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A spin-fermion model that captures the charge-transfer properties of Cu-based high critical tem-
perature superconductors is introduced and studied via Monte Carlo simulations. The strong
Coulomb repulsion among d-electrons in the Cu orbitals is phenomenologically replaced by an ex-
change coupling between the spins of the itinerant electrons and localized spins at the Cu sites, for-
mally similar to double-exchange models for manganites. This interaction induces a charge-transfer
insulator gap in the undoped case (five electrons per unit cell). Adding a small antiferromagnetic
Heisenberg coupling between localized spins reinforces the global tendency towards antiferromag-
netic order. To perform numerical calculations the localized spins are considered classical, as in
previous related efforts. In this first study, undoped and doped 8 x 8 clusters are analyzed in a wide
range of temperatures. The numerical results reproduce experimental features in the one-particle
spectral function and the density-of-states such as (i) the formation of a Zhang-Rice-like band with
a dispersion of order ~ 0.5 eV and with rotational symmetry about wavevector (7/2,7/2) at the top
of the band, and (i) the opening of a pseudogap at the chemical potential upon doping. We also
observed incipient tendencies towards spin incommensurability. This simple model allows for an
unbiased study of charge-transfer insulators and offers a formalism intermediate between standard
mean-field approximations, that fail at finite temperatures in regimes with short-range order, and
sophisticated Quantum Monte Carlo techniques, that suffer sign problems.
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I. INTRODUCTION

The properties of transition metal oxides (TMOs) are
determined by two groups of electrons: the d-electrons
at the transition metals and the p-electrons at the oxy-
gens [1]. The d-electrons are believed to be localized and
subject to strong on-site Coulomb repulsion U, while
the p-electrons are considered itinerant with a smaller
Coulomb repulsion U,. However, the d-electrons can be
delocalized by hybridization with the p-electrons and,
thus, the degree of hybridization, that varies with the
ratio of the Coulomb repulsion to hopping amplitudes,
plays an important role in determining the properties of
TMOs [1]. In addition, the on-site energies €, and €4 of
the p and d orbitals also affect the properties of TMOs [2].
Depending on the relative value of A = ¢q — €, Ug, and
the bandwidth W of the itinerant electrons, the latter
as determined from the limit when Coulomb repulsion is
turned off, the TMOs may be in various different regimes.
The Mott-Hubbard regime occurs when Uy < A and an
insulating gap opens in the d-band if it is half-filled. If
U; > A the system is considered to be in the charge-
transfer (CT) regime. A gap defined by an electron filled
p-band and an empty d-band opens when the d-band is
nominally half-filled. Systems with large Hubbard repul-
sions but with A < W/2 can be metallic [2]. Recently,
even the case of negative charge-transfer gaps A < 0 has
been considered [3-6].

Among the most important families of TMOs are
the high critical temperature superconducting cuprates.
Their parent compounds are charge-transfer insulators
(CTI) [2, 7], but from the theory perspective they have
been studied primarily using single-orbital Hubbard or
t — J models because these models are simpler than more
realistic multiorbital Hamiltonians that include oxygens.
Using simplified one-band models is justified by the ex-
perimental observation of a single-band Fermi surface [8-
11] and also by the Zhang-Rice singlet concept where the
three-orbital Hubbard model is approximately mapped
into an effective t — J model [12]. While many proper-
ties of the cuprates have been captured by single-band
models [7], several questions regarding the role of the
oxygen remain. One of the main issues are the differ-
ences between the properties of doped Mott insulators,
described by single-band models, and charge-transfer in-
sulators where both the dg2_,2 Cu orbital and the p, O
orbitals are considered. Early numerical studies of three-
band models did not indicate major physical differences
among both approaches [13-15], but other authors have
claimed that the multiorbital character plays a crucial
role in the physics of the cuprates [16, 17].

The discovery of the iron-based superconductors [18—
21] brought to the forefront the need to develop models
and numerical approaches to deal with multi-orbital sys-
tems. In this context, effective multi-orbital spin-fermion
models were developed that allowed the study of many



properties of these materials such as magnetic phases,
density of states, Fermi surface, and resistivity, among
others [22]. These efforts on iron pnictides and chalco-
genides actually built upon the double-exchange models
for manganites. The aim of the present work is to de-
velop a spin-fermion model for the CuO; planes of the
cuprates that can be studied with the Monte Carlo tech-
niques previously developed for the pnictides, with the
goal to understand, at least qualitatively, the role played
by the O p,-orbitals.

A single-orbital, as opposed to multi-orbital, spin-
fermion model for the cuprates was developed in the
90s [23]. In that early effort, the Cu d-band was split via
a spin-spin interaction among phenomenological localized
spins and the spins of the itinerant electrons, similarly as
in the model proposed here. This interaction prevents
the double occupancy of the Cu sites, crudely mimicking
the Hubbard on-site repulsion effects. By using classical
localized spins and Monte Carlo, several of the static and
dynamical properties of the cuprates were reproduced
showing that this avenue, that interpolates between tra-
ditional mean-field approximations and far more com-
plicated Quantum Monte Carlo approaches, is fruitful.
Magnetic incommensurability and a short-distance ten-
dency towards d-wave pairing was observed upon dop-
ing [23, 24].

There were also several other spin-fermion models for
the CuO, planes proposed early on in the literature. For
example, in Ref. [25] a model was introduced with lo-
calized quantum spins at the Cu sites and mobile holes
that can only access the O sites. This model is difficult
to study and, as a first approximation, a single hole in
a ferromagnetic spin background was considered. More
recently, a spin-polaron model was developed under sim-
ilar premises [17] studying the problem of one hole via
the exact-diagonalization of a cluster with 32 Cu atoms
and later on using a multimagnon expansion in a further
simplified Hamiltonian, with Ising rather than Heisen-
berg spin interactions [26]. Other similar models, with
localized d electrons, were studied in Refs. [16, 27, 28] us-
ing a variety of numerical and perturbative techniques.

The novelty of the present approach is that not only
the p electrons but also the d electrons are considered
itinerant, as in the three-bands Hubbard model, and
these mobile fermions interact with phenomenological lo-
calized classical spins which are introduced to mimic the
non-double occupancy effect in the Cu sites due to the
Hubbard U. In this way, the phenomenology of the three-
orbital model for the cuprates, with the restriction on
Cu double occupancy, can be studied numerically at low
temperatures without sign problems, and in larger clus-
ters than those accessed by either exact diagonalization
or quantum Monte Carlo. Moreover, we can study dy-
namical properties, easily vary temperature, and intro-
duce quenched disorder. Of course, our approach also
has important limitations. For example, we can only
mimic the formation of Zhang-Rice singlets by having
antiferromagnetically oriented p spin-1/2 electrons and

Cu classical spins, but they do not form a true spin sin-
glet. However, it may be possible to study the propaga-
tor for Zhang-Rice singlets involving the quantum p and
d electrons [29]. Off-diagonal long-range order is difficult
to observe in an effective single particle model, but at
least trends and qualitative information could be gath-
ered by comparing the strength of d- vs s-wave pairing
correlations and find which one is more dominant [24].
Thus, while we acknowledge that it is difficult to be cer-
tain about quantitative characteristics and predictions,
in general we believe that qualitative aspects of the prob-
lem can be captured by our simplified approach.

Starting with the standard tight-binding term of the
three-orbital Hubbard model for cuprates and introduc-
ing phenomenological localized spins, we will find the
interaction parameters values that better reproduce the
density of states (DOS) of the full Cu oxide Hamilto-
nian. The tight-binding term involves 3dg2_,» Cu and
2ps (2p5 or 2p,) orbitals of the two oxygens in the CuO,
unit cell. As already explained, the Cu-sites Hubbard re-
pulsion that splits the half-filled d-band will be replaced
by a magnetic coupling between the spin of the itinerant
electrons when at the d-orbital and Cu localized spins.
A small antiferromagnetic Heisenberg coupling among
nearest-neighbor localized spins enhances the global an-
tiferromagnetic tendencies. In addition, the spins of the
p-orbital electrons are coupled antiferromagnetically to
their two neighboring localized spins.

In the undoped case, with five electrons per CuOs unit
cell, it will be shown that the model leads to a charge-
transfer insulator where, unexpectedly, the gap states
have approximately equal amounts of p and d character.
This is contrary to the widely held perception that holes
reside primarily at the oxygens. This is also different
from the one-orbital Mott insulator approach in which
one-single orbital contributes entirely to the states that
define the gap.

Several other interesting results were obtained. For in-
stance, long-range antiferromagnetic order, as in the par-
ent compound of the cuprates, develops with reducing
temperature. Incipient tendencies towards spin incom-
mensurability were observed with doping. Even more im-
portantly, a study of the one-particle spectral functions
indicates that, in agreement with angular-resolved pho-
toemission (ARPES) results for the undoped cuprates,
states with wavevectors (£7/2,47/2) are the first to
accept doped holes. The ARPES region around these
wavevectors are rotationally symmetric, with equal cur-
vature in all directions, a feature reproduced in single-
band models only after the addition of longer range hop-
pings, while in our approach it emerges spontaneously
without fine tuning. In addition, the lowest state for
electron doping has momentum (7,0) and (0,7), as ex-
pected. Moreover, a Zhang-Rice-like singlet (ZRS) band
spontaneously appears in the DOS, and a pseudogap at
the chemical potential develops upon doping.

The paper is organized as follows: in Section II results
for the DOS of the full undoped three-orbital Hubbard



model are presented to guide the tuning of parameters
in the proposed spin-fermion model which is introduced
in Section III. Results for the DOS and the one-particle
spectral functions (photoemission), as well as the mag-
netic structure factor, are presented in Section IV, while
Section V is devoted to the conclusions.

II. CHARGE-TRANSFER REGIMES IN THE
THREE-BAND HUBBARD MODEL

The band gaps and electronic structures of TMOs were
described before [2] and they depend on the relationship
between the charge-transfer energy A and the d-d Hub-
bard repulsion Uy. In general, if Uy < A the band gap
of the undoped state is controlled by Uy and the sys-
tem is a Mott-Hubbard insulator, while if U; > A the
gap is controlled by A and of charge-transfer nature for
A > W/2, where W is the bandwidth of the oxygen p-
band [2]. However, the role of the hybridization between
the d and p bands, important in cuprates, is often ne-
glected. For this reason, first we present results for the
orbital-resolved density-of-states of the undoped three-
orbital Hubbard model obtained using the Variational
Cluster Approach (VCA) [13, 30, 31] with 2 x 2 clusters
that include 12 sites, since there are 3 atoms (CuOs) per
unit cell. VCA was chosen because we considered that it
is the method that best allows for the study of the den-
sity of states, which will be used to tune the parameters
of the spin-fermion model.

The three-band Hubbard Hamiltonian, in electron no-
tation, is given by

H3pn = Hrp + Higg, (1)
where
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The operator d;a creates an electron with spin o at site

i of the copper square lattice, while er , Creates an
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electron with spin ¢ at orbital p,,, where u = x or y, for
the oxygen located at i+ 5. The hopping amplitudes ¢4
and t,, correspond to the hybridizations between nearest-
neighbors Cu-O and O-O, respectively, and (u,v) indi-
cate O-O pairs connected by t,, as indicated in Fig. 1.

nirﬁ . (ngg) is the number operator for p (d) electrons
witﬁ spin o, and € and €, are the on-site energies at
the Cu and O sites, respectively. If ¢ = 0 then A = ¢4
-€p, is the charge-transfer gap. The Coulomb repulsion
between two electrons at the same site and orbital is Uy
(Up) for d (p) orbitals. The signs of the Cu-O and O-O
hoppings due to the symmetries of the orbitals is included
in the parameters a; ,, and o4 , , and follows the conven-
tion shown in Fig. 1. Finally, u. is the electron chemical
potential.
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FIG. 1: (color online) Schematic drawing of the Cu d,2_,2
orbitals at the copper sites of the square lattice, with the sign
convention indicated by the colors (red for + and blue for -).
The oxygen p, orbitals with their corresponding sign conven-
tion are also shown, located at the Cu-O-Cu bonds. The sign
convention for the ¢,q and ¢, hoppings is also indicated.

The orbital-resolved DOS in the electron representa-
tion for the accepted values of Uy = 8¢ [13, 14] and
Up = 3t (where t = t,4 is the energy unit) is in Fig. 2 (a).
The effect of the Coulomb repulsion on the DOS can be
understood by comparing with the tight-binding band
dispersion in Fig. 3. The spectral weight associated to
the portion of the band above the chemical potential in
Fig. 3 appears to the right of the chemical potential in
Fig. 2. It is clear that the gap where the chemical poten-
tial is located in Fig. 2 results mostly from the split, due
to Uy, of the top band in Fig. 3 which, as shown in the
figure, arises mostly from the d orbitals (that in the elec-
tron picture are on top). In the non-interacting limit, this
band has a small oxygen content due to the hybridization
tpq and it has a similar dispersion to the tight-binding
band of the single-band Hubbard model when ¢’ = —0.3¢
and t" = 0.2t hoppings are added [13, 32, 33]. Thus,
the gap opening in the top band is “captured” by the
single-particle model with U = 8t [13].

As shown in Fig. 2 (a), the charge-transfer gap where
the chemical potential resides at Uy/t = 8 is about 2t,
similar in magnitude to the Mott gap of the single-band
Hubbard model with U/t = 8[7, 34]. Naively, the DOS
gap would be expected to be proportional to U, but in
both cases screening effects reduce the gap. The main



qualitative difference, though, lies in the orbital compo-
sition of the band. As shown in Fig. 2 (a), the spec-
tral weight occupied by electrons immediately at the
left of the chemical potential has a 50%-50% p — d or-
bital composition indicating its charge-transfer character
(red and blue curves have almost identical weight). This
is due to the additional hybridization effects caused by
the strong Coulomb interaction that affects the spectral
weight from the p tight-binding bands. On the other
hand, the spectral weight at the right of the chemical
potential in Fig. 2 (a) is mostly of d-character i.e. when
electrons are added they populate d-Cu orbitals.
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FIG. 2: (color online) Orbital-resolved density-of-states for
the full three-band Hubbard model with the parameters used
before in Ref. [13] where t,q = t is the unit of energy and
tpp = 0.5¢t, A = 3t, and U, = 3t. Panel (a) corresponds
to Ug = 8t while panel (b) to Us; = 16t. The dashed line
indicates the chemical potential in the undoped case with one
hole (five electrons) per CuO2 unit cell. Results are shown in
the electron notation.

Note also that a small amount of spectral weight, al-
most 100% of d character, has been transferred to lower
energy (in the electron picture) in the interval —10 <
(w— )/t < —6. This weight was previously identified
by some authors as the “lower Hubbard band” (LHB) [4]
although a well-defined LHB is not sharply developed at
the value of Uy considered realistic. In fact, we found that
to develop a well-defined LHB, as in an extreme charge-
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transfer system [2], a Uy as large as 16t is required. The
DOS in this situation is in Fig. 2 (b). The LHB is lo-
cated at (w — p)/t &~ —16 and it has 100% d character.
Now the separation between the upper and lower Hub-
bard bands is approximately Uy while the charge-transfer
gap is only slightly reduced. Still for the two values of
U, presented in Fig. 2 it is clear that due to the p — d
hybridization, arising from the combined effect of interor-
bital hopping and Coulomb interaction, the states that
define the charge-transfer gap have mized orbital charac-
ter [35]. This indicates that doped holes will go both into
the oxygens and the coppers since the spectral weight is
comparable among p and d orbitals. In summary, the de-
viations clarified in this section from the simplistic view
of either purely Hubbard or purely charge-transfer gap
materials were not emphasized before in the literature,
increases the level of complexity of the system, and will
be an important feature that we will try to capture in the
effective model presented next. We conclude this section
stating that cuprates are not sharply “charge-transfer”
insulators but they reside at the intersection between the
Hubbard and charge-transfer families.

III. EFFECTIVE THREE-BAND MODEL FOR
CUO; PLANES

The starting point for the effective model that we will
develop is the tight-binding portion of the three-band
Hubbard model given in Eq. 2 with ¢,q = 1.3 eV and
tpp = 0.65 €V, on-site energy €, = —3.6 eV [14], and a
A = €4 — €, which is positive (e = 0) [36].

Note that in the electron representation the undoped
case is characterized by one hole at the coppers and no
holes at the oxygens, which corresponds to five electrons
per CuOy unit cell (the maximum possible electronic
number in three orbitals is six). The orbital-resolved
tight-binding bands along the I' — X — M —T" path in the
Brillouin zone calculated on a 100 x 100 square lattice
(with coppers at the sites of the lattice) is in Fig. 3. The
dashed black line is the chemical potential for electronic
density (n) = 5 and the corresponding Fermi surface is
in the inset. An analysis of the orbital composition of
each of the three bands, shown by the color palette in
the figure, indicates that the top band is purely d at the
T" point and becomes hybridized with the p orbitals so
that its d content is 78% at X and 56% at M. The two
bottom bands have pure p character at the Brillouin zone
center. The middle band achieves 43% d character at M,
while the lower band has 21% d character at X. Note that
the tight-binding Fermi surface, shown in the inset, has
the qualitative form expected in the cuprates. However,
its orbital content is about 75% d only, showing that the
oxygen component is not negligible even if only one band
crosses the Fermi level.

The interaction term in the spin-fermion model is
purely phenomenological, as in all spin-fermion models
in previous literature. It is introduced to prevent double
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FIG. 3: (color online) Band dispersion for the tight-binding
term of the CuOs Hamiltonian. The orbital content is dis-
played with red (blue) indicating d (p) character. The dashed
line indicates the position of the chemical potential (or Fermi
level Er) at density (n) = 5 (undoped case). The Fermi sur-
face at this density is in the inset. Colors indicate the orbital
content of the bands, with the palette on the right denoting
the weight of the d component (e.g. 1 means 100% copper d,
and the oxygen weight is simply one minus the copper weight).

occupancy in the d orbitals by creating lower and up-
per bands, while spectral weight originating in the p or-
bitals remains in the middle, in such a way that a charge-
transfer insulator results for five electrons per unit cell.
To achieve these goals, we introduce phenomenological
localized spins at the Cu sites. These on-site spins will
be coupled via an antiferromagnetic coupling Jgq to the
spins of the mobile d-electrons at the same site via

Hsa = Jsa »_ Si-si, (4)

where S; denotes the localized spins at i, s; = d;aﬁa 8di B
is the spin of the mobile d-electrons, and &,g are Pauli
matrices. Since this term is phenomenological, in princi-
ple the coupling between localized and itinerant spins can
be either anti- (AF) or ferromagnetic (FM) since in the
AF (FM) case the lower d-band will contain electrons
with spins antiparallel (parallel) to the localized spins.
For the classical localized spins used here, the results are
independent of the sign of Jgq and we will simply con-
sider the AF coupling as our convention. Note that in
the absence of electronic hopping this interaction would
lead to a half-filled d-band and totally filled p-bands for
the overall density (n) = 5 per CuOs cell.

To enhance further the tendency towards antiferro-
magnetic order in the undoped case, as in real undoped
cuprates, an antiferromagnetic Heisenberg coupling Jap
between the localized spins is also introduced via

Hap = Jar Z Si.S;. (5)

Finally, a coupling Js, between the localized spins and
the p-electrons spins at each of the four neighboring oxy-

gens is added (introducing effectively magnetic frustra-
tion upon doping)

Hsp = JspZSi.SiJr%, (6)
ip

where [ = +2 or £¢ and Sipn = pL%%a

Thus, the spin-fermion (SF) Hamiltonian defined here
is given by four terms as

Hgsp = Hrg + Hsq + Har + Hsgp. (7)

TapPit s pup

This phenomenological Hamiltonian we propose is rem-
iniscent of the model in Ref. [17] except that they work
in the limit where the d electrons are fully localized and
only contribute their magnetic degree of freedom.
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FIG. 4: (color online) Orbital-resolved density-of-states for
the spin-fermion model with Jar = 0.1 eV and Jg, = 1 eV.
The various panels correspond to (a) Jsa = 0, (b) Jsa = 2, (c)
Jsa =3, (d) Jsa =4, (e) Jsa =8, and (f) Jsq = 12 (all in eV
units). Results are for the undoped case, i.e. (n) =5 and were
obtained using an 8 x 8 lattice at temperature T' ~ 120 K. The
d (p) spectral weight is in red (blue) while the total spectral
weight is indicated by the black line. The chemical potential
is at the vertical dashed line.

The computational simplification that allows the nu-
merical study of our Hamiltonian is that the localized
spins are assumed classical [37]. With this approxima-
tion, the full Hsr can be studied with the same Monte
Carlo (MC) procedure widely employed before for the
pnictides [22] and double-exchange manganites [38].

To select the values of the couplings, we studied the
properties of the model for a variety of parameters finding



the combination that better reproduced some experimen-
tal properties of the cuprates and the results in Fig. 2.
In Fig. 4, we present the orbital-resolved density-of-states
for Jar = 0.1 eV, Js, =1 eV, and several values of Jgq.
At Jsq = 0 in panel (a), the chemical potential (verti-
cal dashed line) is in the middle of the upper band of
mostly d-character and the system is metallic. However,
at Jsq = 2 eV, panel (b), the upper band is split. Now
the undoped system is an insulator with the chemical
potential inside a gap. While the gap is similar to the
charge-transfer gap of the cuprates A ~ 2 eV [39], note
that the band to the left of p has primarily d-character.
By increasing further Jgq both the magnitude of the in-
sulating gap and the p composition of the band below u
increases. We found that for Jsq = 3 eV, panel (c), the d
and p orbitals contribute equally to the density-of-states
just below the chemical potential as in the three-orbital
Hubbard model discussed before with Uy = 8¢ [Fig. 2 (a)],
and the charge-transfer gap is about 3 eV. If Jgq contin-
ues to increase, then the d spectral weight continues to
be redistributed and for Jgq = 4 eV [panel (d)] there is
more p than d weight to the left of the chemical potential,
but no sharp lower-band has yet developed (equivalent to
a Hubbard lower-band). This lower band develops when
Jsq = 8 eV as shown in panel (e). Finally, for extreme
values, such as Jgq = 12 eV in panel (f), the p — d hy-
bridization is removed and the upper and lower d-bands
surround the pure p bands. After this analysis, we set
Jsq = 3 eV as the value that may better capture the
properties of the cuprates.

We observed that if the signs of the couplings Jgq and
Jsp are simultaneously reversed, turning both couplings
FM, the results are the same except that the up and
down spins are interchanged since the only modification
in the Hamiltonian is that ¢ — —o. However, if only
the sign of one of the couplings is changed, for example
Jsq = —3 €V, the results are different and the system
develops phase separation (details not shown). For this
reason only AF couplings between the itinerant and the
localized spins will be considered here.

The calculations shown below were performed using
squared 8 x 8 clusters with periodic boundary conditions
(PBC). These lattice sizes are larger than those accessible
to study the three-band Hubbard model either via quan-
tum Monte Carlo [29, 40, 41] or DMRG [42]. During
the simulation the localized spins S; evolve via a stan-
dard Monte Carlo procedure, while the resulting single-
particle Hamiltonian for the itinerant p and d electrons
is exactly diagonalized [38]. The present simulations are
performed at inverse temperature 3 = (kg7T)~! rang-
ing from 10 to 400 in units of eV~!, or temperature T
from 1200 K to 30 K [43]. Reaching such low temper-
atures is an advantage of the present approach because
for Hubbard model quantum Monte Carlo studies can
only be performed at high temperatures due to the “sign
problem” while DMRG can only be performed at zero
temperature and ladder-like cylindrical geometries.

IV. RESULTS
A. Density of States and Band Structure

The DOS for the undoped case ((n) = 5) was calcu-
lated for 8/t ranging from 10 to 400 and ¢ = 1 eV. Be-
cause of the Jgq interaction, the width of the spectrum
increases from 9.5 eV in the non-interacting case (Fig. 3)
to about 12 eV at Jgq = 3 eV [Fig. 4 (¢)] and in this
case, as shown in Fig. 5 (a), the chemical potential is
in a charge-transfer gap. The dispersion of the bands is
reduced as the temperature decreases rendering the fea-
tures in the DOS sharper. In addition, to the left of the
chemical potential there are two structures, and the peak
closest to the chemical potential could be identified with
a band resembling the Zhang-Rice singlet (ZRS) band.
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FIG. 5: (color online) Spin-fermion model density-of-states
with Jsa=3, Jsp=1, and Jar=0.1 (all in €V) using an 8 x 8
lattice and several inverse temperatures (8 = 400 corresponds
to T ~ 30 K while 8 =10 to T' ~ 1200 K). (a) corresponds to
the undoped case (n)=5 while (b) is at 25% doping (n) = 4.75
(16 holes). The inset shows the pseudogap in the ZRS band
at the chemical potential.

The photoemission one-particle spectral functions
A(k,w) were also calculated and their projection along
selected directions of the Brillouin zone are shown in
Fig. 6 (a) at our lowest temperature 3 = 400 eV~ (i.e.



T ~ 30 K). Below the chemical potential, the closest
state in the ZRS-like band is at momentum (7/2,7/2)
(half-point in the M — T and X — Y directions) indi-
cating that this will be the momentum of a doped hole,
as expected in the cuprates [7, 13]. On the other hand,
the lowest states in the upper band are at X = (m,0)
and Y = (0, 7) suggesting that doped electrons will have
these momenta, as also observed before [13]. Remarkably,
we have found that the maximum around (7/2,7/2) is
considerably symmetric along I'— M and X —Y, i.e. with
a similar down curvature, a characteristic of the disper-
sion observed in early photoemission experiments for the
undoped SraCuO3Cly cuprate [10] that only can be repro-
duced in one-band Hubbard and ¢ — J models by adding
diagonal and second nearest-neighbor hoppings [44, 45].
In fact, comparing with the experimental data [10] the
dispersion in our results along the directions I' — M and
X —Y is 0.5 and 0.8 eV, respectively, as shown in panels
(a) and (b) of Fig. 7, close to the 0.3-0.4 eV observed
experimentally [10]. Note that in the single-band models
with only nearest-neighbor hoppings the dispersion along
X —Y is very flat [10, 44, 45] while a stronger dispersion
is established along that direction in the spin-fermion
model because of the p-orbitals.
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FIG. 6: (color online) (a) Spectral function A(k,w) along
selected directions in the Brillouin zone for the spin-fermion
model with Jsq=3, Jsp=1, and Jar=0.1 (all in eV) using an
8 x 8 lattice at low temperature 7' ~ 30 K in the undoped case.
(b) Orbital-resolved DOS states with parameters as in panel
(a). The orbital spectral weight is indicated in red (blue) for
the d (p) electrons. Black is the total.

The orbital-resolved DOS is displayed in Fig. 6 (b).
Because the conduction band is mostly d in character,
doped electrons will be located into d-orbitals, while the
ZRS-like band is a 50-50 mix of p — d character as dis-
cussed before. This indicates that, due to the additional
hybridization caused by the interactions, doped holes dis-
tribute evenly among oxygen and copper atoms, an un-
usual concept in cuprates where it is widely assumed
that holes have entirely oxygen character. In addition,
we have observed that the orbital decomposition sup-
ports the identification of the charge-transfer band with
a ZRS-like band since its p-character vanishes approach-

ing T, Fig. 8 (b), while its d-character is small close to
M, see panel (a), in agreement with the phase factor of
the ZRS wave function [13, 46, 47]. This is similar to
results obtained for the three-band Hubbard model [13]
except that the dispersion of the ZRS observed in this
previous VCA study is of order t,q ~ 1.3 eV, slightly
larger than the dispersion observed experimentally and
in the spin-fermion model. Finally, in Fig. 6 (b) there is
a lower band, mostly of p-character with a small d contri-
bution, similar to the lower spectral weight, observed in
the three-orbital Hubbard model for U; = 8t in Fig. 2 (a).
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FIG. 7: (color online) Spectral function A(k,w) for the ZRS-
like band using the spin-fermion model with Jsa=3, Jsp=1,
and Jarp=0.1 (all in eV) on an 8 x 8 lattice at low temperature
T ~ 30 K in the undoped case. (a) are results along the M-T'
direction in the Brillouin zone, while (b) is same as (a) but
along the X-Y direction.
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FIG. 8: (color onmline) Orbital-resolved spectral function
A(k,w) for the ZRS-like band shown along the I'-M direc-
tion in the Brillouin zone. We use the spin-fermion model
with Jsq=3, Jsp=1, and Jar=0.1 (all in eV) on an 8 x 8 lat-
tice at low temperature 7' ~ 30 K and in the undoped case.
Panel (a) are results for the d-orbital spectral weight, and (b)
for the p-orbitals spectral weight.

Consider now 25% hole doping. We focus on this
doping to compare with results for the three-orbital
Hubbard model obtained using density functional the-
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FIG. 9: (color online) (a) Spectral function A(k,w) shown
along selected directions in the Brillouin zone for the spin-
fermion model with Jsq=3, Jsp=1, and Jar=0.1 (all in eV)
on an 8 x 8 lattice, at low temperature T' ~ 30 K, and with
25% hole doping. (b) Orbital-resolved DOS corresponding
to panel (a). The orbital spectral weight is indicated in red
(blue) for the d (p) electrons. Black is the total.

ory combined with the dynamical mean-field theory
(LDA+DMFT) [4, 48]. The DOS at different temper-
atures is in Fig. 5 (b). An important difference with the
undoped case [panel (a)] is that as the temperature de-
creases the charge-transfer band develops a pseudogap at
the chemical potential (inset of the figure). In Ref. [48]
the spectral weight to the right of the chemical potential
was identified with the quasiparticle, while the spectral
weight to the left with the incoherent part of the Zhang-
Rice singlet. Our main features of the DOS are in quali-
tative agreement with those observed in the LDA-DMFT
study of the three-orbital Hubbard model: the evolution
with doping of the ZRS band shows the split of the band
into a quasiparticle and an incoherent band. This be-
havior is observed in Fig. 9 along the main directions
in the Brillouin zone in panel (a), while in (b) the DOS
pseudogap develops.

Figure 10 (a) shows that the dispersion is no longer
symmetric about (7/2,7/2) along the nodal direction
I' — M as in the undoped case. The quasiparticle peak
is below the chemical potential at I' and above at M,
while incoherent weight remains below p. This feature is
reminiscent of the “waterfall” observed experimentally in
the cuprates [49-51]. In addition, see panel (b) of the fig-
ure, the quasiparticle crosses twice the chemical potential
along X — Y defining a Fermi surface.

B. Magnetic Properties

Consider now the magnetic properties of the model.
In the undoped case, the system develops long-range
antiferromagnetic order in our finite system. The real-
space spin-spin correlation functions between the local-
ized spins are measured versus distance and their Fourier
transform provides the static magnetic structure factor
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FIG. 10: (color online) (a) Spectral function A(k,w) corre-
sponding to the ZRS-like band shown along the M-I" direction
in the Brillouin zone for the spin-fermion model with Jsq=3,
Jsp=1, and Jar=0.1 (all in e€V) using an 8 x 8 lattice at low
temperature 7" ~ 30 K and for 16 doped holes. (b) same as
(a) but for the X —Y direction.

S(k). In Fig. 11, S(k) is shown for various inverse tem-
peratures [ and presented along representative directions
in the Brillouin zone. The sharp peak is correctly located
at (m,7) and its value increases as the temperature de-
creases, as expected. The inset shows S(k) at k = (7, 7)
varying temperature. A robust antiferromagnetic order
starts to develop between 200 K and 500 K, in rough
quantitative agreement with the real Néel temperature
Ty =~ 300 K in the cuprates [7]. In the spin-fermion
model, there is a natural tendency towards antiferromag-
netism due to the nesting of the non-interacting Fermi
surface, but the addition of a small antiferromagnetic
Heisenberg coupling Jar between the localized spins fur-
ther stabilizes the expected antiferromagnetic order in
the undoped case. The electrons in the Cu d-orbitals
are strongly coupled to the localized spins and their spin
correlations follow the behavior of the classical spin cor-
relations, as shown in the inset of the figure. As a con-
sequence, in what follows it is sufficient to focus on the
behavior of the classical spins.

Upon doping, the antiferromagnetic interaction be-
tween the electrons in the p, orbitals located at the oxy-
gens and the localized spins at the coppers introduces
magnetic frustration. This slightly affects the antifer-
romagnetic order as observed in the curves for different
dopings in Fig. 12. The intensity of the peak at k = (7, )
decreases, while the weight of S(k) at k = (w,3w/4)
increases, as shown in Fig. 12 where S(k) is presented
at temperature T ~ 120 K along representative direc-
tions in the Brillouin zone for different electronic densi-
ties. The increasing transference of weight to (w,3m/4)
with hole doping crudely resembles [52] the expected
trend towards the well-known magnetic incommensura-
bility of the cuprates [53-55] at momentum (7,7 —4) and
(m — 0, 7). Experimental evidence has indicated that this
incommensurability is related to stripe structures either
static or dynamical [56] and more recently the possibility
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FIG. 11: (color online) Static magnetic structure factor
S(k) for the localized spins along representative directions in
the Brillouin zone for the undoped spin-fermion model with
Jsa=3, Jsp=1, and Jar=0.1 (all in €V) using an 8 x 8 lattice
at various values of the inverse temperature (8 = 400 cor-
responds to T" ~ 30 K while 8 = 10 to T' ~ 1200 K). The
inset shows the evolution of the structure factor at k = (m, )
vs temperature for the classical spins (squares) and for the
spins of the electrons in the d-orbitals (circles). The quantum
values have been multiplied by 5 for the sake of comparison
with the results for the classical spins.

of states with intertwined spin, charge, and supercon-
ducting orders was also proposed [57]. The study of the
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FIG. 12: (color online) Static magnetic structure factor S(k)
for the localized spins along representative directions in the
Brillouin zone for the spin-fermion model with Jsq=3, Jsp=1,
and Jap=0.1 (all in eV) using an 8 x 8 lattice at tempera-
ture 7" ~ 120 K and for the indicated number of holes. The
inset shows the evolution of S(m, ) (squares) and S(m,37/4)
(circles) at T' ~ 120 K varying the number of doped holes as
indicated.

possible existence of stripes, ZRS structures, high-spin
polarons, and intertwined states in the ground state upon
doping are future projects that can be addressed via the
three-orbital spin-fermion model introduced here.

V. CONCLUSIONS

In this publication, a phenomenological three-orbital
model that reproduces the charge-transfer properties of
superconducting cuprates was introduced. The notorious
difficulty to incorporate the electronic Coulomb repul-
sion of the multiorbital Hubbard model was alleviated by
introducing antiferromagnetic interactions between the
spins of the electrons in the three itinerant orbitals and
phenomenological spins located at the coppers. The in-
teraction of the d-electrons with the localized spins effec-
tively induces a gap in the half-filled d-band and prevents
double occupancy, similarly as the Hund interaction does
in double-exchange models for manganites. Consider-
ing the localized spins as classical, as in similar models
for manganites [38], one-orbital cuprates [23], and iron-
based superconductors [22], the Hamiltonian becomes
quadratic in the fermionic fields and it can be studied
by classical Monte Carlo combined with the diagonaliza-
tion of the effective single-particle quantum Hamiltonian.
This process allows the study of a three-orbital model
in larger clusters than those accessible to multi-orbital
Hubbard models and, moreover, the full range of tem-
peratures can be explored.

Several features of the band structure experimentally
observed in the cuprates are well-reproduced by this sim-
plified new model, such as the development of a charge-
transfer gap in the undoped case framed by a conduc-
tion band of mostly d-character with minima at momen-
tum (7,0) and (0,7) and a ZRS-like band with a 50/50
contribution from p and d orbitals with a maximum at
(r/2,7/2). In addition, the band dispersion about the
maximum is symmetric along I' — M and X — Y in the
Brillouin zone, an experimental property of the cuprates
that is not captured by single orbital models unless ¢’
and t” hoppings are added. Upon doping, a pseudogap
in the ZRS band develops at the chemical potential and
spectral features crudely resembling the “waterfall” are
observed.

Some drawbacks of the model here presented are a ten-
dency towards ferromagnetism upon large hole doping
(which may prevent the study of very overdoped regimes)
and the difficulty in capturing off-diagonal-long-range or-
der due to the single particle nature of the Hamiltonian
(so that only a trend towards d-wave pairing, rather than
actual long-range order, could eventually be observed).
Another weakness is that despite the accessibility to nu-
merically exact calculations in clusters larger than those
that can be studied with fully quantum three-orbital
many-body Hamiltonians, further approximations, such
as the travelling cluster approximation, will need to be
implemented to study even larger systems.

Despite the limitations just mentioned, still many
properties of charge transfer systems can be addressed.
The correct magnetic properties of the cuprates are cap-
tured by the spin-fermion model that displays tenden-
cies towards long-range antiferromagnetic order in the
undoped case. It also starts to show incipient indications



of incommensurability along (7 — d,7) and (7,7 — §) in
the doped case. These features upon doping, which may
originate in stripes or intertwinned order and that may
require cylindrical boundary conditions for their stabi-
lization, can only be seen clearly using larger clusters
and they will be the subject of future work.
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