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As many-body Floquet theory becomes more popular, it is important to find ways to connect
theory with experiment. Theoretical calculations can have a periodic driving field that is always
on, but experiment cannot. Hence, we need to know how long a driving field is needed before the
system starts to look like the periodically driven Floquet system. We answer this question here
for noninteracting band electrons in the infinite-dimensional limit by studying the properties of the
system under pulsed driving fields and illustrating how they approach the Floquet limit. Our focus
is on determining the minimal pulse lengths needed to recover the qualitative and semiquantitative
Floquet theory results.

I. INTRODUCTION

Floquet theory has a long history, going back to the
late 1800s1. Recently, it has become a topic of wide inter-
est in the condensed-matter community, especially with
the relationship between periodic driving and topological
properties2,3. Floquet systems require the driving field to
be present for all times. This presents a challenge exper-
imentally, since the field must be turned on and then off
in realistic experiments. In addition, it is expected that
interacting Floquet systems which have been turned on
for a long time will generally have runaway heating, and
end up in the infinite-temperature limit. This motivates
the question, how long does a pulsed field need to be in
order to describe the Floquet regime well? We answer
this question for noninteracting band electrons here.

Experimentally, this is an important issue. Seminal
work by the Gedik group showed how one can tran-
siently change the topology of a topological insulator
when driven by circularly polarized light4. Theory indi-
cated how one can determine the bandgaps that opened5.
But the theoretical premise of this work was that when we
examine properties at the center of the pump pulse, they
will look like the infinitely driven Floquet system. While
this cannot be precisely true, it is approximately true. In
this work, we examine this question in detail and deter-
mine criteria for which one can approximate the Floquet
regime well, and we also show how one can average tran-
sient results to recover Floquet behavior in cases where
the Floquet limit does not immediately emerge. We an-
ticipate that much of these criteria will continue to hold
when interactions are added, but provide no proof of that
conjecture. Additionally we show that the noninteract-
ing density of states of a periodically driven system is
non-negative.

Some previous theory has examined these pulsed sys-
tems in the transient regime. One example is a theoreti-
cal calculation in the change of the topology of graphene
due to a circularly polarized electric field pulse6 and an-
other examined the transition metal dichalcogenides7,8.
But none of that work addressed the specific question of

how long must a pulse be on before the system appears
to be described by the Floquet limit. We do so here.
We focus on examining band electrons driven by an

external electric field. The problem is solved exactly via
the Peierls’ substitution9. We focus on the limit of in-
finite dimensions, because it allows us to obtain a num-
ber of exact analytic relations. It also allows for this
work to benchmark interacting calculations performed
with nonequilibrium dynamical mean-field theory10,11 in
the future.
The remainder of the paper is organized as follows: In

Sec. II, we introduce the model and the methodology
used to solve for the retarded Green’s functions for dif-
ferent pulsed drives. In Sec. III, we present our numer-
ical results. Sec. IV has our conclusions. An appendix
that proves nonnegativity of the time-averaged density of
states follows at the end.

II. MODEL

We illustrate next how to describe lattice fermions un-
der the influence of an external field. We start with
the tight-binding Hamiltonian12 in the absence of a field
given by

H0 = −
N∑
ij=1

tijc
†
i cj − µ

N∑
i=1

c†i ci , (1)

where tij is the hermitian hopping matrix, µ is the chem-
ical potential, and N is the number of lattice sites. The
fermionic annihilation operator cj destroys an electron
at lattice site j while the fermionic creation operator c†i
creates an electron at lattice site i. In this paper, we as-
sume spinless electrons, and nearest-neighbor hopping on
a hypercubic lattice in d→∞ dimensions. The nonzero
elements tij of the hopping matrix are given by

tij = t∗

2
√
d

(2)

13, and depend on the rescaled hopping constant t∗. We
couple this system to an external electromagnetic field
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described by

E (r, t) = −∇Φ (r, t)− 1
c

∂A (r, t)
∂t

, (3)

where Φ (r, t) is a scalar potential and A (r, t) is a vector
potential. The speed of light is c, and we use the Hamil-
tonian gauge14 to set the scalar potential Φ (r, t) = 0.
The electric field effect on the hopping matrix is taken
into account by performing the Peierls’ substitution15.
The original matrix element is multiplied by the expo-
nential of the integral over the vector potential from the
lattice vector Ri to the lattice vector Rj as follows:

tij → tijexp
(
− ie
~c

∫ Rj

Ri

A (r, t) dr

)
. (4)

Here, the absolute value of the electron charge is given
by e. This Peierls’ substitution is for a single band
model, which means there are no dipole transitions be-
tween bands16. While the electric fields we are consider-
ing vary in time, we assume they are spatially uniform, so
the magnetic field associated with them is negligible and
A (r, t) → A (t). This assumption can be made because
the wavelength of the driving field is much larger then the
atomic scales. In this case, the momentum-space repre-
sentation for the Hamiltonian of noninteracting electrons
coupled to a spatially uniform electric field can be written
as a function of the band structure

ε (k) = − t∗√
d

d∑
α=1

cos (kαa) , (5)

where a is the lattice constant. The momentum-space
Hamiltonian becomes

H (t) =
∑
k

[
ε

(
k − eA (t)

~c

)
− µ

]
c†kck , (6)

with

c†k = 1√
N

N∑
n=1

exp [−iRnk] c†n (7)

and the hermitian conjugate equation for ck. For many
driving fields, such as an electric field that is periodic in
time, the Hamiltonian in Eq. (6) is a Floquet Hamilto-
nian. It has periodic time dependence due to the time de-
pendence it inherits from the electric field. However, be-
cause the Hamiltonian with the Peierls’ substitution is di-
agonal in momentum space, it commutes with itself for all
times [H (t) ,H (t′)] = 0. This greatly simplifies the prob-
lem. We consider the momentum-space representation of
the creation and the annihilation operator in the Heisen-
berg picture, where ck (t) = exp [itH (t)] ckexp [−itH (t)],
and use the Hamiltonian in Eq. (6) to derive their time
evolution, yielding

ck (t) = exp
[
− i
~

∫ t

−∞

[
ε

(
k − eA (t)

~c

)
− µ

]
dt
]
ck .

(8)

This result allows us to analytically calculate the re-
tarded momentum-dependent Green’s function, which is
defined by

gR (k, t1, t2) = − i
~

Θ (t1 − t2)
〈{

ck (t1) , c†k (t2)
}

+

〉
.

(9)
The angular brackets denote thermal averaging 〈O〉 =
Tr [exp (−βH0)O] /Tr [exp (−βH0)], where the inverse
temperature is given by β = 1/T and H0 is the field-free
Hamiltonian in Eq. (1). To calculate the momentum-
dependent Green’s function in Eq. (9), we specialize to a
vector potential that lies along the diagonal, introducing
a scalar function A (t) that is associated with the vector
potential via A (t) = A (t) (1, 1, 1, . . . ). In this case, the
retarded momentum-dependent Green’s function is given
by

gR (k, t1, t2) = − i
~

Θ (t1 − t2) e
iµ
~ (t1−t2) (10)

×exp
[
−iε (k)

~

∫ t1

t2

cos
(
eaA (t)

~c

)
dt
]

×exp
[
−i ε̃ (k)

~

∫ t1

t2

sin
(
eaA (t)

~c

)
dt
]
,

using the complementary energy function

ε̃ (k) = − t∗√
d

d∑
α=1

sin (kαa) , (11)

which is the projection of the band velocity along the
field direction. Of course this retarded Greens function
is independent of temperature as expected for Green’s
functions of noninteracting systems. Note that in equi-
librium the Hamiltonian is constant in time and hence the
whole problem is time-translation invariant. Thus, only
time differences matter and the Green’s function depends
solely on the relative time trel = t1− t2. However, due to
the coupling of the lattice fermions to a time-dependent
electric field, the Green’s function in Eq. (10) depends
separately on the time t2 of the creation operator and the
time t1 of the annihilation operator. The local Green’s
function can be computed by summing over all momen-
tum vectors k, which corresponds to the integration over
ε and ε̃ respectively, by using the joint density of states
for tight binding electrons on a hypercubic lattice

ρ0 (ε, ε̃) =
(

1√
πt∗ad

)2
exp

[
−
( ε
t∗

)2
−
(
ε̃

t∗

)2
]
. (12)

Lengthy calculations given in Ref.16 yield

gR
loc (t1, t2) = − i

~
Θ (t1 − t2) e

iµ
~ (t1−t2)e−( t∗2~ )2|I(t1,t2)|2 ,

(13)
where I (t1, t2) is given by

I (t1, t2) =
∫ t1

t2

exp
[
ieaA (t)

~c

]
dt . (14)
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FIG. 1: (color online) Schematic display of the two times for
the Green’s function and the integration directions for the
horizontal time and average time DOS. For retarded quan-
tities, the Fourier transform runs only over the darker parts
of the rectangles. Retarded quantities are nonzero only be-
low and to the right of the diagonal labeled tave, defined by
trel = 0.

In this paper, we will assume half filling (µ = 0), so
the time-dependent local Green’s function in Eq. (13) is
purely imaginary. The density of states (DOS) is found
from the temporal Fourier transform of the local retarded
Green’s function. In equilibrium, where the Green’s func-
tion is only dependent on the relative time t1−t2, it is un-
ambiguous what is meant by the frequency-dependent re-
sponse which is obtained by computing the Fourier trans-
form of gR

loc (t1 − t2). If, however, a driving that varies in
time is applied to the system, the situation is different,
as we have a two-time response gR

loc (t1, t2).

In generic pump-probe experiments, frequency re-
solved quantities are measured as a function of the delay
time. Careful analysis of a given experiment will yield
the proper way to integrate over time and construct the
frequency-dependent response, as was done for photoe-
mission in Ref.17–19. Nevertheless, when we examine
Green’s functions, it is useful to represent them in terms
of frequency irrespective of any particular measurement.
This procedure is not unique, and we describe two par-
ticular ways to do it next.

The first definition introduces the Wigner
coordinates20, where the Fourier transform is per-
formed in the relative time trel = t1 − t2 while the
average time tave = (t2 + t1) /2 is kept constant. The

Green’s function is expressed as

gR
loc (t1, t2) = gR

loc

(
tave + trel

2 , tave −
trel

2

)
. (15)

Figure 1 schematically displays the concept of these coor-
dinates by introducing the diagonal axis for tave and trel.
This means that all grid points on a line perpendicular
to the diagonal axis for tave are associated with the same
average time, just as all grid points perpendicular to the
axis trel/2 have the same relative time. For example, the
grid point (t1, t2) = (2, 1) ~/t∗, which is marked in red,
has the average time tave = 1.5~/t∗, and so do all the grid
points in the blue rectangle. That is, it is exactly those
times that the Fourier transformation is computed over
when the average time is chosen to be tave = 1.5~/t∗,
which is why we will refer to this as the diagonal Fourier
transform FD. It is employed to calculate the diagonal
DOS via

ρD (ω, tave) = − 1
π

Im
[∫ ∞

0
eiωtrelgR

loc (tave, ttel) dtrel

]
.

(16)
The above procedure is popular because tave can loosely
be interpreted as the "time corresponding to the DOS" In
this case it is reasonable to identify the time associated
with the Fourier transform to be in the middle of the
interval [t2, t1].
There are potential problems with this choice. If the

pulse starts at t0, then for tave < t0 there are traces
of the effect of the pulse in the DOS even though tave
is before the pulse was turned on. This is due to large
enough positive trel contributions in the Green’s function
given in Eq. (15) from times after the onset of the pulse
(t1 > t0). The converse is also true. If tave > t0, then
for large enough trel, we have t2 < t0, so contributions
to a field dressed DOS include terms before the field was
turned on.

In Fig. 1, the dashed red line represents a pulse start-
ing at t0 = −2~/t∗. Even if the average time is chosen
to be tave = 1.5~/t∗, the Fourier transformation with re-
spect to trel > 0, displayed as the area shaded in blue,
will eventually cross the dashed line and include values
t2 < t0.
We can also define a horizontal Green’s function as

gR
loc (t1, t2) = gR

loc (trel + t2, t2) , (17)

and again perform the Fourier transform in the relative
time trel. In Figure 1, this is displayed as the green box,
for all of the grid points in it satisfy t2 = ~/t∗. This hori-
zontal Fourier transform FH yields the horizontal density
of states, given by

ρH (ω, t2) = − 1
π

Im
[∫ ∞

0
eiωtrelgR

loc (trel + t2, t2) dtrel

]
.

(18)
The advantage of this definition is, that for t2 > t0, all
times used for the Fourier transform occur after the on-
set of the pulse. That is, for trel > 0 the shaded green
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area in Fig. 1 will never cross the dashed red line. The
disadvantage is that the average time is not fixed. Of
course, in static equilibrium both response functions are
equal and indistinguishable.

III. RESULTS

Floquet theory is applicable for quantum systems with
a Hamiltonian that is invariant under time translations
t→ t+ tperiod, i.e. a Hamiltonian being a periodic func-
tion in time with the period tperiod

21. It is based on
the Floquet formalism1 and is commonly used to study
strongly driven periodic quantum systems. The Hamil-
tionian in Eq. (6) fulfills these conditions if and only if
the driving field is strictly periodic in time, meaning it
is turned on at tt∗/~ = −∞ and stays on. It is obvious
that such a driving can never be realized in an experi-
ment. Therefore we will start this section by introducing
the properties of the DOS of lattice fermions coupled to
an infinite sinusoidal driving, and compare those results
to three field pumps that are not strictly periodic, but
are experimentally feasible. The raw data for all figures
can be found in the supplemental materials files22.

A. Infinite sinusoidal driving

For the infinite sinusoidal driving with the frequency
γ and the amplitude E, the vector potential is given by

A∞ = cE

γ
cos (γt) , (19)

whose simple form enables the analytic determination of
the local Green’s function. If we define the modified
amplitude E0 = eaE/~, the squared absolute value of
I (t1, t2) in Eq. (14) yields

|I∞ (t1, t2)|2 = 1
γ2

∣∣∣∣∫ t1γ

t2γ

fc (t) dt
∣∣∣∣2 (20)

+ 1
γ2

∣∣∣∣∫ t1γ

t2γ

fs (t) dt
∣∣∣∣2 .

with the integrands

fc (t) = cos
(
E0

γ
cos (t)

)
(21a)

fs (t) = sin
(
E0

γ
cos (t)

)
. (21b)

Both fc (t) and fs (t) are even functions that are 2π-
periodic, therefore they can be expressed as Fourier series
with the Fourier coefficients cm and sm according to

fc (t) = c0

2 +
∞∑
m=1

cm cos (mt) (22a)

fs (t) =
∞∑
m=1

sm cos (mt) . (22b)
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FIG. 2: (color online) Upper panel: Negative imaginary part
of the local retarded Green’s function as a function of the rel-
ative time trel in units of the inverse rescaled hopping ~/t∗.
Note that the real part vanishes because µ = 0. Lower
panel: Diagonal DOS as a function of the frequency ω in
units of the rescaled hopping. Because the DOS is a set
of delta functions at J0 (E0/γ) = 0 the coefficients gn =
−1/ (2π)

∫ 2π

0 dtrelIm
[
gR

loc (trel, 0)
]

cos (ntrel) of the Fourier se-
ries are displayed for E0 = 2.404γ and E0 = 5.52γ. Other pa-
rameters: average time tave = 0, driving frequency γ = t∗/~.

Note that due to the fact that fs (t) is not only 2π-
periodic, but also π-anti-periodic, the coefficient s0 van-
ishes, while the π-periodic function fc (t) has the coeffi-
cient c0 = 2J0 (E0/γ), where Jα is the Bessel function
of the first kind. Using the two 2π/γ-periodic functions
derived from integrating the Fourier coefficients of fc and
fs,

φc (t) = 1
γ

∞∑
m=1

cm
m

sin (mγt) (23a)

φs (t) = 1
γ

∞∑
m=1

sm
m

sin (mγt) , (23b)
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the integration in Eq. (20) can now easily be computed,
yielding

|I∞ (t1, t2)|2 = |φs (t1)− φs (t2)|2 (24)

+
∣∣∣∣J0

(
E0

γ

)
trel + φc (t1)− φc (t2)

∣∣∣∣2 .
In this form, it is obvious that the increase in |I∞ (t1, t2)|2
for large relative times is solely caused by the term de-
pendent on the Bessel function and proportional to t2rel;
a large |I∞ (t1, t2)|2 corresponds to a small Green’s func-
tion as seen in Eq. (13). This is because the periodic
functions φ merely oscillate in time. Hence, if the am-
plitude and the frequency of the driving field are chosen
in such a way that the Bessel function J0 (E0/γ) is zero,
then the dephasing of the Green’s function, correspond-
ing to the decay of gR

loc (t1, t2) for large trel, no longer
occurs.

Figure 2 shows the imaginary part of the time-
dependent local Green’s function at tave = 0, as defined
in Eq. (15) for different amplitudes of the electric field,
while the frequency is kept constant at γ = t∗/~. Note
that the Green’s function at half filling is purely imagi-
nary [see Eq. (13)]. In this case, the absolute value of
Bessel function is purely dependent on the amplitude of
the driving. If the amplitude is chosen to be E0 = 2.404γ,
which corresponds to the first zero of the Bessel function
(displayed in orange), it is clear that there is no dephas-
ing in trel and the local Green’s function oscillates with a
period of 2π/γ between one and a constant value less then
one. Note that if the Bessel function is zero, the squared
absolute value of I∞ (t1, t2) in Eq. (24) is merely a su-
perposition of sinusoidal functions that are periodic in
2π/γ. This means the DOS is a set of delta functions and
the dominant frequencies are ω = 0 and ω = ±γ. The
next zero of the Bessel function occurs at E0 = 5.52γ,
and again the imaginary part oscillates with a period of
2π/γ around a constant value. However, the amplitude
changes and additional peaks appear. Therefore the DOS
is again a set of delta functions, but it consists of more
delta peaks than at the first zero. This behavior contin-
ues, as the amplitude takes values of higher zeros of the
Bessel function.

The imaginary part of the Green’s function at a con-
stant t2 = 0 [as defined in Eq. (17)] shows the same
overall properties when displayed as a function of trel,
differences being that the lower extreme value shifts and
the oscillations have double the frequency. This behavior
can easily be understood, because in Eq. (24) t1 and t2
are the arguments of the function φ, where they solely
appear in the argument of the sine function. But in
the average time Green’s function (15), both t1 and t2
are dependent on trel/2, while they are dependent on trel
without an additional factor in the Green’s function for
the horizontal case (17). Therefore the period of the os-
cillations in trel for a constant tave is twice as large for a
constant t2.

Contrary to the behavior at the zeros of the Bessel

function, the dephasing in trel is fast at extreme values of
the Bessel function like its first minimum at E0 = 3.83γ,
which is displayed in red, because the squared absolute
value of |I∞ (t1, t2)|2 is large, even if trel is still compar-
atively small. As the argument of the Bessel function
becomes smaller, the dephasing takes longer.
For a time-independent Hamiltonian it is easy to prove

that the DOS is positive semidefinite, via the Lehmann
representation. However, this is not necessarily the case
for the DOS of a driven system where the DOS takes
negative values if it is computed at a constant tave or t2.
On the other hand, for a pure Floquet Hamiltonian the
DOS has to be periodic in the Floquet period, which is
the period of the driving, and averaging over this Floquet
period in tave or t2, respectively, does lead to a semidefi-
nite DOS. To show this analytically, we consider the re-
tarded Green’s function at half filling, introduced in Eq.
(10) and write it in terms of the functions φ introduced
in Eq. (23), yielding

gR (k, t1, t2) = − i
~

Θ (t1 − t2) (25)

×exp
[
− i
~
ε (k) J0

(
E0

~

)
(t1 − t2)

]
×exp

[
− i
~

(ε (k)φc (t1)− ε (k)φc (t2))
]

×exp
[
− i
~

(ε̃ (k)φs (t1)− ε̃ (k)φs (t2))
]
.

Defining the 2π/γ periodic function Φ (t,k)

Φ (t,k) = exp
[
− iε (k)

~
φc (t)− iε̃ (k)

~
φs (t)

]
(26a)

=
∑
m

eimγtfm (k) (26b)

allows us to write this Green’s function as

gR (k, tave, trel) = − i
~

exp
[
− iε (k)

~
J0

(
E0

~

)
trel

]
×Θ (trel) Φ∗

(
tave −

trel

2 ,k

)
Φ
(
tave + trel

2 ,k

)
. (27)

As shown in the Appendix, using the convolution of two
2π/γ periodic functions and the fact that Φ can be writ-
ten as a Fourier series with the coefficients fm, the inte-
gral over one period is given by

γ

2π

∫ x+ 2π
γ

x

Φ∗
(
t̃− t

2

)
Φ
(
t̃+ t

2

)
dt̃ =

∑
m

|fm|2eimtγ .

(28)
Note that we are suppressing the k dependence of both
Φ and fm in order to simplify the notation. This allows
us to compute the averaged Green’s function

ḡR (k, trel) = γ

2π

∫ x+ 2π
γ

x

gR (k, τ, trel) dτ (29)
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and the averaged spectral function Ā (ω,k), yielding

Ā (ω,k) = − 1
π

Im
(∫ ∞

0
eiωtrel ḡR (k, trel) dtrel

)
(30a)

= 1
~
∑
m

|fm|2δ
(
ω +mγ − ε (k)

~
J0

(
E0

~

))
(30b)

which is indeed non-negative for all ω. While the diago-
nal and the horizontal DOS corresponding to the infinite
sinusoidal driving are different at a given time t2 for the
horizontal DOS and tave for the diagonal DOS (even if
t2 = tave), the time-averaged spectral function Ā (ω,k)
(and therefore the DOS averaged over the Floquet pe-
riod) are always the same. Details can be found in the
Appendix.

B. Semi-infinite sinusoidal driving starting at t0 = 0

While a driving field that is switched on at a given
time t0 = 0 but stays on is also not experimentally im-
plementable, it is useful to study the properties of its
DOS because there are many similarities to the behav-
ior of the DOS of driving pulses that can be experi-
mentally implemented (see below). The vector poten-
tial of this semi-infinite sinusoidal driving is given by
A = (cE/γ) cos (γt) Θ (t)− (cE/γ) Θ (t). Again, the sim-
ple form of this expression allows us to analytically calcu-
late the local retarded Green’s function in Eq. (13). For
this driving, one has to distinguish between three time
intervals when calculating the absolute value squared of
I (t1, t2). If both the annihilation operator at t1 and
the creation operator at t2 are applied before the field
is switched on, i.e. t2 < t1 < 0, the Hamiltonian equals
a tight-binding Hamiltonian without an electric field as
given in Eq. (1). In this case, I (t1, t2) = trel and the local
Green’s function in Eq. (13) is a Gaussian in trel mul-
tiplied by a step function, which becomes the Gaussian
DOS after Fourier transformation to frequency16. How-
ever, if the creation operator is applied before the field
is switched on, meaning t2 < 0, while the annihilation
operator is applied after the field is turned on (t1 > 0),
the absolute value of I (t1, t2) is given by∣∣It2<0

sm (t1, t2)
∣∣2 = (31)∣∣∣∣−t2 + cos

(
E0

γ

)
Fc (t1, 0) + sin

(
E0

γ

)
Fs (t1, 0)

∣∣∣∣2
+
∣∣∣∣cos

(
E0

γ

)
Fs (t1, 0)− sin

(
E0

γ

)
Fc (t1, 0)

∣∣∣∣2 .
Here Fc and Fs are the integrated functions fc (t) and
fs (t) as defined in Eq. (21) and given by

Fc (t1, t2) = J0

(
E0

γ

)
trel + φc (t1)− φc (t2) (32a)

Fs (t1, t2) = φs (t1)− φs (t2) . (32b)

Finally, if the operator times obey t1 > t2 > 0, the abso-
lute square of I (t1, t2) yields∣∣It2>0

sm (t1, t2)
∣∣2 = (33)∣∣∣∣cos

(
E0

γ

)
Fc (t1, t2) + sin

(
E0

γ

)
Fs (t1, t2)

∣∣∣∣2
+
∣∣∣∣cos

(
E0

γ

)
Fs (t1, t2)− sin

(
E0

γ

)
Fc (t1, t2)

∣∣∣∣2 .
For large average times the DOS of the system coupling
to the semi-infinite sinusoidal driving should equal the
DOS of an infinite sinusoidal driving, and by factor-
ing the expression in Eq. (33) it can indeed be shown
that it is equal to the expression in Eq. (24), i.e.∣∣It2>0

sm (t1, t2)
∣∣2 = |I∞ (t1, t2)|2. The function Fc (t1, t2)

is directly proportional to the Bessel function multiplied
by trel. This means, that at large average times the
relative time at which t2 = tave − (trel/2) < 0 implies∣∣It2>0

sm (t1, t2)
∣∣2 in Eq. (31) is so large that the Green’s

function in Eq. (13) is essentially zero. In this case, it
does not contribute to the DOS anymore.
This holds true as long as Fc (t1, t2) is indeed increas-

ing with trel, which is the case as long as the amplitude
and the frequency of the driving are chosen in such a
way that the Bessel function is not zero. However, if the
Bessel function is zero,

∣∣It2>0
sm (t1, t2)

∣∣2 is not increasing
for increasing relative times, while

∣∣It2<0
sm (t1, t2)

∣∣2 is still
increasing because of the contribution of−t2. This means
that even for large average times, the Green’s function at
t2 < 0, i.e. trel > 2tave, contributes to the diagonal DOS,
which will never be a set of delta functions and therefore
never equal the DOS of the system coupled to an infinite
drive.
This scenario is displayed in Fig. 3. Here the imagi-

nary part of the local, time-dependent Green’s function
is plotted as a function of t2 for fixed tave = 10~/t∗.
Note that for retarded quantities t2 ≤ tave holds. The
black line is the Heaviside step function, so the semi-
infinite drive is turned on only in the area shaded in
grey. The dashed lines correspond to the imaginary parts
of the local, time-dependent Green’s functions of a semi-
infinite drive, while the solid lines correspond to the in-
finite drive. Within the shaded box, the curves at the
same amplitude E0 match perfectly. But outside of that
area, where t2 < 0, the imaginary parts of the local,
time-dependent Green’s functions corresponding to the
semi-infinite drive decay faster then the functions corre-
sponding to an infinite drive.

For the amplitude E0 = 3.83γ, both the Green’s func-
tion for infinite drive (light green) and for semi-infinite
drive (dark green) have completely decayed when t2 = 0.
This is because the magnitude of the Bessel function
is large at J0 (3.83) = −0.40. In this case, choosing
tave = 10~/t∗ is sufficient to interpret the DOS corre-
sponding to the semi-infinite drive as a Floquet DOS.
Contrary to that, the imaginary part of the local, time-
dependent Green’s function with E0 = 5.22γ differs sig-
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FIG. 3: (color online) Negative imaginary part of the local
Green’s function at tave = 10~/t∗, as a function of the t2
in units of inverse rescaled hopping ~/t∗ for different electric
fields. Other parameters: γ = t∗/~. Note that the real part
vanishes because µ = 0.

nificantly from zero at t2 = 0. This is because the mag-
nitude of J0 (5.22) = −0.10 is small. For t2 < 0 the
function for semi-infinite drive (red) decays faster than
for infinite drive (orange), so the DOS will not match due
to these contributions from before t = 0 (when the semi-
infinite drive is turned off). At this amplitude, only the
DOS corresponding to larger average times can approx-
imate the Floquet results. Finally, the local time de-
pendent Green’s function corresponding to E0 = 2.40γ
does not decay at all for the infinite drive (light blue).
This is because J0 (2.40) = 0. However, for the semi-
infinite drive (dark blue) it starts to decay immediately
for t2 < 0. This means the DOS corresponding to the in-
finite drive and the semi-infinite drive will never match,
no matter how large the average time is chosen to be,
and the DOS corresponding to semi-infinite driving can
never be interpreted as the Floquet DOS.

However, for the horizontal Fourier transformation the
Green’s function only contributes to the horizontal DOS
for t > t2, which is why the horizontal DOS correspond-
ing to the semi-infinite sinusoidal drive always equals the
horizontal DOS corresponding to the infinite drive for all
t2 > 0 for any amplitude and frequency of the electric
field.

C. Sinusoidal Steplike Pulse

A pulse that is turned on at t0 and turned off after
n ∈ N oscillations, i.e. at a cutoff time tc = 2πn/γ is
not experimentally implementable either, but there are
experimental implementations that come close. One ad-

vantage of it is, that again the DOS can be computed
analytically. Naturally, for t2 < t1 < tc the DOS equals
the results for semi-infinite driving, i.e. depending on
the sign of t2 the absolute value of I (t1, t2) is given by
Eq. (31) or Eq. (33). This also means that for the di-
agonal Fourier transform, the average time needs to be
chosen large enough for the DOS corresponding to the
semi-infinite driving to equal the DOS obtained by ap-
plying an infinite sinusoidal driving, as explained in sec-
tion III B. However, for 0 < t2 < tc < t1, the absolute
value squared of I (t1, t2) is given by∣∣Itc<t1sp (t1, t2)

∣∣2 = (34)∣∣∣∣t1 − tc + cos
(
E0

γ

)
Fc (tc, t2) + sin

(
E0

γ

)
Fs (tc, t2)

∣∣∣∣2
+
∣∣∣∣cos

(
E0

γ

)
Fs (tc, t2)− sin

(
E0

γ

)
Fc (tc, t2)

∣∣∣∣2 ,
where the growing t1− tc for increasing trel causes signif-
icant deviations from the DOS corresponding to infinite
driving. Therefore, it is not enough to choose tave to be
large and the Bessel function to have a finite size in order
to interpret the results with Floquet theory, but also tc
must be large enough that the change in the local Green’s
function that is caused by Eq. (34) has no further ef-
fect on the DOS. Similar to the semi-infinite driving, the
dephasing in trel of the local retarded Green’s function
is significantly faster if the Bessel function of the am-
plitude divided by the frequency of the electric field is
large. Since the absolute value of I (t1, t2) for t2 < 0
and for t1 > tc, given in Eq. (31) and Eq. (34) respec-
tively, is eventually increasing for any electric field, while
it is oscillating equally to the absolute value of I (t1, t2)
of the infinite sinusoidal driving for 0 < t2 < t1 < tc
and J0 (E0/γ) = 0, the DOS will never be a set of delta
functions. The Green’s function for t1 > tc will eventu-
ally contribute to the DOS for both the horizontal and
the diagonal Fourier transform, therefore at zeros of the
Bessel function, the measured DOS corresponding to the
sinusoidal steplike pulse can never be interpreted using
Floquet theory, no matter which Fourier transform is cho-
sen.
Studying the diagonal DOS for 0 < tave < tc/2, it is

obvious that t2 < 0 applies before t1 > tc needs to be
taken into account, therefore here the results correspond
to the results for the semi-infinite driving. However, for
tc/2 < tave < tc, the Green’s function at tc < t1 needs
to be considered before t2 < 0 applies. Therefore, for
Floquet theory to be valid, the Green’s function has to
be approximately zero at t1 = tc in order for it to have a
negligible contribution to the DOS. Because the dephas-
ing in trel in the local Green’s function is faster the larger
the value of the Bessel function multiplied by sin (E0/γ)
and cos (E0/γ) is, the cutoff time tc can be chosen sig-
nificantly smaller for large values of the Bessel functions.

Note that it is most suitable to set the average time to
tave = tc/2 because in this case t2 = 0 and t1 = tc occur
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FIG. 4: (color online) The diagonal DOS corresponding to
the steplike pulse that starts at t = 0 and is turned off after
n oscillations at a cutoff time tc = 2πn/γ and corresponding
to an infinite sinusoidal drive for γ = t∗/~, tave = 30~/t∗
and two different amplitudes E0 = 5.22γ (upper panel) and
E0 = πγ/4 (lower panel).

at the same relative time trel = tc. When tave is chosen
to be the minimal average time tmin

ave at which the DOS
corresponding to a semi-infinite drive equals the DOS for
infinite driving, then tc = 2tmin

ave is the shortest cutoff time
at which the DOS of the steplike pulse can be interpreted
with Floquet theory.

Figure 4 displays the diagonal DOS corresponding to
the steplike pulse and to infinite sinusoidal driving for
γ = t∗/~ at two different amplitudes of the electric field.
The average time is chosen to be tave = 30~/t∗ because
earlier analyses have shown that this is sufficiently large
for the diagonal DOS of the semi-infinite sinusoidal drive
to equal the DOS associated with infinite driving. For
tc < tave, the squared absolute value of I (t1, t2) is given
by |trel|2, so for t2 < t1 < 0, the local retarded Green’s
function (and therefore the DOS) are Gaussian and equal
to the noninteracting DOS, as explained in section III B.
This is why the blue line at n = 4, i.e. at tc = 4 ·

2π~/t∗ < tave = 30~/t∗, is Gaussian and the same for
both amplitudes of the electric field.
In the upper panel of Fig. 4, the amplitude of the elec-

tric field is given by E0 = 5.22γ, so that the magnitude
of the Bessel function is small [J0 (5.22) = −0.10]. This
means the dephasing in trel is slow (as can be seen in
Fig. 2), so tc has to be chosen quite large in order for
Floquet theory to be applicable. When contemplating
the DOS at n ∈ {5, 6, 7} in the upper panel, it is obvious
that it is completely different from the DOS of the infi-
nite sinusoidal pulse, which is displayed in orange. Only
at n = 8 do we start to see some similarity, and the lines
seem to match at n = 9. However, only n = 10 (this is
not displayed, as the deviations from n = 9 are too small
to be seen) is sufficient for the two diagonal DOS to be
essentially equal. This means tc needs to be chosen to be
twice as large as tave when the results are meant to be
interpreted with Floquet theory.

In the lower panel of Fig. 4, the amplitude of the elec-
tric field is chosen to be E0 = 0.25πγ. In this case,
the magnitude of J0 (0.25π) = 0.602 is large and both
cos (0.25π) = sin (0.25π) = 1/

√
2 are large too. Con-

trary to the DOS corresponding to a small value of the
Bessel function, we find that the Gaussian diagonal DOS
at tave > tc (n = 4, blue), shows similarities to the diago-
nal DOS corresponding to the infinite sinusoidal driving.
Furthermore, as soon as tave < tc (n = 5, green), the DOS
are equal. Note that the average time in the lower panel is
chosen to be tave = 30~/t∗ to ensure comparability with
the upper panel. But while tave = 30~/t∗ ≈ tmin

ave holds
for E0 = 5.22γ (upper panel), the minimal average time
for E0 = 0.25πγ is much smaller at tmin

ave � tave = 30~/t∗.
Therefore, in the lower panel, tc � 2tave is sufficient to
interpret the DOS with Floquet theory.

The observations above hold for the horizontal DOS as
well, the major difference being that tave does not need to
be chosen as large. In fact, in this case, choosing tave = 0
is ideal, as only the magnitude of tc− tave determines the
quality of the results for a given electric field.

D. Sinusoidal Gaussian Pulse

A field pump that is implementable in an experiment is
a sinusoidal electric field that is modulated with a Gaus-
sian envelope, i.e. an electric field that is given by

E (t) = E sin (γt) exp
[
−
(
t

tE

)2
]
, (35)

where tE is the width of the Gaussian. This corresponds
to the vector potential (expressed in terms of the imag-
inary error function in the first line and the Faddeeva
function in the second line)

AG (t) = cEtE
√
π

2 e−( γtE2 )2

Re
[
erfi
(
γtE
2 + it

tE

)]
(36a)

= cEtE
√
π

2 e
−
(
t
tE

)2

Im
[
w
(
γtE
2 + it

tE

)
eiγt
]
,(36b)
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which shares many properties with the vector potential
for the infinite sinusoidal pulse in Eq. (19). Both vec-
tor potentials have the same zeros and oscillate with the
same frequency, the major difference is the decaying am-
plitude for the oscillations in the vector potential AG.
Since we are not able to calculate an analytic form for
the local retarded Green’s function from that, we sim-
ply calculate it numerically. What we find is that as the
Gaussian broadens, the corresponding DOS does not sim-
ply approach the DOS of an infinite sinusoidal drive, but
oscillates around it (see Fig. 6). It requires a second av-
eraging, more precisely a running average over one period
of these oscillations in ω, for the DOS of the Gaussian
pulse to match the DOS of the infinite sinusoidal driving.

This can be traced back to an additional peak in the
imaginary part of the time-dependent local Green’s func-
tion, whose position and shape are functions of the am-
plitude E0, the frequency γ and the width tE of a pulse
(see Fig. 5). Figure 5 shows that for a wide Gaussian, the
imaginary part of the time-dependent local Green’s func-
tion perfectly matches the imaginary part of the time-
dependent local Green’s function of the system coupling
to an infinite drive up to a relative time at which the
Green’s function of the infinite drive completely decays.
The Green’s function of the Gaussian pulse has a single
complex revival at a later relative time.

The amplitude of the electric field is chosen to be
E0 = 3.83γ so the Bessel function of the amplitude di-
vided by the frequency is at its first minimum. This en-
sures a fast decay of the Green’s function corresponding
to the infinite sinusoidal drive as explained in Sect. IIIA.
Therefore, this amplitude leads to the best agreement be-
tween the Green’s function corresponding to an infinite
drive (orange) and the Green’s function of the pulsed sys-
tems (blue and green) before the latter Green’s functions
have their revival.

This behavior is illustrated further in Fig. 6, which
displays the diagonal DOS corresponding to an infinite
sinusoidal drive (blue) and a pulsed system (green) in fre-
quency space. Both diagonal DOS are averaged over the
Floquet period from tave = −π/γ to tave = π/γ, evenly
around the center of the pulse. Any averaging that is not
centered around the pulse leads to significantly worse re-
sults. The orange line in Fig. 6 is the running average
in frequency ω over one period of the oscillations in the
diagonal DOS of the pulsed system, i.e., the average over
one period of the oscillations of the green line.

For an amplitude at which the Bessel Function
J0 (E0/γ) is small (E0 = 5.22γ, upper panel in Fig. 6),
the diagonal DOS of the pulsed system shows large de-
viations from the diagonal DOS corresponding to the in-
finite sinusoidal drive even after taking the running av-
erage (especially for small frequencies ω). However, at
E0 = 3.83γ (first minimum of the Bessel function, sec-
ond panel in Fig. 6), the agreement between the diago-
nal DOS of the system coupling to an infinite sinusoidal
drive and the running average over the diagonal DOS of
the pulsed system is good (all parameters except for E0
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FIG. 5: (color online) Negative imaginary part of the local
Green’s function at a constant average time tave = 0, as a
function of trel in units of inverse rescaled hopping ~/t∗ at
E0 = 3.83γ for an infinite sinusoidal drive (orange) and for
two Gaussians where the product of the width of the Gaussian
and the frequency of the electric field is γtE = 10 (blue) and
γtE = 20 (green) respectively, at three different driving fre-
quencies γ = 0.5t∗/~ (upper panel), γ = t∗/~ (middle panel)
and γ = 1.5t∗/~ (lower panel).

are the same in the two upper panels).
To explain the connection between the frequency of the

oscillations in the DOS and both the width of the Gaus-
sian tE and the frequency γ of the electric field, it is useful
to study the imaginary part of the local time dependent
Green’s function (see Fig. 5). For a wider Gaussian, i.e.,
larger tE (for fixed γ) the revival occurs later, meaning
that the oscillations in the DOS show a higher frequency.
In fact, the time at which the revival occurs seems to be
almost linearly connected to the width of the Gaussian,
as a shift by some factor α in the width tE → αtE leads
to the revival time shifting from trel to αtrel. Varying γ
on the other hand has little effect on the relative time at
which the revival occurs, but for a constant pulse width
tE the agreement between the Green’s function of the



10

infinitely driven system and the Green’s function of the
pulsed system diminishes for very small γ. Another dis-
advantage of low frequencies is that the Fourier period
2π/γ increases, so when calculating the averaged DOS
the Green’s function requires contributions from average
times that are much further away from the center of the
pulse.

Figure 5 shows that at any given frequency γ, the re-
vival occurs later whenever the product γtE is larger.
That is, the green peak for γtE = 20 always occurs at a
later relative time than the blue peak at γtE = 10. The
agreement between the running average of the DOS of
the pumped system and the DOS of the system coupling
to an infinite drive is generally better for later times of
the revival in the Green’s function. This is because for
early arrival times, the Green’s function corresponding to
the infinite drive may not have completely decayed when
the revival occurs. That is, the resemblance between the
two DOS is better at high frequencies γ and for broad
Gaussian pulses. This is not surprising, as it means that
the pumped field resembles the infinite sinusoidal field
when it has a larger amount of oscillations. Therefore
it is more interesting to compare the Green’s functions
and the resulting DOS at varying frequencies γ where the
product γtE of the width of the pulse and the frequency
of the electric field is kept constant.

By comparing the revival times at the frequencies
γ = 0.5t∗/~, γ = t∗/~ and γ = 1.5t∗/~ (with γtE fixed)
in Fig. 5, it is clear that the revival occurs later for
lower frequencies. This directly results from the later
occurrence of the revival as the Gaussian broadens. At
γ = 0.5t∗/~ (upper panel of Fig. 5), the revivals of both
γtE = 10 and γtE = 20 occur long after the Green’s func-
tion corresponding to the infinite drive has decayed. This
means that the agreement between the curves is good
up to this point. But this agreement becomes worse at
larger frequencies. For γ = t∗/~ (middle panel in Fig.
5) the green curve at γtE = 20 still matches the Green’s
function of the system coupling to an infinite drive up
to the point where the latter one has decayed, but the
revival of the blue curve at γtE = 10 moves to times trel
where the Green’s function corresponding to the infinite
drive has not completely decayed. The deviations before
the decay of the Green’s function become even larger at
higher frequencies like γ = 1.5t∗/~ (lower panel in Fig.
5). This implies that the applicability of Floquet theory
is strongly dependent on the width of the Gaussian, and
to a lesser extent on the driving frequency γ. A wide
Gaussian ensures that the measured DOS resembles the
DOS of the infinitely driven system, even if the frequency
of the driving field is low.

Figure 6 confirms these conclusions. Comparing the
lower three panels, where the width of the Gaussian and
the frequency of the electric field are chosen so γtE = 30
holds, it becomes clear that the frequency with which the
diagonal DOS of the pulsed system oscillates around the
DOS corresponding to the infinite drive is increasing as
the Gaussian broadens and the frequency of the driving
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FIG. 6: (color online) The diagonal DOS corresponding to an
infinite sinusoidal drive (blue) and a pulsed system (green),
both averaged over the Floquet period from tave = −π/γ to
tave = π/γ and the running average in frequency ω (orange)
over one period of the oscillations in the diagonal DOS of the
pulsed system at different amplitudes and frequencies of the
electric field and for a Gaussian pulse of varying width.

field decreases. Note that even though the diagonal DOS
of the pulsed system (green) is averaged over the Floquet
period, the oscillations take negative values, i.e. the av-
eraged DOS is not semidefinite even if the Gaussian is
broad. As explained in Sect. III A, it is required for the
DOS averaged over the Floquet period to be semidefinite
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FIG. 7: (color online) The upper panel: Green’s function
of both the pulsed system (labeled "Gauss") and the system
that is driven for an infinitely long time (labeled "Infinite")
for a constant t2 = 0 (FH) and a constant tave = 0 (FD).
Lower panel: horizontal and diagonal DOS of both systems,
averaged over one Fourier period in t2 and tave respectively.
Other parameters: E0 = 3.83γ, γ = t∗/~ and tE = 30~/t∗.

if we want the pulsed system to be representative of the
Floquet results. Fortunately, the orange line that results
from calculating the running average over one period of
the oscillations in the DOS (corresponding to the Gaus-
sian pulse) is semidefinite and resembles the DOS of the
infinitely driven system well.

The results for the horizontal Fourier transformation
are similar to the results obtained using the diagonal
Fourier transformation. The major difference is a factor
of 2 in the relative time that was already mentioned in
Sec. III A and is caused by the relation t1 = tave + trel/2.

The upper panel in Fig. 7 shows the Green’s function
of both the pulsed system and the system that is driven
for an infinitely long time at E0 = 3.83γ, γ = t∗/~ and
tE = 30~/t∗, both for tave = 0 and for t2 = 0. Note that
the Green’s functions are given in terms of trel/2 for the
constant average time tave = 0 (magenta) and in terms
of trel for a constant t2 = 0 (green). This is to emphasize
the fact that the peak of the revival in the Green’s func-
tion corresponding to a constant t2 takes place at exactly
half of the relative time at which the peak of the revival
in the Green’s function corresponding to a constant tave
is located. In fact, for small relative times, even the rel-
ative times at which the Green’s functions of the system
that is coupling to an infinite drive (orange and blue) go
through extrema are separated by this factor 2.

The lower panel of Fig. 7 displays the diagonal and the
horizontal DOS of the pulsed system and the infinitely
driven system, both averaged over one Fourier period
from tave = −π/γ to tave = π/γ for constant tave and
from t2 = −π/γ to t2 = π/γ for constant t2. Note that
this averaging leads to exactly the same DOS for the in-
finite drive (blue and orange), no matter which Fourier
transform is computed (as shown in Sec. III A). The
diagonal DOS (magenta) of the pulsed system, however,
oscillates with almost double the frequency of the hori-
zontal DOS (green) of the same system. While the period
of the oscillations in the horizontal DOS is almost per-
fectly constant and the amplitude of these oscillations
decreases monotonically, the period of the oscillations of
the horizontal DOS varies significantly more. Though
the amplitude of the horizontal DOS shows an overall
decay, it does not decrease monotonically. This leads to
a slightly worse agreement between the DOS correspond-
ing to the infinite drive and the running average over one
period of the oscillations in the DOS for the Gaussian
pulse when the DOS is horizontal.

Note that the second "revival" peak of the time depen-
dent local Green’s function is expected to be smaller for
interacting systems where Green’s functions decay more
rapidly in imaginary time. So these oscillations may be
reduced when interactions are included.

IV. SUMMARY

In this work, we have examined situations where one
might be able to observe Floquet behavior. We stud-
ied noninteracting, fermionic systems (which do not heat
up) and compared the exact Floquet solutions for the re-
tarded Green’s functions to a number of different cases
including a semi-infinite drive and a periodic drive with
a Gaussian envelope (to make it into a pulse which is ex-
perimentally realizable). The true Floquet system has a
Hamiltonian that is periodic with respect to the period
of the driving.

We observed a number of interesting results. First, for
the pure Floquet system, the conventional definition of
the instantaneous DOS as the imaginary part of the re-
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tarded local Green’s function evaluated at fixed tave or t2,
is not positive semi-definite. But the time-averaged den-
sity of states always is. This holds both for the diagonal
and the horizontal Green’s function.

Second, when an ac electric field is applied along the
main diagonal direction of the lattice, the value of the
Bessel function J0 (E0/γ) is critical in determining the
subsequent behavior. In the Floquet limit, one will ob-
tain a local DOS that is a sequence of delta functions
when J0 (E0/γ) = 0; they become broadened and lose
their identity as J0 becomes larger in magnitude.

Third, even if the Hamiltonian is not strictly periodic,
Floquet theory is still applicable as a good approximation
if certain other requirements are met. In particular, when
|J0 (E0/γ)| is large, the pulsed system appears quite close
to the Floquet result. But, as mentioned above, when we
are at a zero of the Bessel function, it is never feasible to
find the pumped system looking like the Floquet one.

In particular, if we employ a Gaussian envelope func-
tion, the width of the envelope is the primary predictor of
whether the system will look like a periodic Floquet sys-
tem. A wide Gaussian ensures that the measured DOS
resembles the DOS of the infinitely driven system, even
if the frequency of the driving field is low. On the other
hand, measuring at high frequencies does not compen-
sate for a narrow Gaussian. Hence, it is not true that
one can simply count the number of oscillations inside
one or two standard deviations of the pulse to determine
whether it will behave like a Floquet system—this only
holds if the Gaussian pulse width is wide enough.

Surprisingly, even if the system resembles a periodic
Floquet system in the time domain, it is not sufficient to
average the DOS over one period of the driving (in tave or
t2) to reproduce the DOS of the corresponding Floquet
Hamiltonian (even if the amplitude E0, the frequency γ
and the width of the Gaussian tE are optimally chosen).
Instead, it further requires a second averaging, precisely
the running average (in the frequency domain) over one
period of the oscillations , for the pulsed DOS to resemble
the DOS of the infinite drive.

As interactions are added in (see as a first step Ref.23),
we expect it to be easier for the Gaussian pumped system
to look Floquet like, because the extra scattering due to
the interactions will cause the Green’s functions to decay
more rapidly in relative time. This will, in turn, widen
the parameter space where the pulsed system appears
to behave more like the corresponding Floquet system.
If the pump adds substantial heat to the system a high
temperature stationary state will be reached in which we
do not expect the retarded Green’s function to depend
strongly on temperature. Of course it will have larger ef-
fect on lesser Green’s functions, but we are not discussing
those here. We look forward to seeing more experiments
that will illustrate this behavior in the future.
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Appendix A: Semipositivity of the Time-Averaged
Densities of States

We start with two arbitrary 2π/γ periodic functions
f (t) and g (t), which can be expressed as the following
Fourier series:

f (t) =
∑
m

eimγtfm (A1a)

g (t) =
∑
m

eimγtgm . (A1b)

The convolution of these two functions is given by

h (t) = γ

2π

∫ x+ 2π
γ

x

g (t− t′) f (t′) dt′ (A2a)

= γ

2π

∫ x+ 2π
γ

x

∑
m,n

einγ(t−t
′)eimγt

′
gnfmdt′(A2b)

=
∑
m,n

gnfme
intγ γ

2π

∫ x+ 2π
γ

x

eiγ(m−n)t′dt′︸ ︷︷ ︸
δm,n

(A2c)

=
∑
m

gmfme
imtγ (A2d)

=
∑
m

hme
imtγ . (A2e)

which is also 2π/γ periodic and has Fourier coefficients
hm = gmfm. This means that if the coefficients fm and
gm are complex conjugates of each other, the coefficients
of the convolution are positive and obey hm = |fm|2 ≥ 0.
Coefficients that are complex conjugates naturally arise
when the 2π/γ periodic functions obey g (t) = f∗ (−t) =∑
m exp [imγt] f∗m. Using this identity and substituting
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either t̃ = t′− t or ˜̃t = t′−(t/2), the convolution becomes

h (t) = γ

2π

∫ x+ 2π
γ

x

f∗ (t′ − t) f (t′) dt′ (A3a)

= γ

2π

∫ x̃+ 2π
γ

x̃

f∗
(
t̃
)
f
(
t̃+ t

)
dt̃ (A3b)

= γ

2π

∫ ˜̃x+ 2π
γ

˜̃x
f∗
(

˜̃t− t

2

)
f

(
˜̃t+ t

2

)
d˜̃t(A3c)

=
∑
m

|fm|2eimtγ . (A3d)

The averaged local retarded Green’s function, as defined
in Eq. (29) of the infinitely driven field, has exactly the
form of Eq. (A3b) when the retarded Green’s function
is given as a function of t1 and t2 by identifying t2 = t̃.
At the same time it has exactly the form of (A3c) when
writing the retarded Green’s function as a function of
tave and trel and identifying tave = ˜̃t. Therefore the time-

averaged local retarded Green’s function is given by

ḡR (k, trel) = − i
~

Θ (trel) e−
iε(k)

~ J0(E0
~ )trel (A4a)

×
∑
m

|fm|2 eimtrelγ (A4b)

no matter which Fourier transform is chosen. The aver-
aged spectral function as defined in Eq. (30a) yields

Ā (ω,k) = − 1
π

Im
[
− i
~
∑
m

|fm|2 (A5a)

× lim
η→0+

∫ ∞
0

e
itrel
(
ω+mγ− ε(k)

~ J0(E0
~ )+iη

)
d trel

]
(A5b)

=
∑
m

|fm|2

~
δ

(
ω +mγ − ε (k)

~
J0

(
E0

~

))
. (A5c)

This is manifestly non negative and completes the proof.
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