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Interaction in a flat band is magnified due to the divergence in the density of states, which gives 

rise to a variety of many-body phenomena such as ferromagnetism and Wigner crystallization. 

Until now, however, most studies of the flat band physics are based on model systems, making 

their experimental realization a distant future. Here, we propose a class of systems made of real 

atoms, namely, carbon atoms with realistic physical interactions (dubbed here as Kagome 

graphene/graphyne). Density functional theory calculations reveal that these Kagome lattices 

offer a controllable way to realize robust flat bands sufficiently close to the Fermi level. Upon 

hole doping, they split into spin-polarized bands at different energies to result in a flat-band 

ferromagnetism. At a half filling, this splitting reaches its highest level of 768 meV. At smaller 

fillings, e.g., when ߥ ൌ ଵ଺, on the other hand, a Wigner crystal spontaneously forms, where the 

electrons form closed loops localized on the grid points of a regular triangular lattice. It breaks 

the translational symmetry of the original Kagome lattice. We further show that the Kagome 

lattices exhibit good mechanical stabilities, based on which a possible route for experimental 

realization of the Kagome graphene is also proposed.  
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Introduction 

Carbon is one of the most abundant elements in the universe. To date, a large number of 

carbon allotropes have been found or synthesized, including fullerene, carbon nanotube, and 

graphene [1-3]. Graphene is by far the most celebrated carbon material [4], for its excellent 

properties such as an extremely-high carrier mobility [5,6] and thermal conductivity [7], and 

mechanical strength [8] with enormous potentials for applications [9-15]. On the other hand, the 

Coulomb interaction energy in graphene is small when compared with the kinetic energy. In a 

conventional view, this would imply that carbon is not a good candidate for studying the physics 

of strongly correlated systems. Furthermore, the strength of the spin-orbit coupling in carbon is 

exceptionally small [16], which constrains its usefulness in studying the topological physics.   

On the other hand, flat band systems are important for both strong interactions and 

topological physics. Here, regardless its absolute value, interaction energy dominates over 

kinetic energy due to the quench of the latter. The interplay between a band flatness and 

interaction energy has given rise to a variety of strong correlation phenomena such as a flat-band 

ferromagetism [17,18] and Wigner crystallization [19] in the context of a Kagome lattice [20] 

and the ݌௫-݌௬-orbital bands of honeycomb [21-23] and Lieb lattices [24-26]. In these systems, 

due to a destructive interference among the hopping processes, the single-particle eigenstates 

become localized degenerate states at different plaquettes. The Bloch-wave band states are a 

superposition of these localized states, and hence, are dispersionless. Recently Wigner 

crystallization has also been identified in nearly-flat topological bands at low fillings [27]. The 

salient feature of the flat bands has prompted the suggestions to use it to boost superconducting 

transition temperature [28] and to host topological states such as the Fractional Quantum Hall 

States. A combination of non-trivial topology and strong correlation may lead to exotic 
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phenomena as a result of fractional excitations of anyons and fractional statistics. Recently, 

fractional Chern insulators based on the flat band structure have also been extensively studied in 

lattice systems in the absence of magnetic Landau levels [29-31].  

Kagome lattice is a lattice which can generate flat band. To date, however, most studies on 

its flat band physics are based on toy models [32-34]. Experimentally, available materials with a 

Kagome lattice are mostly frustrated magnets [35-40], which are half-filled Mott insulators. 

Unfortunately, Fermi level (ܧி) in such materials is distance away from the flat bands. Given the 

rich bonding chemistry but simple band structure of carbon, e.g., for graphene only pz states exist 

near ܧி, and exceptional stabilities of its various allotropes, one may ask if it is possible to 

synthesize carbon-based Kagome or Kagome-like lattices and what would be the physics of 

strong correlation in them. 

In this paper, we identify, by first-principles total-energy calculations, a family of 

two-dimensional (2D) carbon Kagome-like structures (to be termed Kagome graphene/graphyne), 

which can host flat bands and relevant physical phenomena. The most basic structure is the 

Kagome graphene made of carbon triangles on a regular honeycomb lattice. Noticeably, flat 

bands appear near ܧி in all these structures. Upon hole doping, the spin degeneracy of the flat 

bands is spontaneously lifted to result in a flat-band ferromagnetism with a large spin splitting. 

At a 1/6 filling factor of the flat bands, a Wigner crystallization is found, while at other filling 

factors, various charge density wave patterns are expected. These interesting physical 

phenomena are interpreted based on a Hubbard model. The possibility of realizing an anomalous 

quantum Hall effect, as well as the possible routes to synthesize the Kagome graphene, are also 

discussed.  
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Model and Methods 

The atomic structure of the Kagome graphene is shown in Fig. 1(a). It has twice as many 

atoms as a regular Kagome lattice, with the two subsets of atoms in Fig. 1(a) denoted by 

different colors. Should the bond length between two adjacent different-colored atoms “shrinks” 

to zero, one recovers the regular Kagome lattice. Other members in the family can be obtained 

by inserting acetylenic dimers between neighboring triangles. For example, a Kagome graphyne 

containing one dimer between triangles is shown in Fig. 1(b). In the following, we focus on 

Kagome graphene, but all the physics discussed below equally applies to other structures as well.  

The lattice constant of the Kagome graphene is a (= b) = 5.19 Å. The bond length within a 

carbon triangle is 1.42 Å, while between the triangles is 1.35 Å. The former is very close to 

graphene, while the latter is between graphene and acetylene. Although the Kagome graphene 

contains carbon triangles, its cohesive energy of Ecoh = 8.26 eV/C is comparable to α- and β-graphynes, 8.28 and 8.35 eV per carbon atom, respectively [41]. To further confirm its lattice 

stability, we calculated the phonon spectra [see Fig. S1(a) in supplementary information (SI)]. 

No soft phonon mode is found throughout the BZ.  

We performed first-principles calculations within the density functional theory (DFT) as 

implemented in the VASP codes [42]. The potential of the core was described by the projector 

augmented wave method [43]. The exchange-correlation interaction between the valence 

electrons was described by the generalized gradient approximation (GGA), using the 

Perdew-Burke-Ernzerhof (PBE) functional [44]. A kinetic energy cutoff of 600 eV was used. 

The atomic positions were optimized using the conjugate gradient method, and the energy and 

force convergence criteria were 10-6 eV and 10-3 eV/Å, respectively. In the case of Kagome 

graphene, an 11×11×1 k-point mash was used for the Brillouin zone (BZ) integration. 
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Results and discussions 

1. Band Structure 

Figure 2(a) shows the band structure of Kagome graphene. A flat band appears right below ܧி with a band width ~0.1 eV. There are two bands connecting the flat band at Γ point. They 

cross each other at K point, forming a Dirac point but at a considerably higher energy. The flat 

band is fully occupied while the two Dirac bands are empty. The partial density of states (PDOS) 

in Fig. 2(b) indicate that these bands can be attributed to out-of-plane carbon pz-orbitals similar 

to graphene.  

The appearance of the almost flat band can be understood by employing a simple 

tight-binding model. In the momentum space, the Hamiltonian reads 

଴ܪ   ൌ ൬ܪ஺஺ ஻஺ܪ஺஻ܪ  ஻஻൰ ,                             (1)ܪ

where ܪ஺஺ and ܪ஻஻ are the intra-triangle hopping matrices in sublattice A (red) and B (green) 

in Fig. 1(a), respectively, and ܪ஺஻  and ܪ஻஺  are the corresponding inter-triangle hopping 

matrices. They are 3×3 matrices of the form: ܪ஺஺௜௝ ൌ ஻஻௜௝ܪ ൌ tଵ൫1 െ  ௜௝൯ߜ

஺஻௜௝ܪ    ൌ ൫ܪ஻஺௝௜ ൯כ ൌ tଶδ୧୨eି୧୰౟·୩                        (2) 

where tଵ  and tଶ  are the intra-triangle and inter-triangle hopping amplitudes, respectively, 

and  ݎԦଵ,ଶ,ଷ are three vectors from the center of a triangle in the A sublattice to those of its three 

nearest-neighbor triangles in the B sublattice. The tight-binding model with tଵ ൌ 6 ܸ݁ and tଶ ൌ 3 ܸ݁ captures the essential features of the DFT results, as can be seen in Fig. 2(a). This 

includes the flat band at ܧ ൌ ଵݐ െ  ଶ, the two Dirac bands with Dirac points at K and K’, as wellݐ
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as the quadratic touching between the flat band and the Dirac bands at ߁, which is protected by 

the group symmetries ܦ଺௛ at ߁ and ܥଷ௩ at K (K’). On the other hand, one would not expect 

the model to work well at higher energies, so we will confine our discussion to states below the 

Dirac points.  

 The presence of flat bands in Fig. 2(a) is the result of a special structural property of the 

Kagome graphene lattice, which implies that there exist local single-particle states as the 

eigenstates of the band Hamiltonian. Consider a real-space state |ܽۧ, whose charge distribution 

is within a hexagonal ring as depicted in the inset of Fig. 2(a). We refer the hexagonal ring as a 

plaquette in the following text. The state |ܽۧ is localized in the real space, but nevertheless an 

eigenstate of the Hamiltonian in Eq. (1). This happens because of a total destructive interference 

of the various hopping amplitudes, which prevents the state from leaking out. The Bloch wave 

states in the flat band are thus linear combinations of the various |ܽۧ’s localized in different 

plaquettes. These localized single-particle states are key to the understanding of strong 

correlation phenomena. 

The flat band and localized states |ܽۧ are naturally related to p orbitals on the honeycomb 

lattice. Consider 3 linearly-independent single-particle states |1ۧ, |2ۧ and |3ۧ, located on each 

vertex of a triangle. These states can be decomposed into two irreducible representations (IRREP) 

of the lattice symmetry group: the 1D IRREP contains the state |1ۧ ൅ |2ۧ ൅ |3ۧ, analogous to the ݌௭  orbital in graphene; the 2D IRREP contains the state |1ۄ ൅ ۄ2|߱ ൅ ߱ଶ|3ۄ and its time 

reversal partner (߱ ൌ ݁௜ ଶగ/ଷ), analogous to local ݌௫ േ  ௬ orbitals in graphene. The localized݌݅

states |ܽۧᇱݏ are the flat band state, lying fully in the 2D IRREP. In other words, the localized 

states discussed above are directly mapped to the localized states in the system of p orbitals in 

the honeycomb lattice [21]. 
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2. Flat band ferromagnetism 

The interplay between the band flatness and Coulomb interaction gives rise to many novel 

phenomena such as the flat-band ferromagnetism [17,18]. Although the Stoner mechanism for 

ferromagnetism [45] captures the physics of exchange interaction, i.e., spin-polarized electrons 

keep distance with one another due to Fermi statistics to reduce repulsion, it does not take into 

account the correlation effect. Electrons often remain unpolarized even under very strong 

interactions since they can still avoid one another by developing highly-correlated wavefunctions 

[46]. Spin polarization is typically not favored because the kinetic energy cost is often larger than 

the exchange energy gain. This competition imposes serious challenge to obtain itinerant 

ferromagnetism. In contrast, when electrons fill in the flat band, the kinetic energy penalty of 

spin polarization does not exist anymore, hence, the exchange interaction stabilizes the polarized 

state. To obtain some insights from DFT calculations, we dope the system by reducing the 

density of valence electrons (hole doping) to make the flat band partially filled, say, ν ൌ ଵଶ, while 

maintaining the charge neutrality with a compensating homogeneous background charge. In 

experiments, doping can be achieved by an electrostatic gating. Figure 3(a) shows the band 

structure of the doped ferromagnetic ground state, which is spontaneous spin polarized. The 

spin-up and down bands split, with ܧி straddles between the upper empty and lower occupied 

flat bands. The spin splitting is △E = 768 meV, which is roughly on the order of the on-site 

Coulomb interaction. The cohesive energy of the ferromagnetic ground state is 8.24 eV/C, which 

is about 20 meV/C larger than the non-polarized state. The lattice constant is increased slightly to 

5.27 Å, while all the bond lengths are changed to 1.41 Å. Figure S1(b), SI shows the phonon 
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spectrum for the hole-doped Kagome graphene, showing that the structure is stable.  

3. Wigner crystallization due to the flat band 

When the filling inside the flat band is less than ߥ ൌ ଵଶ, Coulomb interaction can further 

organize the electrons in the flat band, leading to other interesting phenomena. For instance, 

Wigner crystallization occurs at ν ൌ ଵ଺, which spontaneously breaks the original translational 

symmetry of the crystal [21]. A new translational symmetry should emerge but entirely driven by 

the electron degree of freedom, namely, a Wigner crystallization. A simple analysis shows that a √3 ൈ √3 supercell, as marked by the dotted brown lines in Fig. 1(a) which is 30°-rotated from 

the original cell, is consistent with such a filling of the flat band. Owing to the effect of the band 

folding, the original spin-up flat band splits into three [see Fig, 4(a)], only one of which is fully 

occupied to result in a charge gap ߂௖  meV with the other two completely empty bands. The 90׽

lattice constant is also increased from 8.99 to 9.53 Å. Figure 4(b) shows the charge density of the 

occupied flat-band state, revealing that only ଵଷ of the plaquettes are now occupied. Figure 4(c) 

shows the magnetic moments on atoms. One can see that this Wigner crystal is ferromagnetic 

with a moment of 0.055µB for atoms on the closed loops inside the occupied plaquettes and 

-0.021µB for atoms connecting the loops. 

It is noted that, in the conventional setting, Wigner crystallization is a strong-correlated 

phenomenon resulting from the competition between kinetic energy and interaction energy. The 

DFT calculation, owing to its improper treatment of the electron self-interactions, tends to 

produce the so-called delocalization error, which is always in favor of delocalized states and 

hence a general lack of Wigner crystallization. However, here we have a flat band, arising from 

the special Kagome lattice configuration for which the kinetic energy is completely quenched 
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such that the interaction term always wins. In other words, the actual wavefunction localization, 

and hence the formation of the Wigner lattice, due to Coulomb repulsion, can only be more 

pronounced than what we can obtain using the DFT approach. This will be validated 

qualitatively by the following mean-field theory analysis. 

4. Explanation in terms of the Hubbard model 

To understand the above results, we employ the following model of interacting electrons to 

describe the Kagome-graphene structure, ܪ ൌ ଴ܪ ൅ ܷ ∑ ݊௜,՛݊௜,՝௜ ൅ ܸ ∑ ሺ݊௜,՛ ൅ ݊௜,՝ሻሺ ௝݊,՛ ൅ ௝݊,՝ሻۦ௜,௝ۧ ,                (3) 

where ܪ଴ is the non-interacting tight-binding Hamiltonian introduced in Eq. (1); ܷ and ܸ 

describe the on-site and nearest-neighboring Coulomb repulsions, respectively. As we will 

demonstrate below, this minimal model captures the essential physics of both flat band 

ferromagnetism and Wigner crystallization. 

We first discuss the ferromagnetism occurring at ߥ ൌ ଵଶ. At this filling, each of the localized 

states |ܽۧ in different plaquettes is occupied by one electron. If no electron-electron interaction 

is included, the spin direction of each localized plaquette state is arbitrary, leading to massive 

degenerate ground states. Because the localized states of neighboring plaquettes overlap on the 

bonds they share, the direct exchange interaction dominates, which arises from the two-electron 

exchange integrals of the on-site and nearest-neighboring repulsions, and favors that the two 

neighboring localized states have the same spin direction. In consequence, the fully polarized 

spin configuration is selected as the ground state, exhibiting the flat-band ferromagnetism. The 

key here is that the kinetic energy is quenched in the flat band while the interaction effect is 

amplified. In Fig. S2(a) of SI, we show the mean-field calculation of the band structure with 
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ܷ ൌ 2.8 eV and V ൌ 1 eV, which agrees well with the DFT results. 

The ferromagnetism persists at lower fillings. To understand this, consider the process of 

filling electrons in the flat band. At a low filling, electrons can avoid each other by occupying the 

localized states centered at plaquettes disconnected with each other, and the interaction energy is 

simply zero if only the onsite and nearest neighboring repulsions are taken into account. Each 

localized state is free to choose between spin up or down. As the filling increases, more plaquette 

localized states are occupied. Beyond ߥ ൌ ଵ଺, no more plaquette localized states are available to 

fill; the occupied flat-band states have to touch each other, so their interactions start to take an 

effect. The touching between two neighboring plaquettes of opposite spins costs the energy of ଵ଻ଶ  ܷ ൅ ସଷଵହ ܸ than that of same spin [see Fig. 3(b)]. Consequently, domains constituted of 

connected plaquette localized states are polarized, whose length scale increases with ߥ. As the 

filling reaches the percolation threshold ߥ ൌ ଵସ [47], the area of the largest connected domains 

scales with the system area, hence, the global magnetization ܯ is developed, which peaks at ߥ ൌ ଵଶ. 

Now we consider the Wigner crystallization at ߥ ൌ ଵ଺. This particular filling corresponds to 

the closest packing configuration of occupied plaquette localized states without touching each 

other, as depicted in Fig. 4(b). This is an incompressible phase, as any change of the closest 

packing configuration would result in an energy increase due to the nearest-neighbor repulsion 

between plaquettes. It spontaneously breaks the original lattice translational symmetry to result 

in an enlarged √3 ൈ √3ܴ30° supercell. This symmetry breaking is consistent with the DFT 

results in Fig. 4(a). As a matter of fact, the standard mean field treatment of Eq. (3) also 

reproduces quantitatively the DFT band structure, as can be seen in Fig. S2(b) in SI. As 
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discussed earlier, if only the on-site and nearest neighboring interaction are considered as in the 

minimal model, the Wigner crystal at ߥ ൌ ଵ଺ should be paramagnetic as each plaquette can pick 

random spin direction without affecting the total energy. However, the realistic system studied 

by DFT includes hoppings beyond nearest neighbors. In this case, the plaquette wavefunctions 

are no longer exactly localized, but slightly extend outside as evidenced by the small dispersion 

of the band in Fig. 4(a), such that different plaquette wavefunctions overlap to generate exchange 

interaction in favor of ferromagnetism.  

Note that the DFT calculation and the discussion above are limited to ߥ ൌ ଵ଺. As Coulomb 

interaction is a long-range interaction, one can expect that at lower than ଵ଺ fillings, Wigner 

crystals of different patterns should also be stabilized [48]. 

Next, we would like to briefly mention the possibility of realizing anomalous Quantum Hall 

effect in Kagome graphene, whose band structure shows quadratic touches of the flat band with 

Dirac bands. In general, a quadratic-touching point is unstable in the presence of even an 

infinitesimal interaction [49], which lifts the degeneracy by opening a gap. In our case at ߥ ൌ ଵଶ, 

the spin-polarized flat band spontaneously breaks the time-reversal symmetry in the orbital 

channel to open a gap. In each triangle, therefore, there is a spontaneously developed non-zero 

orbital angular momentum ܮ௭  around the center of the plaquette, as an order parameter. 

Consequently, the originally flat band develops a dispersion near the Γ-point, and acquires a 

non-trivial topological Chern number 1 or െ1. The Chern number is obtained by numerically 

integrating the Berry curvature ߲݅௞ೣ ർ߰൫ሬ݇Ԧ൯ ቚ߲௞௬ቚ ߰൫ሬ݇Ԧ൯඀ െ ߲݅௞೤ൻ߰൫ሬ݇Ԧ൯ห߲௞௫ห߰൫ሬ݇Ԧ൯ൿ  over the 

discretized Brillouin zone [50], where ห߰൫ሬ݇Ԧ൯ൿ is the Bloch state obtained from the mean field 
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theory.  Using Eq. (3) with the same parameters as before, we obtain ܮ௭ = 0.004԰. Figure 

S3(a-b) in SI shows that a gap ׽ 5 ݉eV opens up between the flat and Dirac bands, which 

corresponds to a temperature of about 60 K. Hence, at a reasonably low temperature, chiral edge 

modes should be observed in a Kagome graphene ribbon (see Fig. S3(c-d)).  

5. Experimental feasibility of Kagome graphene 

To fabricate the kinetically-stable Kagome graphene, one may consider the following (as 

detailed in Fig. S4): the bottom line is that the elemental building unit of the triangular carbon 

rings of Kagome graphene already exists in laboratory as various cyclopropane molecules. One 

may thus tailor the ligand chemistry of the cyclopropanes to realize a self-assembly of the 

Kagome graphene, similar to the recent success in self-assembling metastable carbon 

nanowiggles. In terms of the choice of substrate, the self-assembly process may be carried out on 

single-layer boron nitride sheet. According to our calculation, the mismatch between a 2×2 

supercell of boron nitride and the primitive cell of Kagome graphene is smaller than 2.1%. The 

binding energy between the Kagome graphene and boron nitride is comparable to that of 

graphene on the same substrate. For more details, one can see Figure S4 in SI, which also shows 

that the flat band and related phenomena are intact.  

6. Other related carbon structures 

We would like to point out that the aforementioned flat-band physics applies not only to the 

Kagome graphene, but also to a whole family of related structures, for example, the one in Fig. 

1(b) where the triangular rings are linked by acetylenic dimers. We will term such a structure a 

Kagome graphyne. Here, the lattice constant is a' = b' = 9.65 Å, the bond length within the 

triangular ring is 1.42 Å, within the acetylenic linker is 1.25 Å, and between the ring and linker is 
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1.34 Å. The phonon spectrum in Fig. S1(c) in SI indicates that Kagome graphyne is also 

kinetically stable, although its cohesive energy of Ecoh = 8.19 eV/C is lower than that of Kagome 

graphene, due to the less-stable acetylenic bonds. Figure S5(b) shows that the band structure of 

Kagome graphyne, with an almost dispersionless flat band right above ܧி, can be even better to 

that of Kagome graphene. As results, the spontaneous spin polarization and Wigner 

crystallization after hole doping are also obtained. When the triangular rings are connected by 

more acetylenic dimers, a series of carbon structures similar to Kagome graphene such as a 

Kagome graphdiyne will be obtained. Besides pure carbon networks, covalent organic 

frameworks such as COF-1 may also be viewed as having a local Kagome structure. 

 

Conclusion 

We show by first-principles calculations that Kagome graphene and related structures are 

promising artificial materials to study the physics of strong correlation, while traditional 

carbon-based materials are not. The key is the unusual Kagome structure of carbon atoms, all of 

which exhibit a flat band right below ܧி. A tight-binding model is constructed to explain these 

findings by localized single-particle states as a result of destructive interference among various 

electron hopping processes. The interplay between band flatness and electron coupling leads to a 

number of interesting properties such as ferromagnetism, Wigner crystallization, and anomalous 

quantum Hall effect. Last but not least, we also propose potential synthesis pathways to fabricate 

the Kagome graphene and related structures. 

Recently, Cao et al. reported that bilayer magic-angle graphene superlattice exhibits 

ultraflat bands near charge neutrality owing to the strong interlayer coupling [51,52]. These flat 

bands exhibit correlated insulating phases at half-filling, which are not expected in a 
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non-interacting picture. Upon electrostatic doping away from these correlated insulating states, 

tunable zero-resistance states are observed. These results are complementary with ours, which 

jointly open a door to explore exotic many-body quantum phases in 2D carbon materials without 

external magnetic field.   
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Figure 1 Atomic structure of (a) Kagome graphene, where the primitive unit cell is shown by the 

dashed red line. Blue and green triangle rings of atoms are two sublattices of the system. Dotted 

brown line shows a  supercell as a result of Wigner crystallization. (b) Kagome 

graphyne, where the triangular rings are linked by acetylenic carbon linkers.  
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Figure 2 (a) Band structure of Kagome graphene, where the solid and dashed lines are the 

calculated results of DFT and tight-binding model in Eq. (1), respectively. Inset shows the 

wave-function for a localized state in the flat band. (b) Partial density of states (PDOS) of 

Kagome graphene.  
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Figure 3. Flat-band ferromagnetism. (a) DFT band structure of Kagome graphene after one-hole 

doping to result in a ferromagnetic ground state. The green dotted line shows the Fermi level. (b) 

Wavefunctions of the localized states in the simplified model [cf. Eq. (1)] with calculated 

energies. The touching of two localized states with opposite spins would cost more energy than 

that with same spin. This energy cost is the origin for the global ferromagnetism seen here. 
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Figure 4 (a) Band structure of Kagome graphene in the  supercell doped by 5 holes, i.e., 

the filling factor is 1/6 for the flat band. The green dotted line shows the Fermi level. (b) Charge 

density contour for states (at any k-point) in the occupied flat band in panel (a). It leads to a 

Wigner crystallization, whose unit cell is shown in the light-blue dotted diamond. Each yellow 

electron ring corresponds to a single electron. (c) Magnetic moments of carbon atoms in the 

supercell. 

 

 

 


