spectral function of the off-diagonal retarded GFs
G%_(0,0;w)+G", (0,0; w), responsible for the gap equa-
tion, is given from Eq. in the small T" limit as

2Re {¢(0,w)[¢%(0,w)]" — ¢ (0, —w)[5 (0, —w)]* }
(D1)
after using the symmetry relations Eq. . This spec-
tral function is purely real and odd in w. In the small-w
limit, the exact definition of the wavefunction and
with Eq. can be used to expand the spectral

function in the lowest order of w as

22 Ae e
3 (’UoE)2

with the spectral weight suppressed by the LZ factor in-
side the gap.

In the large-w limit, the asymptotic expansion (39)) can
be used to evaluate the GF. The wavefunction ¢%(0,w)
consists of three contributions away from w = 0: incom-
ing, transmitted and reflected waves. For instance, for
w > 0 ¢f(0,w) has the transmitted wave. Due to the os-

cillation et in Eq. induced by the external field,
the product between the wavefunction components may
have cancelled or strong phase oscillations. For example,
a product of incoming waves in ¢(0, —w) and ¢¥(0, —w)
of Eq. ( . has the most dominant contribution that has
cancelled phases. Cross-component products have un-
cancelled phases as etiw?/vE  The oscillations become
more rapid for smaller electric field. Such strong oscilla-
tion present in both frequency w and position x makes the
numerical calculations quite challenging at small fields.

Analytic calculation for the non-oscillatory contribu-
tion at |w| > A gives the approximate expression*t

w3 for w~ 0.

(D2)

2 2
_a <1+ A) for |w| > A and A% >1, (D3)
w voF

202
which is, except for the prefactor A, the same as the
large-w expansion of (w? — A%)~Y/2 in the gap equa-
tion . It is remarkable that the non-oscillatory part

of the integral is independent of the electric field. FIG.[9]

shows the the zero-field retarded GF (blue) threads the
center of oscillation of the numerically accurate retarded
GF (green). Although the integration of the oscillatory
part is non-zero, especially with the important contribu-
tion close to |w| ~ A, the approximation by the zero-field
retarded GF is reasonable.

Appendix E: Switching Field at the MIT

The on-set of the MIT is determined by the stability
of the A = 0 solution in Eq. , the condition that the
slope of the RHS remains below 1. Therefore the condition
for the MIT is

dw
— — <
hmO / G

w)+ G5 ()] 5=

omi

(E1)
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Spectral Function

FIG. 9. Off-diagonal GFs G:_f(w) + Gﬁi(w) at A = Ay,
E = Emvr and I' = 0.01. Fully numerical calculations for the
lesser (red) and retarded (green) GF's show strong oscillation
in frequency. The center of oscillation is well described by
the analytic evaluation (blue) of the non-oscillatory part in
the zero-field GF.

We can evaluate this exactly by using the first-order ex-
pansion of the GF out of the non-interacting GF consid-
ered in Section [[TAl The retarded GF satisfies

(w+ il — Hy)G (z,2') = 6(z — 21, (E2)

with the GF matrix (G")a = G7,. Hp acts on the x.

Taking the first-order expansion gives

AGT (z,2") + (w+il —ivgd+ Ex)G" , (z,2') = 0. (E3)

Here, we suppressed w in the expression for brevity. The
unperturbed GF Glg (z, ;13’) is g/iven in Eq. 1) with A =
+. Defining g(z,2’) = el¥@a)-T/vlle=zligr (z z'),
one solves the differential equation to obtain for x > '
as

A

9(a,2') = gole!) — = / (200’ ) 2T/ 00) (=2 ) gy (E4)
0 Ja’

with an arbitrary function go(z’). Since g(z,2') — 0 as
|z — 2’| = oo, one sets the boundary condition as

A o0 ’ : ’
g(gj7x/) = 72/ 6_2(F/U0)(y_37 )+2ip(y,@ )dy (E5)

Yo

This gives us for x < 0

G, (0,z) = %e(r/vo)mw(o,@ /OO e~ 2(T/v0)y+2i(y,0) gy
Yo 0
(E6)
and
A
G",(0,2)G7(0,2)* = i%@(fx)ez(r/vo)wf(w, T,E),
(E7)

with the integral denoted as I(w,T, E).
integral over z in Eq. (29)), we get

Performing an

672Fw/v0E w>0
0G4 (w)/A = ~I(w,T,E) x { 1 w<0 "



Similarly one obtains

USGi(W)/A:—I(w,F7—E)X{O w>0

The integral I(w,I,E) can be transformed to
the parabolic cylinder function D_;(z) with
z = /2/voEe”™/4(w +iI') by rotating the integration
contour, and then approximated by the asymptotic
expansion as

ivg B elm/4 —i(w +1il)?
7200 i) +0O(—w) f/m;o exp [ wE } . (E8)

I(w,T',—E) can be obtained by replacing E — ™ E and
O(—w) — O(w). The second term is highly oscillatory
and we ignore its integral in the analytic estimate. It also
shows that the oscillation goes like e~ /v E for large w
and why the numerical calculation becomes problematic
in the small E limit. Then the first term is nothing but
the zero-field retarded GF. Combining the results, we

1—e 2w/wE , <0 -
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arrive at the MIT condition

27 Do (w)
_— = — el 7 E
U /—D w? + T2 de ( 9)

with the non-interacting distribution function Eq. .
Performing this integral in a similar manner as considered
in the main text, we obtain the integral

P wdw e 2hw/voEqy, o] 2¢"T'D
/0 w? + T2 /0 w? 4+ T2 _n< vo )

(E10)

in the limit ' <« Teg ~ voE/T <« D. This analytic

expression agrees very well with the exact value by nu-

merically evaluating I(w, T, E) within 5% for the param-

eters considered. We then have the MIT condition at the

switching field Fyr as

T T
EMIT ~ G’Y*AO ~ 1.78 on, (Ell)
Vo Vo
which gives, with the parameters used in this work, the
analytic estimate Engr = 0.0053 at about 20% overesti-
mate from the numerical value.
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