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We present a comprehensive study of a one-dimensional two-orbital model at and below quarter-
filling that realizes a number of unconventional phases. In particular, we find an excitonic density
wave in which excitons quasi-condense with finite center of mass momentum and an order parameter
that changes phase with wave-vector Q. In this phase, excitons behave as hard-core bosons without
charge order. In addition, excitons can pair to form bi-excitons in a state that is close to a charge
density-wave instability. When pairing dominates over the inter-orbital repulsion, we encounter
a regime in which one orbital is metallic, while the other forms a spin gapped superconductor,
a genuine orbital selective paired state. All these results are supported by both, analytical and
numerical calculations. By assuming a quasi-classical approximation, we solve the three-body hole-
electron-spinon problem and show that excitons are held together by forming a bound state with
spinons. In order to preserve the antiferromagnetic background, excitons acquire a dispersion that
has a minimum away from k = 0. The full characterization of the different phases is obtained by
means of extensive density matrix renormalization group calculations.

I. INTRODUCTION

Charge recombination and photo induced charge trans-
fer lie at the heart of current attempts to construct vi-
able optoelectronic devices using organic semiconduct-
ing devices1–3. In particular, a great deal of interest
has focused on one-dimensional(1D) materials due to the
band edge singularities that could give rise to a high-
differential optical gain. One dimensional materials such
as conjugated polymers4,5 have already found uses in a
wide range of applications such as light-emitting diodes,
lasers, sensors, and molecular switches2,6–12.

Excitons in low-dimensional strongly correlated
electronic materials have received much theoretical
attention13–19, and they have also been observed ex-
perimentally in 1D Mott insulators20,21. The behavior
of excitations in interacting 1D systems is very pecu-
liar: due to the pervasive nesting at all electron den-
sities, Fermi liquid picture breaks down giving rise to
a different paradigm, the Luttinger liquid (LL). In a
spin-full Luttinger liquid elementary degrees of freedom
are not fermions with well defined charge and spin, but
bosonic collective quasi-particles carrying spin (spinon)
and charge (holon), leading to the concept of spin-charge
separation.

Excitonic instabilities in multi-orbital systems typi-
cally arise as photo induced excitations and give rise
to a complex interplay between charge, spin and or-
bital degrees of freedom21,22. Understanding this in-
terplay and how these bosonic excitations decay is one
of the main goals of pump-probe spectroscopy. While
much theoretical work has focused on single-band prob-
lems, a rich phenomenology can occur in more realis-
tic multi-orbital cases, where besides Coulomb interac-
tions, Hund physics plays an important role. Amongst
other important correlation-driven phenomena one could
cite orbital selective Mott transitions23–26, spin-orbital
separation21,27–30, spin-incoherent behavior31,32, and

pair density waves33–35.

Wannier-Mott excitons in semiconductors and their
subsequent condensation are well understood since the
60’s36–39. In strongly correlated systems one finds
Frenkel, Mott-Hubbard excitons, and the recently pro-
posed Hund excitons40,41, which are more tightly bound
objects. Excitonic condensation in strongly correlated
models has been studied in a number of scenarios42.
Early in this area of research it was pointed out that in
multi-band Mott insulators not only the spin and charge
can order, but also the orbital degree of freedom43. In
one dimension one encounters that the associated excita-
tions (orbitons) may also decouple from the spin in what
is referred-to as “spin-orbital” separation. One way to
understand this phenomenon is by starting from the sim-
plest model describing a Mott insulator and accounting
for both spin and orbital degrees of freedom, the Kugel-
Komskhii (KK) chain43. It has been shown that the prob-
lem of a propagating orbiton can be mapped onto the
dynamics of a hole in an antiferromagnet21,27–30. This
leads to an effective t − J model which is much simpler
and has extensively been studied in the literature. In
one-dimension, the physics is described in terms of LL
theory, which naturally explains spin-orbital separation.

In this work we study a more general problem that,
in addition to orbital and spin degrees of freedom, also
accounts of charge fluctuations. Our model bares resem-
blance to the so-called two-orbital Hubbard model, also
referred-to as electron-hole Hubbard model. This prob-
lem has been extensively studied in higher dimensions,
and also in 1D44–54. Here we consider a modified ver-
sion of it that applies in the strong coupling limit and
we derive, both theoretical and numerically, a number of
important results that highlight the non-trivial nature of
the excitations. We analize the case of bound electron-
hole pairs and spinons, and the eventual deconfinement of
the excitations in one-dimension. We show that the non-
trivial dispersion of the spinons leads to the formation
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of an excitonic condensate with finite center of mass mo-
mentum, and bi-excitons. The coexistence of a excitonic
density waves with a “normal” electronic sea resembles
the case of a Fulde-Ferell-Larkin-Ovchinnikov (FFLO)
superconductor55,56, with unpaired electrons concentrat-
ing at the nodes of the oscillating condensate. Unlike
the conventional FFLO state, our model supports an
excitonic condensate with a finite momentum Q, while
the normal electrons behave as a fluid, without breaking
translational symmetry.

The paper is organized as follows: In section II we in-
troduce the model and describe certain limits; in section
III we solve the three-body problem of an electron-hole
pair and a spinon, offering a rigorous and intuitive pic-
ture for the formation of bound states with finite center
of mass momentum; in section IV we provide numerical
support to our analysis using the density matrix renor-
malization group method (DMRG)57–61. We conclude
with a discussion of the results.

II. TWO-ORBITAL t− J MODEL

We consider a two-orbital t−J model described by the
Hamiltonian:

H = −t
∑
i,σ,λ

(
c†iσλci+1σλ + h.c.

)
+ U ′

∑
i

ni1ni2

+ J
∑
i,λ

(
~Si,λ · ~Si+1,λ −

1

4
niλni+1,λ

)
(1)

+ ∆
∑
i

(ni2 − ni1)

where c†i,λ,σ is a fermionic creation operator acting on a

site i and orbital λ (λ = 1, 2) with spin σ =↑, ↓, and
the constraint forbidding double occupancy is implicit
as usual. The operators ni,λ represent the local den-

sity while ~Si,λ refer to the local spin. The hoppings
along the two legs t are taken to be equal for simplic-
ity, and to be our unit of energy, implying that for large
∆ the model will display an indirect gap. In addition,
we include a Coulomb repulsion between electrons on
both orbitals parametrized by U ′, and a Heisenberg in-
teraction between fermions on the same orbital chain.
We have ignored the Hund coupling and interchain hop-
ping since, for instance, in Sr2CuO3 this is one order of
magnitude smaller than the on-site Coulomb repulsion62.
By analogy, this model represents strongly interacting
electrons on two parallel chains interacting via an elec-
trostatic Coulomb repulsion and is a well defined limit
of the two-orbital Hubbard model at half-filling with
J = 4t2/(U + U ′). We consider the total number of
electrons to be constant, and a crystal field splitting ∆
determines the relative population of the two bands in the
ground state. Clearly, the total spin Sz and the number
of electrons N are conserved, but also N1, N2, Sz1 and
Sz2 on each orbital chain are conserved independently.

This means that N2 = N −N1, and the last term of the
Hamiltonian becomes just a constant shift:

∆
∑
i

(ni1 − ni2) = ∆(2N1 −N),

which tells us that the crystal field splitting acts basi-
cally as a chemical potential for orbital excitations. The
number of particle-hole pairs in the ground state could be
arbitrarily tuned by changing ∆, or by creating photo-
induced excitations (notice that for this mechanism to
be applicable, and inter-orbital hopping needs to be in-
cluded). For ∆ = 0 one obtains N1 = N2, while for
∆ > 2t, N2 = 0. Regardless, one could independently fix
N and N1. Clearly, the case N1 = N2 = L (half-filling)
describes two independent Heisenberg spin chains with-
out charge fluctuations. In the following we focus on the
case N <= L, or density below quarter-filling.

We can gain some basic intuition on the problem by
looking at three particular cases. First we consider
J = 0: In the absence of spin interactions, this de-
gree of freedom becomes spurious. We can map each
band onto a pseudospin quantum number, and identify
λ = 1(2) → σ =↓ (↑). The problem is now equiva-
lent to a one dimensional, single band Hubbard chain
with U ′ → U and a magnetic field 2∆. If we assume
∆ = 0, quarter filling corresponds now to half-filling and
the ground state is an unpolarized Mott insulator. Cre-

ating an exciton by applying c†2c1 can now be understood

as S+ = c†↑c↓. The Mott insulating Hubbard chain has
no spin gap, and therefore this costs no energy. However,
the single particle spectrum is gapped in the charge sec-
tor. The charge gap can now be associated to the binding
energy that holds the exciton together: it costs an energy
of the order of U ′ for an up particle to hop to a neighbor-
ing site already occupied by a down particle. However,
away from quarter filling this is no longer the case and
there are empty sites the up-particle can hop to. In this
situation both spin and charge are gapless, the system
becomes a Luttinger liquid, and particles and holes move
freely.

A second limit corresponds to U ′ = 0: this maps onto
two decoupled t − J chains, and excitons are not sta-
ble quasi-particles. The ground state for this model has
been extensively studied64. For large J/t > 2 and in-
termediate densities the ground state presents dominant
pair-pair correlations that decay algebraically. This in-
dicates the formation of quasi-condensate (actual super-
conductivity is not realized in 1D and correlations de-
cay algebraically), which has to be distinguished from an
excitonic quasi-condensate. Therefore, by introducing a
crystal field splitting, one band can realize pairing, while
the other one remains a metal!

Finally, for finite J and large U ′ and ∆ at quarter fill-
ing we find that a single exciton is strongly bound and the
particle-hole pair can move coherently through high or-
der processes. This particular scenario can be identified
with the motion of a single hole in an antiferromagnet28.
However, the case at finite exciton density that occupies
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FIG. 1. Cartoon describing a typical state with the excited
electron at the origin, a hole at a relative distance r, and a
spinon at a relative distance r′ from the hole.

our attention in this study does not allow for such a sim-
ple interpretation and a deeper description of this regime
is still lacking.

III. THE ELECTRON-HOLE-SPINON
PROBLEM

A. Single exciton

To develop some intuition on the nature of the exciton
condensate in this model we study a toy problem of one
single exciton in the limit of strong uni-axial anisotropy
(Ising). We assume that the system is at quarter-filling
with one electron per site, and the band splitting 2∆ is
larger than the bandwidth 4t. In this situation, a single
band is half-filled, and the ground state is just an Ising
antiferromagnet. We now create an exciton by promoting
an electron to the upper band, and thus creating a hole
in the lower band. It is intuitive to see that the Coulomb
repulsion U ′ acts as an attractive potential between the
electron and the hole, and thus they will form a bound
state. The formation of a two particle bound state in
Hubbard-like models is a simple problem that has been
studied in a number of setups in the literature65–72 (see
an interesting analogy with phonons in Ref. 73). How-
ever, in our scenario, the situation is more complex, since
the motion of the hole will leave behind a misaligned spin,
a domain wall or spinon, that costs an energy J . There-
fore, our analysis should also account for the presence of
this defect in what now becomes a three-body problem
in 1D. As complicated as it may sound, it turns out to be
tractable, as follows. We consider a basis of states char-
acterized by the position of the electron, re, the position
of the hole relative to the electron r = rh − re, and the
position of the domain wall relative to the position of the
hole r′ = rs − rh, as illustrated in Fig. 1.

H|re, r, r′〉 = −t(|re + 1, r − 1, r′〉+ |re − 1, r + 1, r′〉
+ |re, r + 1, r′ − 1〉+ |re, r − 1, r′ + 1〉)
+ U ′δr,0|re, r, r′〉 (2)

FIG. 2. Cartoon describing the high-order effective hopping
of an exciton-spinon bound state. Each spin flip shifts the
spinon by two lattice spaces. The exciton moves to remove
the magnetic domain wall. We show the spinon moving as a
single object.

− Jδr′,−1|re, r, r′〉
+ J(|re, r, r′ + 2〉+ |re, r, r′ − 2〉).

We assume periodic boundary conditions, which allows
us to construct a basis of states that are translational
invariant and labeled by a momemntum k:

|r, r′, k〉 =
1√
L

L−1∑
x=0

eikxTx|re = 0, r, r′〉. (3)

Within each momentum sector we can easily obtain the
Hamiltonian matrix elements and numerically diagonal-
ize the problem for very large chains. In the J = 0 limit,
we should recover the results for two particles without
spinon, and observe a band of bound states with a min-
imum at k = 0 for sufficiently large U ′. Our intuition
tells us that if the binding energy is smaller than the ki-
netic energy of a free electron and a free hole, we will not
obtain bound states.

After introducing J , it is easy to see that the bound
electron-hole pair behaves as a hole in the antiferromag-
net that propagates coherently. This is the main idea be-
hind the mapping to an effective t−J model28. For suffi-
ciently large values, the free spinon and the electron-hole
pair will also form a bound state, where the domain wall
will be ‘absorbed’ by the excitation. In order to account
for the spin fluctuations we assume the approximation
used in the seminal paper by Villain74 and we consider
only spin-flip processes that move the domain wall, and
ignore those that create new ones for being energetically
too costly. It is easy to see that the spinon propagates
by two sites for each spin-flip (see Fig. 2(b)), and there-
fore it has a dispersion εs(k) = 2J cos (2k). The larger
mass of the spinon will tend to localize the electron-hole
pair giving it a quite flat dispersion. However, it can still
move without leaving a domain wall, as shown in Fig. 2.
In order for this to happen, the bound state has to hop
by two lattice spaces accompanied by a spin-flip, such
that the resulting motion does not distort the antiferro-
magnetic background. This high-order processes allow



4

FIG. 3. Excitation energies for the electron-hole-spinon prob-
lem. The lowest energy band has a double-dip dispersion with
minima at k = ±π/2. The system size is L = 40 and we used
U ′ = 8; J = 6 to enhance the main features.

for the spinon-electron-hole object to propagate with an
effective second neighbor hopping, leading to a minimum
in the dispersion at k = ±π/2 and a maximum at k = 0
(see Fig.3).

As a hint of what this means let us consider a finite
density of excitons. These electron-hole pairs are now
bosons that can condense with momentum k = ±π/2.
This condensate can break Z2 symmetry by choosing one
of the two momenta, or more likely form an equal super-
position. This would correspond to a an order parameter
that would oscillate in space as ∆cond ∼ cos (πx/2).

We cannot forget that this picture assumes a classi-
cal magnetic ordering. In the isotropic SU(2) limit the
spinon forms a deconfined excitation and propagates in-
dependently, giving rise to the spin-orbital separation
picture.

B. Bi-excitons and phase segregation

A low density of excitons corresponds to a low den-
sity of electrons in the upper band. As it follows from
the phase diagram of the 1D t − J chain64, for suffi-
ciently large values of J and at low densities the ground
state of the model becomes superconducting with a quasi-
condensate of singlets held together by a binding en-
ergy of the order of J . In our model such pairs will
be formed by excitons, i.e. they will form bi-excitons
that are bound by an energy dictated by J in the upper
band, and J in the lower band. Therefore, it is to expect
that for moderate values of J ∼ t the system will real-
ize a quasi-condensate of bi-excitons. Notice that this
argument does not prevent the formation of excitonic
‘strings’, where the excitons clump together forming a
separate domain. This would give rise to phase segrega-
tion, and would be manifested by a region of instability
in the phase diagram where excitons and conduction elec-

FIG. 4. Ground state occupation N1 of the first orbital chain
as a function of the band splitting ∆ for a chain of length
L = 32. The total density is quarter filling and the occupation
of the second chain is given by N2 = L−N1. (a) Results for
J = 0.6 and (b) J = 1 and several values of U ′. The bi-exciton
instability is signaled by jumps in steps of two.

trons are spatially separated. This occurs when the in-
teraction U ′ is large and the excitons become very heavy.
In this case it is easy to see that electrons on each band
will form a string coupled only via the Heisenberg ex-
change term, and will occupy distinct regions of space,
hence behaving as two independent Heisenberg chains.

IV. NUMERICAL RESULTS

A. Ground state

We conduct density matrix renormalization group
(DMRG) calculations for chains up to L = 64 with open
boundary conditions and keeping the truncation error be-
low 10−6, which requires of the order of 2000 states in
some cases. Most results, unless otherwise stated, cor-
respond to L = 64, N1 = 48 and N2 = 16, with Fermi
momenta kF1 = 3π/8 and kF2 = π/8, respectively. We
first analize the N1 vs. ∆ for different values of the inter-
action U ′ and J , as shown in Fig. 4. We ran the simu-
lations in the canonical ensemble with fixed values of N1

and obtained the curves by carrying out a Maxwell con-
struction. For small values of J and U the curves show
a smooth behavior with the particle number changing in
discrete steps of 1 at a time. However, for densities close
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to N1/L = 1or0 and especially when J is increased we
find that in certain density regimes the jumps are now in
steps of two. This is an indication of a pairing instability
corresponding to the formation of bi-excitons. In order
to determine whether these bi-excitons are stable objects
in the thermodynamic limit, we need to carry out a finite
size analysis of the binding energies. To distinguish dif-
ferent regimes we first define the binding energy for two
particles pairing on each orbital chain separately as:

∆λ=1 = (E(N1 − 2, N2)− E(N1, N2))

− 2 (E(N1 − 1, N2)− E(N1, N2)) (4)

= E(N1, N2) + E(N1 − 2, N2)− 2E(N1 − 1, N2),

and a similar expression for λ = 2 obtained by exchang-
ing the labels. These quantities determine whether it is
energetically more costly to remove two particles, com-
pared to twice the energy of removing one. The differ-
ence between the two indicates the binding energy, which
is negative in the case of an attraction between partcles.
This idea can be generalized to the case of a particle-hole
pair: the binding energy for the formation of a single ex-
citon is given by:

∆ex = E(N1, N2)− E(N1 − 1, N2)− (5)

− E(N1, N2 + 1) + E(N1 − 1, N2 + 1).

Results for several parameter regimes and system sizes
are shown in Fig.5(a), focusing on the regime N1/L =
0.75. In Fig.5(b) we also plot the values in the thermo-
dynamic limit, as obtained from a quadratic fit in 1/L.
For small values of U ′ it is difficult to tell from our results
if the particle-hole excitations form or not bound states.
It is also possible that the electrons in the upper band
form bound singlets that propagate independently as ob-
served in the 1D t− J chain. However, this would occur
for large values of J ∼ 2t. On the other hand, increas-
ing the value of U ′ makes the mass of the excitons very
heavy and these clump together and the system phase
segregates.

B. Excitonic density waves and charge order

In order to determine the ground state properties we
study several correlation functions, paying particular at-
tention to the cases with J = 1.2. In Fig.6 we plot the
exciton and bi-exciton momentum distribution functions
(MDF), defined as:

Nex(k, σ, σ′) =
1

L

∑
x,y

eik(x−y)〈b†xσbyσ′〉

N2ex(k) =
1

L

∑
x,y

eik(x−y)〈∆†x∆y〉. (6)

A conventional approach in DMRG calculations with
open boundary conditions consists of averaging data
taken at distances that are equidistant from the center

FIG. 5. (a) Finite size scaling of the single exciton binding
energy as defined in the text for J = 1.2 and different values
of U ′ and densities N1/L = 3/4 and N2/L = 1/4. (b) Results
of the extrapolation to the thermodynamic limit as a function
of U ′.

FIG. 6. Single exciton momentum distribution function
(MDF) for L = 64; N1 = 48, N2 = 16 and (a) J = 1.2, U ′ = 2
in the excitonic phase and (b) J = 1.2, U ′ = 4 in the bi-
excitonic phase. Panels (c) and (d) show the bi-exciton MDF
for the same parameters, respectively.

(we refer the reader to Ref.63 for details). In large sys-
tems, particularly with a gap, boundary corrections are
typically small. As we shall see below, in the partic-
ular cases of interest, edge effects involve very few lat-
tice spaces (see for instance, Fig. 7). These expres-
sions assume that the excitons are local objects that
can be described in terms of bosonic operators b†xσ =

c†xσ2cxσ1 and that the bi-excitons can form pairs46,75
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∆†x = 1√
2

(
b†x↑b

†
x+1,↓ − b

†
x↓b
†
x+1,↑

)
. Since our model

does not take into account inter-orbital hybridization nor
Hund’s coupling, Nex is always diagonal in the spin in-
dex and from now on we only consider Nex(k, ↑, ↑)76. It is
clear beforehand that the actual excitonic wave function
may actually spread over several lattice spaces, but these
quantities offer a quite good description of the underly-
ing ground state and its pairing tendencies. The exci-
tonic MDF, for instance, shows a clear peak at k = π/2,
indicating that the quasi-condensate of excitons has a fi-
nite center of mass momentum, an excitonic density wave
(EDW), as anticipated. The bi-excitonic MDF shows
some structure for U ′ = 2 but the maximum at k = π
cannot be characterized as a peak, particularly by look-
ing at the scale on the y-axis. On the other hand, the
one for U ′ = 4 shows a quite dramatic peak. This can
be interpreted as a quasi-condensate of bi-excitons with
finite center of mass momentum Q = π formed by single
exciton pairs with momentum π/2. This also gives rise
to a small peak at zero momentum, but it is less defined
and much broader.

These observations can be made more explicit by
studying the quasi-condensate wave function by means
of Penrose and Onsager’s description of the superfluid
order parameter.77 The natural orbitals (NO) ψα of the
system will simply be the single particle eigenstates – in
the bosonic sense – of the bosonic single-particle density
matrix:

Gex(x, y) = 〈b†x↑by↑〉

G2ex(x, y) = 〈∆†x∆y〉. (7)

The NO with the largest eigenvalue, ψ0, is the single-
particle state in which quasi-condensation takes place.
We generalize this concept to the case of excitons and bi-
excitons and show the results in Fig.7 for U ′ = 2 in the
excitonic phase and U ′ = 4 in the bi-excitonic phase. The
periodicity of the wave functions is determined by the
momentum of the condensate: Q = kF1+kF2 = π/2, and
Q = π for single excitons and bi-excitons, respectively
(see Fig.6).

It is important to point out that a condensate with pe-
riodicity π/2 does not indicate charge order with period
π/2 (i.e. “1-1-0-0”). This would only occur at quarter
filling with N2 = N1 = L/2. As a matter of fact, the
density of excitons is not commensurate with this order.
This is illustrated in Fig.8 by our results for the density-
density structure factor:

Dλ(k) =
1

L

∑
x,y

eik(x−y)〈nxλnyλ〉, (8)

where nxλ =
∑
σ c
†
xσλcxσλ and a similar expression for

the excitonic density:

Dex(k) =
1

L

∑
x,y

eik(x−y)〈nex,xnex,y〉, (9)

FIG. 7. Natural orbitals for the exciton condensate with L =
64, N1 = 48;N2 = 16 in two parameter regimes: (a) J =
0.6, U ′ = 2 corresponding to the excitonic phase; (b) J =
1.2, U ′ = 2 in the bi-excitonic phase. Panel (c) shows the
natural orbital for the bi-excitonic condensate. We also show
the local occupation of the two orbitals, n1 and n2.

where nex,x = b†x,↑bx,↑ is the number operator for ex-
citons. The excitonic structure factor and the one for
orbital λ = 2 are practically indistinguishable, indicating
that holes and electrons are forming tightly bound pairs.
Signatures of charge order would be identified as peaks
at finite momentum. The case U ′ = 2 does not show
any structure and is practically featureless, as expected
from a dilute condensate of hard-core bosons/excitons.
On the other hand, for U ′ = 4 one can clearly see the
onset of charge order with momentum 2kF2 = π/4. This
resembles a state in which EDW and CDW orders co-
exist and are intertwined. In order to determine if this
state is or not a CDW, we calculate the charge gap for
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FIG. 8. Density structure factor for excitons and electrons
in orbital λ = 2 for L = 64, N1 = 48;N2 = 16 and pa-
rameters (a) J = 1.2, U ′ = 2 in the excitonic phase and (b)
J = 1.2, U ′ = 4 in the bi-excitonic phase. Panels (c) and
(d) show the spin structure factor for the same parameters,
respectively.

adding/removing pairs of excitons. This is defined as:

∆ch = E(N1+2, N2−2)+E(N1−2, N1+2)−2E(N1, N2).
(10)

A finite size scaling (not shown) indicates that this quan-
tity vanishes in the thermodynamic limit. Therefore,
this state is not quite a CDW, but a condensate of bi-
excitons, and the modulation observed in the charge den-
sity (Fig.7) corresponds to slowly decaying Friedel oscil-
lations due to the open boundaries, as also observed in
t−J ladders83. We could have anticipated this conclusion
from the density profile shown in Fig.4: a CDW would
be reflected as plateaus, which clearly are not observed.

Finally, for completeness, in the same Fig.8 we show
the spin structure factor:

Sλ(k) =
1

L

∑
x,y

eik(x−y)〈SzxλSzyλ〉. (11)

For U ′ = 2, both orbitals display small peaks at k =
2kFλ. However, in the bi-excitonic phase the peak or
orbital λ = 1 has moved to k = π, while structure factor
for orbital λ = 2 is now completely featureless. This
is expected from excitons bound into spin singlet pairs
with short ranged correlations. In addition, the peak
at π indicates that the bi-excitons do not disrupt the

FIG. 9. Finite size scaling of the (a) single particle binding
energy for each orbital chain and (b) exciton binding energy.
Results are for J = 1.2 and U ′ = 1 and density N1/L = 0.75.

antiferromagnetic order.

C. Orbital selective pairing

An additional feature of our model is that it natu-
rally realizes a phase in which one of the orbitals be-
haves as a Luttinger liquid, while the second one un-
dergoes a pairing instability. For small U ′, the orbitals
are practically decoupled and our model behaves as two
independent t − J chains. At relatively large values of
J ∼ 2t and low densities the t−J chain presents a singlet-
superconducting phase with a spin gap64. Therefore, one
can tune the parameter ∆ such that the occupation of
each orbital falls into a different phase. This occurs for in-
stance for U ′ = 0.5, J = 2.4, N1/L = 0.75, N2/L = 0.25.
In Fig.9 we show that the binding energy for the low-
density chain is finite, while it remains positive for the
high-density one. In addition, the binding energy for ex-
citon formation is also positive. This description offers
a simple and natural scenario for the realization of this
type of orbital selective paired states.

D. Away from quarter filling

The excitonic physics discussed for the quarter filling
case extends to other filling fractions as well. Without
attempting to determine a phase diagram, we just show
some typical results that we obtained for small densities
in Fig.10. As shown in panel (a), the exciton MDF is
peaked at a finite value of Q = kF1 + kF2, which is re-
flected in the behavior of the natural orbitals, displayed
in panel (b). The charge structure factor (not shown) in-
dicates a state with no charge order. In our exploration of
parameter space we have not found bi-excitonic physics,
but this may appear at larger values of J than the ones
we considered. An extended study is currently underway
and will be presented elsewhere.
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FIG. 10. (a) Excitonic momentum distribution function for
L = 64, N1 = 24, N2 = 16, J = 1.2 and U ′ = 2. (b) Natural
orbital for the exciton condensate and the local occupation of
the two orbitals, n1 and n2, as in Fig.7. The edge effects are
due to the open boundary conditions.

V. CONCLUSIONS

We have presented a detailed study of the exciton and
bi-exciton formation in a one-dimensional two-orbital
t− J model. The stability of the excitons is determined
by the strength of the inter-orbital Coulomb interaction
U ′, while the formation of bi-excitons is controlled by the
antiferromagnetic exchange J . A schematic phase dia-
gram for densities N1/L = 3/4;N2/L = 1/4 is shown in
Fig. 11. For weak U ′ the system behaves as two indepen-
dent decoupled chains. It is possible that the system is
inherently unstable to exciton formation and this occurs
for any finite U ′. This would correspond to an exciton
binding energy that grows exponentially with U ′, some-
thing difficult to resolve even with a careful finite size
analysis. Nevertheless, as U ′ is increased, we find an in-
stability toward exciton formation such that they form a
quasi-condensate with finite center of mass momentum,
corresponding to an excitonic density-wave. This can be
understood through our analysis of the three-body prob-
lem of an electron-hole pair and a spinon: at quarter-
filling the system behaves basically as a single doped
t− J chain where the excitons act as holes hopping with
both nearest, and next-nearest hoppings. These holes
are heavier and can condense, since in reality they are
electron-hole bound states.

In general, the period of the EDW will be determined
by the excitonic fraction N2/L (or ∆). It is important to
point out that this state does not correspond to a CDW
(or excitonic CDW), since there is no charge order. No-
tice that the condensate wavefunction, or natural orbital,
alternates signs as (+ +−−) like a square wave that has
no nodes. Therefore, the probability density, which is the
square of it, also has no nodes and, moreover, it is not
commensurate with the density, hindering the possibility
of an FFLO-like phase.

As the interactions U ′ are increased, the excitons be-
come heavier and more localized enabling the exchange
interaction to bind them into bound pairs. At the same

FIG. 11. Schematic phase diagram of the two orbital model as
a function of U ′ and J for fixed densitiesN1/L = 3/4, N2/L =
1/4. Along the U ′ = 0 line the system consists of 2 copies of a
t−J chain at different densities. Finite values of U ′ induce the
formation of an exciton density wave (EDW), and increasing
J drives an instability toward pairing of excitons (bi-exciton
condensate). At small values of U ′ and large values of J we
find the orbital selective paired phase (OSP).

time we observe signatures of an instability toward a
charge density-wave of bi-excitons, reminiscent of the
idea of an excitonic crystal48,78. However, bi-excitons
are not localized and the period of the CDW is differ-
ent than the period of the condensate. Since the charge
gap vanishes, we conclude that this is not CDW but a
condensate of bi-excitons. For large values of the pa-
rameters, the system phase separates. This can occur
in two different ways: (i) For large U ′ the system splits
into electron-rich and hole-rich domains; within each do-
main, each orbital forms a Mott insulating Heisenberg
chain. (ii) For small U ′ and large J we find the physics
of two t − J chains that phase segregate independently,
as encountered in the phase diagram of the single-orbital
problem64. Before this occurs, though, we find a regime
around J ∼ 2t in which one orbital is metallic, while
the other one is a spin gapped superconductor, an actual
orbital selective paired state.

The observed excitonic density wave can be directly
related to pair density waves33–35 in a very simple way:
a particle-hole transformation in the high-energy orbital
λ = 2 leads to a one-to-one correspondence between exci-
tons (neutral particle hole pairs) and Cooper pairs (with
charge 2e), with the excitonic condensate translating into
a pair density wave. The parent Hamiltonian of this state
would have negative U ′ and would pair electrons with
momentum kF1 and −kF2, identical to what takes place
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in the FFLO phase of the negative U Hubbard chain79–82.
Moreover, the bi-excitonic regime would correspond to a
PDW of composite objects of charge 4e similar to pre-
dictions for stripe superconductors in Ref. 85. In the
language of hard-core bosons this would correspond to
a condensate of bosonic pairs with finite center of mass
momentum.

This behavior occurs also at densities below quarter
filling. The center of mass momentum for the EDW is
given by Q = kF1 + kF2 and can acquire a long wave-
length when this difference is small.

The model displays rich physics with a number
of phases that resemble the phenomenology of both

cuprates and iron pnictides, encouraging us to believe
that there is much to learn from multi-orbital model
Hamiltonians that can guide our intuition toward a com-
prehensive picture of these materials. Needless to say,
one can expect yet richer physics once the Hund interac-
tion is taken into account44.
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