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We study 2D fermions with a short-range interaction in the presence of a van Hove singularity. It is
shown that this system can be consistently described by an effective field theory whose Fermi surface
is subdivided into regions as defined by a factorization scale, and that the theory is renormalizable
in the sense that all of the counterterms are well defined in the IR limit. The theory has the unusual
feature that the renormalization group equation for the coupling has an explicit dependence on the
renormalization scale, much as in theories of Wilson lines. In contrast to the case of a round Fermi
surface, there are multiple marginal interactions with nontrivial RG flow. The Cooper instability
remains strongest in the BCS channel. We also show that the marginal Fermi liquid scenario for the
quasiparticle width is a robust consequence of the van Hove singularity. Our results are universal
in the sense that they do not depend on the detailed properties of the Fermi surface away from the
singularity.

PACS numbers: 71.10.Hf, 11.10.Gh, 71.18.+y, 74.20.-z

I. INTRODUCTION

In the 1990s and early 2000s, extensive theoret-
ical work was devoted to the study of systems of
fermions in 2D with the Fermi level close to a van Hove
singularity1–12. In such a system, the Fermi velocity van-
ishes at isolated points on the Fermi surface which we will
refer to as van Hove points. From a theoretical stand-
point, the van Hove singularity is one of the simplest
situations in which deviations from standard Fermi liq-
uid theory are expected. For example, the leading order
computation of the self-energy1,2 shows that with a short-
range interaction, the width of the quasiparticles is linear
in the energy, a characteristic behavior of the Marginal
Fermi Liquid (MFL)13. Since the MFL paradigm has
been proposed to explain some peculiar properties of the
normal state of high-Tc superconductors, it was spec-
ulated that high-Tc superconductors are special due to
their proximity to a van Hove singularity2,14. While this
scenario has fallen out of favor, understanding the effect
of van Hove singularities on the Fermi liquid remains an
important problem.

Most of the studies cited above focus on the 2D Hub-
bard model on a square lattice at or near half-filling be-
cause of its relevance to cuprate superconductors. In this
model, the Fermi surface is diamond-shaped and features
two inequivalent van Hove points (i.e. points where the
Fermi velocity vanishes) as well as nesting. These fea-
tures complicate the analysis, and it is hard to disentan-
gle the effects of van Hove points and nesting. In this
paper we study in detail the case of a single van Hove
point from the point of view of Effective Field Theory
(EFT). When applied to the case of a nonsingular Fermi
surface, the EFT approach explains the ubiquity of both
the Fermi liquid and BCS-type superconductivity15–18.

As was previously noticed in4,6, the hyperbolic disper-
sion law characteristic of electrons near a 2D van Hove
point leads to additional divergences not regulated by

the Wilsonian cutoff Λ, and necessitates the introduction
of an additional regulator which we take to be a Fermi
velocity cutoff Υ. Υ also plays the role of a factoriza-
tion scale which splits the Fermi surface into two regions,
vF > Υ and vF < Υ, where two different power count-
ing schemes apply. In each region momenta are split into
large “label” momenta and small “residual” components.
Previous work on the 2D van Hove singularity has been
plagued by nonlocal divergences, and a recent detailed
study19 concluded that the van Hove EFT is not renor-
malizable when the Fermi level is exactly at the van Hove
singularity and has a very narrow range of applicability
when the Fermi level is close to it. However, as we show,
when momenta are properly power counted, all of the
counterterms are independent of the residual momenta
in each respective region and therefore should be consid-
ered local. Furthermore, the coupling in each region can
only depend upon the label momenta. The coupling can
be assumed to be independent of momenta only when all
components of the momenta are smaller than Λ/Υ.

In the BCS channel, the RG equation for the coupling
function explicitly depends on the logarithm of the ra-
tio of the Wilsonian cutoff Λ to the bandwidth W and
leads to the well known double logarithmic running4,6,8.
This dependence on the UV scale W represents a form
of UV/IR mixing and has interesting consequences dis-
cussed below.

The situation is reminiscent of high energy scattering
processes, such as the Sudakov form factor, where the
phase space of gauge bosons is split into two regions
which dominate the IR behavior. This splitting leads
to additional (rapidity) divergences which necessitate a
new regulator20 to distinguish between soft and collinear
modes. Summing contributions from these two sectors
leads to a cancellation of the regulator but, as in the
present case, the cancellation leaves behind a log in the
beta function. This in turn leads to double logs in the
renormalization group flow.
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We utilize our results to study how a van Hove singu-
larity modifies the low energy behavior. In particular, we
discuss the Cooper instability and the range of applicabil-
ity of the Marginal Fermi Liquid scenario. We show that
the Cooper instability is the strongest in the BCS chan-
nel, as in the case of the circular Fermi surface, but is also
present for other kinematic configurations. This happens
because of additional marginal interactions which lead to
a breakdown of the Fermi liquid picture. We also show
that a certain generalization of the MFL scenario is a
robust consequence of the van Hove EFT.

II. A TOY MODEL OF A VAN HOVE

SINGULARITY

In the 2D Hubbard model on a square lattice, there are
two VH points in the Brillouin zone: pVH = (0, π) and
pVH = (π, 0). When the hopping parameters in the x
and y directions are not equal, the energies of these two
points are different. If the Fermi level is much closer to
one than the other, the effective field theory of a single
VH singularity should apply. At both of the VH points,
2pVH ∼ 0. We assume there is a unique VH point in the
Brillouin zone and time-reversal (T ) symmetry, which
takes p 7→ −p, is present. Therefore the singularity sits
at the origin, a fixed point under T .
Such a scenario is realized by expanding the nearest-

neighbor Hubbard model Hamiltonian around the point
p = 0 to lowest order in momentum components and
assuming a zero-range interaction. The resulting action
is

S =

∫

d3x
[

ψ†(i∂t − ε(−i∇) + µ)ψ − g

2
(ψ†ψ)

2
]

, (1)

where the dispersion relation is

ε(p) = p2 ≡ txp
2
x − typ

2
y (2)

and is unbounded from below. p2 denotes the square
of the 2D vector p with respect to the indefinite met-
ric diag(tx,−ty). It is convenient to set tx = ty =
1 by rescaling px and py, such that metric becomes
diag(1,−1), and absorbing a factor of 1/

√
txty into g.

If we regard px, py as periodic with period of order kB,
then tx, ty are of orderW/k2B , whereW is the bandwidth.
As usual, all states with ε(p) < µ are assumed to be

occupied, so in the free (g = 0) limit the excitations of
the system are particles and holes, both with nonnega-
tive energy. When the Fermi level µ vanishes, the system
has a discrete symmetry ψ ↔ ψ†, x↔ y which exchanges
particles and holes. Furthermore, the quadratic disper-
sion relation has O(1, 1) invariance, and the short-range
interaction preserves this symmetry. Also, for µ = 0, the
action (1) is invariant under dilatations

ψ(t, x) → λ−1ψ(λ2t, λx). (3)

Invariance with respect to Galilean boosts is sponta-
neously broken by the Fermi sea for all values of µ. As

usual, the dilatation symmetry is anomalous on the quan-
tum level. Internal symmetries include U(1) particle-
number symmetry and SU(2) spin symmetry.
The interaction term in (1) has zero range, and in mo-

mentum space corresponds to a four-point vertex with
no momentum dependence. A naive justification for this
simple ansatz is that any vertex with more than four
fermionic fields or polynomial momentum dependence is
irrelevant in the RG sense. Here we assume that under
the RG transformations the momenta scale as

px → λpx, py → λpy , (4)

so energy has scaling dimension 2 and ψ has scaling di-
mension 1. Then the chemical potential µ is relevant,
the coupling g is marginal, and more complicated inter-
actions are irrelevant.
This naive argument is, as well known, incorrect, due

to the fact that momenta tangent to the Fermi surface
should not scale under RG flow. Moreover, the theory de-
fined with a contact interaction, eq. (1), is not consistent,
as corrections to the four-point function include nonlocal
divergences which cannot be absorbed into a renormal-
ization of g4,6. These divergences can be traced to the
noncompactness of the Fermi surface.

III. SETTING UP THE VAN HOVE EFT

To make the theory (1) well defined, one must im-
pose a cutoff on momenta which will render the Fermi
surface compact. This cutoff is imposed in addition to
the Wilsonian cutoff |ε(p)| ≤ Λ. We assume Λ is much
smaller than the bandwidth W ∼ k2B. We also assume
that |µ| ≪ Λ, so the modes near the Fermi surface are
not integrated out.
Let Υ denote this momentum cutoff. The largest pos-

sible value for Υ is of order kB , the size of the Brillouin
zone, and thus it is natural to assume that Λ ≪ Υ2. The
region

|p±| ≤ Υ, |p+p−| ≤ Λ, (5)

where p+ = px + py and p− = px − py, will be called the
VH region.24 Within this region, the dispersion law is

ε = p+p−. (6)

We are using Λ and Υ as both explicit regulators and
factorization scales. Υ has a natural value of order VF ,
the typical value of the Fermi velocity away from the VH
points, but it can also be chosen parametrically smaller.
In any physical result the dependence on Υ should cancel,
since its role is merely to separate the VH and NVH
regions. On the other hand, in any physical prediction Λ
is a placeholder for the RG scale.
The VH region is the part of the Λ-neighborhood of

the Fermi surface that is close to the saddle point. In
this region, the dispersion relation (6) implies that if
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VH

NVH

FIG. 1. An example of the division of the Fermi surface into
van Hove and non-van Hove regions.

both components of momentum are of the same order,
then p± ∼

√
Λ ≪ Υ. In addition to these “soft modes,”

the VH region is populated by collinear and anticollinear
modes whose momenta scale as (Υ,Λ/Υ) and (Λ/Υ,Υ)
respectively.
The rest of the Λ-neighborhood of the Fermi surface

will be called the NVH region. Within this region, the
dispersion law is the standard

ε(p) = p⊥vF (p‖), (7)

where p⊥/p‖ are normal/tangential to the Fermi surface.
We assume that the NVH region is “featureless,” in the
sense that the Fermi velocity does not change too much
there, and that it is free of nesting. The first assumption
simply means that there are no other van Hove singular-
ities nearby, while the importance of the second assump-
tion will be discussed in Section VIII. Fig. (1) illustrates
the division of a representative Fermi surface into the VH
and NVH regions.
In general, loop calculations involving modes from the

VH region alone will depend on Υ in such a way that the
Υ → ∞ limit leads to additional divergences. Thus, a
sensible EFT must include both the VH region and the
NVH region. We use the term “full theory” for such an
EFT. We make no assumptions about the shape of the
Fermi surface in the NVH region. As we will show below,
our results are universal to leading log accuracy in the
sense that they only depend upon VF , the typical Fermi
velocity in the NVH region, and not the detailed shape
of the Fermi surface. Therefore, our results apply to any
system with a VH singularity near the Fermi surface that
is weakly coupled at energies of order the bandwidth.
We will denote the fields annihilating electrons in the

VH and NVH regions ψV and ψN respectively. The in-
teraction part of the action is

Sint =

∫

dt

4
∏

i=1

d2pi
∑

αβγδ

gαβγδψ
†
αψ

†
βψγψδ, (8)

where the indices α, β, γ, δ take values V and N . In gen-
eral, gαβγδ can depend on the momenta pi of the interact-
ing modes. The couplings must match onto each other as
the VH modes approach the NVH region and vice versa.
For example, gNNV V must match onto gV V V V as the
momenta of the first and second modes approach the VH
region.
Naively, in light of the dispersion laws (6) and (7), one

might think that the coupling functions in (8) should
only depend on the p‖ of the NVH modes and that the
only marginal interaction between the VH modes should
be a momentum-independent constant. We will see in
the next section that this is not self-consistent: one-loop
calculations imply that the couplings must depend on
momentum in a more generic manner. This is because
when both the rapidity cutoff Υ and the Wilsonian cutoff
Λ are present, a low momentum scale Λ/Υ also plays a
role. We will call Λ/Υ the ultrasoft scale.
We can achieve some simplification by recalling that

momentum and energy conservation limits the interac-
tions of the NVH modes to special kinematic configura-
tions16. These configurations correspond to forward scat-
tering and back-to-back (BCS) scattering. This implies
that interactions between NVH modes and VH modes are
of two kinds: (1) forward scattering between a VH mode
and an NVH mode and (2) scattering of nearly back-to-
back VH modes to nearly back-to-back NVH modes and
vice versa. As a result, the numbers of VH and NVH
particles are separately conserved.

IV. THE ONE-LOOP BETA FUNCTION

A. Generic kinematic configuration

Consider the scattering of VH modes in a generic kine-
matic configuration. Conservation of momentum implies
the NVH modes will not contribute. Thus tree-level in-
teractions are described by a single coupling function of
three independent VH momenta. We would like to de-
termine how this function is renormalized.
It is enlightening to first assume that the coupling is a

momentum-independent constant, as naive power count-
ing suggests. The manner in which this assumption fails
will show us how to appropriately modify the theory.
We subdivide the VH region into three parts: the

soft region, where p± ∼
√
Λ; the collinear region, where

p+ ∼ Υ and p− ∼ Λ
Υ ; and the anticollinear region, where

p− ∼ Υ, and p+ ∼ Λ
Υ . Fig. 2 illustrates the location of

these subregions. This separation is useful for categoriz-
ing the contributions to the beta function. Since in this
subsection the kinematic configuration is assumed to be
generic, the differences and sums of external momenta
are of the same order as the momenta themselves.
As usual, we have three diagrams at one-loop level,

which we refer to as s-channel (AS), t-channel (AT), and
u-channel (AU); see Fig. 3. These three diagrams de-
pend on K = p1 + p2, Q = p1 − p3, and Q′ = p1 − p4
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FIG. 2. Subdivision of the VH region.

respectively, and each contributes independently to the
beta function. The u-channel diagram is identical to the
t-channel diagram if we take Q↔ Q′, so we focus on the
t- and s-channel diagrams.

(a) s-channel (b) t-channel

FIG. 3. The diagrams contributing to the renormalization of
the coulping at one loop. Not shown is the u-channel diagram,
which is given by interchanging the final state particles in the
t-channel diagram.

We find (see Appendix) that any one-loop diagram
where a collinear external mode and an anticollinear ex-
ternal mode meet at a vertex leads to a power-suppressed
contribution to the beta function. This is because the K
orQ involved in the interaction always sets a large energy
scale which acts to suppress the associated diagram.
Generic t-channel diagrams that do not involve

collinear-anticollinear vertices make order-one contribu-
tions to the beta function. For example, for a generic
interaction between soft modes,

Λ
dAT

dΛ
=

g2

4π2
(9)

plus power-suppressed terms. There are exceptions
in certain special kinematic configurations; see Sec-
tion IVB.
The behavior of the s-channel diagrams is more com-

plicated. Defining

εK = K+K−, (10)

we find that generic the s-channel diagrams that do
not involve collinear-anticollinear vertices interpolate be-
tween being log enhanced when εK ≪ Λ and order one
when εK ∼ Λ. As an example, for generic interactions
between soft modes,

Λ
dAS

dΛ
= − g2

4π2
log

(

Λ

εK

)

(11)

plus suppressed terms. To avoid confusion, we note that
εK is not the net energy of the incoming particles.

B. Special kinematic configurations

Eq. (11) appears to imply that the beta function di-
verges as εK approaches zero, thus necessitating the ex-
istence of a nonlocal counterterm, which would mean the
formalism lacked a systematic power-counting scheme.
However, (11) does not apply in the εK → 0 limit. The
divergent behavior is an unphysical artifact of taking the
van Hove region to be infinite in extent. If we take the
rapidity cutoff Υ into account, we find that when one
component of K, say K−, satisfies

|K−| <
Λ

Υ
, (12)

such as for an interaction between only collinear modes,
then

Λ
dAS

dΛ
= − g2

4π2
log

(

Υ

K+

)

(13)

plus order-one terms. If both components of K are ul-
trasoft (i.e. smaller in magnitude than Λ/Υ), we find to
leading log order

Λ
dAS

dΛ
= − g2

4π2
log

(

Υ2

Λ

)

. (14)

We can summarize the detailed behavior of the s-
channel contribution to the beta function in the following
manner:25

Λ
dAS

dΛ
=

{

− g2

4π2 log
(

Λ
max (K+, Λ

Υ
)max (K−, Λ

Υ
)

)

, εK <∼ Λ

O(1)× Λ
εK
g2, εK >∼ Λ.

(15)
If K+ ∼ Υ, the log in (13) will not be large, and hence

the order-one “corrections” cannot be ignored. As a re-
sult, the dependence on K+ becomes complicated. Sim-
ilarly, if one component of Q is large while the other is
ultrasoft, the t-channel diagram has a complicated de-
pendence on the large component (though unlike the
s-channel diagram, it can never become log enhanced).
These cases are discussed in more detail in Section VIII.
Finally, the t-channel contribution to the beta function
vanishes if both components of Q are ultrasoft.
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C. Binning and leading-log behavior

At first glance, the behavior of the beta function im-
plied by the above results is rather odd. The contribution
from the s-channel diagram in Eq. (15) sometimes de-
pends nonanalytically on the momentum, and the func-
tional form of the results change when the components
of K or Q pass a particular threshold (around the scale
Λ/Υ). Previous authors19 have particularly regarded the
behavior of the t-channel diagram as a sign of unavoid-
able nonlocality in the theory. However, as discussed in
the next section, similar behavior appears already for a
circular Fermi surface, and is dealt with using bins in
momentum space of size Λ/KF . This notion of binning
allows for a clear separation between large and small mo-
menta, and was previously used in the context of the
theory of non-relativistic heavy quarks21. Binning is also
implicit in the standard Fermi-surface RG16. We apply
the same method here.
We divide momentum space into bins of size Λ/Υ, each

with a label momentum corresponding to the center of
the bin and a residual momentum, of order Λ/Υ, corre-
sponding to the position within the bin. The couplings
are then indexed by the discrete label momenta, and we
can Taylor expand in the residual momenta. The beta
function then depends at leading order on the label mo-
menta alone, and all results are analytic in the residual
momenta. The theory is therefore renormalizable, al-
though the couplings depends in an arbitrary way on the
label momenta. The same is true for a circular Fermi
surface (see the next section).
The non-analytic dependence on the net momentum

implies that our assumption of a momentum-independent
coupling was inconsistent, and the RG flow will generate
dependence on the label momenta even for modes within
the soft region. While this complicated behavior threat-
ens the predictive power of the theory, we will see in
Section VI that the enhancement of the beta function
for modes with small net momentum allows for several
important simplifications.

V. REVISITING THE ROUND FERMI

SURFACE

Let us revisit some old results involving a round Fermi
surface. In that context, previous authors15161718 found
that only certain coupling functions are present in the IR
theory. In particular, only forward scattering and inter-
actions between back-to-back particles (the BCS chan-
nel) are marginal, in the language of effective field the-
ory. Furthermore, these authors found that only the BCS
coupling is renormalized (that is, corrections to forward
scattering are power suppressed), and that the beta func-
tion for the BCS interaction is in fact one-loop exact for
generic round Fermi surfaces1618.
These results hold in the limit where the Wilsonian

cutoff Λ on the energy of the modes included in the the-

ory (or, in other words, the “width” of modes around the
Fermi surface) is taken to zero while the size of Fermi sur-
face itself is held fixed. For nonzero Λ, near-forward and
near-BCS scattering continue to be present in the theory.
To understand their role more precisely, let us consider
their contributions to the one-loop beta function.
We may parameterize a generic coupling function in

terms K, Q, and Q′, the same functions of the external
momenta defined in Section (IV). As before, the s-, t-,
and u-channel diagrams (16 calls these the BCS, ZS, and
ZS’ diagrams), depend on K, Q, and Q′ respectively,
and the t- and u-channel diagrams are exchanged under
Q ↔ Q′. BCS scattering occurs for K = 0 and forward
scattering occurs when either Q or Q′ is zero.
It is straightforward to show that when any of these

momenta are order KF (the radius of the Fermi surface),
the presence of the Fermi surface forces the contribu-
tion from the corresponding one-loop diagram to the beta
function to be suppressed. For example, the log deriva-
tive of the one-loop s-channel diagram is

Λ
dAS

dΛ
∼ Λ

vF |K|g
2 (16)

when |K| ≈ KF . A similar statement holds for the t-
channel and u-channel diagrams.
From this point of view, the one-loop contributions are

generically power suppressed. The exceptional behavior
occurs when K (or Q or Q′) is of order Λ/vF . Unlike the
case for large K or Q, the behavior qualitatively differs
between the s and t channels.
For the t-channel diagram to make a nonsuppressed

contribution to the beta function, the following must
hold:

Λ

vF
< |Q| < O(1)× Λ

vF
. (17)

Thus, there is a window of values where the contribution
is nonzero, and the position of the edges of this widow
depend on Λ. On the other hand, for the s-channel dia-
gram to make an unsuppressed contribution to the beta
function, K must satisfy

|K| < O(1)× Λ

vF
. (18)

In particular, K = 0 gives an order-one contribution
while Q = 0 does not. Fig. 4 demonstrates the behavior
of the log derivatives assuming a constant coupling.
This difference has a profound effect. In the course of

the RG flow, the condition that K or Q is order Λ/KF

changes, since we take Λ to scale down. If K is actually
zero from the beginning, there will always be an order-
one contribution to the beta function, and this condition
is stable throughout the RG flow. This allows attrac-
tive couplings with K = 0 (the BCS channel) to become
strong at small Λ. On the other hand, the condition for
the t-channel diagram to give a unsuppressed contribu-
tion to the beta function is not stable under the RG flow.
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FIG. 4. The log derivatives of the s- and t-channel diagrams
measured in units of g2 for a circular Fermi surface. We as-
sume a constant coupling.

Hence for any fixed Q, the t channel only contributes to
the beta function for a small period of RG time.
In summary, the contribution to the beta function is

power-suppressed throughout the RG flow for generic
(large) K and Q. If K or Q is small enough, there are
order-one contributions to the beta function, but only
for a short RG time. The only exception is “true” BCS
scattering, where |K| < Λ/vF throughout the flow. If we
assume the UV coupling is weak, this means the only cou-
pling that can be relevant to the ground state instability
involves the BCS configuration.
With this context, the startling results for the one-

loop VH beta function [Eqs. (9)-(15)] are less surprising.
Even with a round Fermi surface, the beta function, and
therefore the coupling, depends onK and Q. This is even
true for the BCS coupling, which is generically a function
of two angular coordinates16,18 (playing the role of label

momenta) for noncircular Fermi surfaces.
Finally, the transition from zero contribution to the

beta function from the t-channel diagram to a finite con-
tribution as we increase Q from zero is also present for
the circular Fermi surface. The major difference in the
VH case is the long, flat section of the Fermi surface,
which guarantees that the window in Q for which the t
channel is not power suppressed is larger than for a circu-
lar Fermi surface. Fortunately, we will see that at least
for certain observables, we may once again neglect the
contribution from the t channel relative to the s channel.

VI. THE LEADING CONTRIBUTION AT ONE

LOOP

Section IV demonstrates that at one loop, only the
s-channel diagram contains a logarithmic enhancement.
Furthermore, the largest possible contribution to the beta
function occurs when K ≃ 0. This indicates that the
kinematic configuration of near-zero net momentum, the
BCS channel,26 dominates the low-energy behavior of the
theory.
With this in mind, assume the UV the dependence on

the external momenta is analytic. This condition will not
be preserved under the RG, because the s-channel intro-
duces a nonanalytic dependence on the net momentum
K in the four-point coupling. However, if we focus on
the BCS configuration we may ignore any nonanalytic
dependence on the other momenta to leading-log order.
In the following calculations, we sum the leading VH

and NVH contributions. While the precise form of the
full results generically depends on the detailed shape of
the NVH portion of the Fermi surface, the leading con-
tribution is independent of these details. Instead, this
summing procedure turns out to be identical to taking
the VH results and replacing the cutoff Υ with VF , its
natural value.
Parameterize the BCS coupling as gB(p1, p3), where p1

is the label momentum of one of the incoming pair of par-
ticles (the other has label momentum −p1) and p3 is the
label momentum of one of the pair of outgoing particles.
We find with logarithmic accuracy (see Appendix)

Λ
dgB(p1, p3)

dΛ
=

1

4π2
gB(p1, 0)gB(0, p3) log

V 2
F

Λ
. (19)

An unusual feature of this equation is that the beta
function has an explicit dependence on Λ, as well as V 2

F .
The latter can be regarded as an energy scale of order
of the bandwidth, V 2

F ∼W . Thus the IR physics retains
some information about the UV scale W .
The solution to (19) is

gB(p1, p3; Λ) = gB(p1, p3; Λ0)−
(

1

8π2

) gB(p1, 0; Λ0)gB(0, p3; Λ0)
(

log2
V 2
F

Λ − log2
V 2
F

Λ0

)

1 + gB(0,0;Λ0)
8π2

(

log2
V 2
F

Λ − log2
V 2
F

Λ0

) . (20)
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The coupling in the vicinity of the van Hove singularity,
gB(0, 0), plays a special role: it “drives” the RG for the
other couplings, and when it is attractive at the scale Λ0,
it sets the one-loop estimate of the strong-coupling scale,

Λ∗ = V 2
F exp



−
√

log2
VF

2

Λ0
+

8π2

|gB(0, 0; Λ0)|



 . (21)

As in the ordinary BCS theory22 the strong-coupling
scale is non-perturbative in g(Λ0). However, the usual
dependence of this scale on the microscopic parameters
differs from (21). While (21) simplifies considerably if we
set Λ0 = V 2

F ∼ W , this choice may be unphysical if the
van Hove EFT is obtained by integrating out some other
degrees of freedom at a scale below W . For example, if
the short-range interaction arises both from the screened
Coulomb repulsion and the phonon-mediated attraction,
the van Hove EFT applies only up to energy scales of
order the Debye frequency ωD, which is usually much
smaller than the bandwidth W . Then the natural choice
for Λ0 is ωD, and we have a hierarchy of scales V 2

F ≃
W ≫ ωD.
To understand some of the limitations of this formal-

ism, consider the amplitude (as opposed to the beta
function) in the BCS configuration. If we assume a
momentum-independent BCS coupling, it is straightfor-
ward to evaluate the one-loop amplitude with logarithmic
accuracy:

ABCS(E) =
g2B
8π2

(

log2
V 2
F

Λ
− log2

V 2
F

E
− iπ log

V 2
F

E

)

,

(22)
where we have kept only the leading terms in the real
and imaginary parts. Taking the log derivative of equa-
tion (22) with respect to Λ reproduces the beta func-
tion (19) for gB(0, 0). However, the imaginary part of the

amplitude depends on log
V 2
F

E
. This large log is not re-

summed by the standard beta function and indicates that
something akin to the rapidity renormalization group in-
troduced in20 would be necessary to resum subleading
logs.
In the special case Υ2 = Λ our scheme in the VH re-

gion resembles that of Ref.5. In that work it is implicitly
assumed that g is repulsive, and that Λ can be taken as
high as the bandwidth, so that the NVH region is effec-
tively absorbed into the VH region. However, lowering
Λ then results in integrating some low-energy modes and
requires nonlocal counterterms.

VII. HIGHER-ORDER RENORMALIZATION

Let us discuss how higher-order corrections modify
Eq. (22). This is particularly important for the kine-
matic configuration with zero net momentum which con-
trols the Cooper instability. Since the beta function at
zero net momentum contains a logarithm of a large ratio,

FIG. 5. The two-loop self-energy with finite imaginary part.

log(V 2
F /Λ), one may wonder if the one-loop computation

is reliable in this kinematic configuration, or if one needs
to resum the logs in the beta function itself. We will
call logs containing V 2

F , such as log(V 2
F /E) or log(V 2

F /Λ),
rapidity logs. We want to estimate the contribution of
higher rapidity logs to the beta function at zero net mo-
mentum.
We will limit ourselves to the analysis of 2-loop dia-

grams. We take Υ ∼ VF , in which case there are no
large rapidity logs in non-VH loops. The renormalized
coupling g is related to the bare coupling gb by

gb = gZ4Z
−2
2 , (23)

where Z4 is the renormalization factor for the particle-
particle four-point amplitude, and Z2 is the wave func-
tion renormalization. Z2 is finite at one loop, and at
two-loop order is determined from the on-shell behavior
of the self-energy diagram, Fig. 5, whose imaginary part
is finite even without the rapidity cut-off1,2, and therefore
does not contain rapidity logs.
Two-loop contributions to Z4 arise from diagrams such

as in Fig. 6. (Iterations of one-loop diagrams do not
contribute since their infinities are removed by one-loop
counter-terms). Their contributions to the beta function
can be estimated using what we already know about the
one-loop diagrams. For example, the diagram Fig. 6a
is the obtained from the one-loop s-channel diagram by
replacing one of the vertices with the one-loop t-channel
diagram. The latter does not contain rapidity logs, so the
contribution of the whole diagram to the beta function
should behave in the same way as that of the one-loop
s-channel diagram. In particular, it contains at most a
single log(V 2

F /Λ) at zero net momentum. The diagram
Fig. 6b can be regarded as a one-loop t-channel diagram
with one vertex replaced with a one-loop s-channel dia-
gram. The latter amplitude contains at most two rapidity
logs, so the contribution of Fig. 6b to the beta function
contains at most log2(V 2

F /Λ). We conclude that with log-
arithmic accuracy the two-loop beta function at zero net
momentum has the form

β(g) =
1

4π2
(g2 + Cg3) log

V 2
F

Λ
+ C′g3 log2

V 2
F

Λ
, (24)

where C and C′ are constants.
Now we can see if the resummation of rapidity logs

in the beta function is necessary. Eq. (20) indi-
cates that the one-loop RG equations resum logs of
the form g log2(V 2

F /Λ). Thus we are assuming that
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(a) (b)

FIG. 6. Examples of two-loop contributions to the beta func-
tion. The diagrams with iterated loops are not shown. The
diagram on the right can contribute a double rapidity log to
the beta function.

g log2(V 2
F /Λ)

<∼ 1, while g log(V 2
F /Λ) ≪ 1. This im-

plies g3 log2(V 2
F /Λ) is parametrically suppressed relative

to g2 log(V 2
F /Λ). We conjecture that this behavior per-

sists at higher loops, in the sense that every extra power
of g is accompanied by at most a single rapidity log. If
this is true, then resumming the rapidity logs in the beta
function will not will not change qualitative conclusions
regarding the RG flow and the Cooper instability.

VIII. THE COLLINEAR REGION AS A

MARGINAL FERMI LIQUID

By definition, the collinear region is the part of the
VH region where |p+| is of order of the rapidity cutoff Υ,
while |p−| is less or equal than Λ/Υ. The anticollinear re-
gion is defined similarly, but with p+ and p− exchanged.
Each of the following statements regarding the collinear
region also applies to the anticollinear region.
Everywhere in the collinear region, the Fermi velocity

is nonzero. Naively, one might conclude that this region
is no different from the NVH region. In particular, one
might think that the usual Fermi surface EFT16 applies
both in the NVH and the collinear region, but this is in-
correct. To see why, recall that canonical Fermi surface
EFT predicts that all interactions (apart from forward
and BCS scattering) are irrelevant, and thus the quasi-
particle width scales like E2/vFkB for small E. In the
NVH region, vF is of order W/kB , thus the Fermi liquid
theory applies for E much smaller thanW . But it is well
known16 that additional marginal interactions arise when
a portion of the Fermi surface is related to another por-
tion of the Fermi surface by a translation in momentum
space (nesting). The translation vector Q is called the
nesting vector. The collinear region is an extreme exam-

ple of this, since the Fermi surface is approximately in-
variant with respect to arbitrary shifts with Q = (Q+, 0).
Following Wilczek and Nayak23, we will refer to such a
Fermi surface as flat.

Wilczek and Nayak emphasized the failure of the Fermi
liquid theory for flat Fermi surfaces and proposed that
the correct EFT for flat Fermi surfaces is quasi-1D, with
the component of momentum parallel to the Fermi sur-
face playing the role of a continuous label. In particular,
the four-fermion interaction is marginal for generic com-
binations of momenta rather than irrelevant.
But there is also an important difference between the

collinear region and the model of interacting 1D fermions
(the Luttinger model). In the Luttinger model, the cou-
pling is exactly marginal (has vanishing beta function).
This is most easily seen using bozonization, which turns
the Luttinger model into a free boson with a linear dis-
persion law. The vanishing of the beta function does not
apply to the EFT describing the collinear region. The
reason is that, unlike in the 1D case, the Fermi veloc-
ity varies along the Fermi surface. For definiteness, let
us consider the collinear region and set µ = 0. Then
the “small” component of momentum is p−, while the
“large” one is p+. If we treat p+ as a continuous label,
the Fermi velocity is

vF (p+) = p+. (25)

As long as we consider generic scattering events between
particles for which p+ is O(Υ), the four-fermion coupling
can be Taylor expanded in p−, but not in p+. Thus the
leading interaction term,

Sint =

∫

dt

∫

d2p1d
2p2d

2p3

× 1

4
g(p1+, p2+, p3+)ǫ

α1α2ǫα3α4ψα1
ψα2

ψ†
α3
ψ†
α4
, (26)

depends on a function of three real variables
g(p1+, p2+, p3+) which we take to be spin indepen-
dent. This choice of spin structure for the interaction
corresponds to the spin-singlet coupling, which we will
focus on here. Furthermore, we take g to be symmetric
under p1 ↔ p2 and p3 ↔ p1 + p2 − p3 independently, so
the vertex factor is

i(δα1α3
δα2α4

− δα1α4
δα2α3

)g(p1, p2, p3). (27)

It is straightforward to compute the beta function for
g. We find:
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dg(p1+, p2+, p3+)

d logµ
=

1

2π2

∫ Υ

K

dq
g(p1+, p2+, q)g(q,K − q, p3+)

2q −K

+
1

8π2Q

∫ min (Q,Υ)

Q−min (Q,Υ)

dq g(p1+, q, p3+)g(p2+ , q +Q, p4+)

+
1

8π2Q′

∫ min (Q′,Υ)

Q′−min (Q′,Υ)

dq g(p1+, q, p4+)g(p2+ , q +Q′, p3+) (28)

plus terms suppressed by ε(p)/Λ, where p is one of the ex-
ternal momenta. Here K = p1++p2+ and Q = p1+−p3+
are assumed to be positive, for definiteness. Even if we
take g to be independent of the “large” components of
momenta at some scale, the RG evolution is nontrivial
and introduces momentum dependence. At higher orders
we will also have to take into account the renormaliza-
tion of the Fermi velocity function vF (p+). Finally, we
neglected the spin-triplet coupling. Even if it is set to
zero in the UV, it will be generated by radiative correc-
tions, and thus a renormalizable theory should have both
couplings. The above computation which takes into ac-
count only the spin-singlet coupling merely illustrates our
point that the beta functions are nonzero in the collinear
region.
The EFT which includes only the collinear region is

sufficient to compute the width of the quasiparticle whose
momentum is in the collinear region, where |p+| is of
order Υ. If one formally takes the limit Υ → ∞ and
assumes that the coupling g is independent of momenta,
the leading-order computation can be performed in the
toy model and gives1,2:

Γ(E) ∼ g2E. (29)

The linear dependence on E follows from dimensional
analysis and is a hallmark of the marginal Fermi liquid13.
The computation in the toy model cannot be extended
to higher orders, since it is not a renormalizable theory.
However, if we include the NVH region by introducing
the rapidity cutoff Υ = VF , dimensional analysis gives a
similar result:

Γ(E) ∼ h(|p+|/VF )E, (30)

where VF is the typical Fermi velocity in the NVH re-
gion. At leading (two-loop) order the function h(x) is of
order g2, but is not a constant even if one assumes, for
simplicity, that g is a constant. Evaluating the imaginary
part of the self-energy diagram (Fig. 5) numerically, we
find the result in Fig. 7.
The expression (30) is valid provided we can neglect

the chemical potential µ which is a relevant coupling.
Thus it holds in the range |µ| ≪ E ≪ W . The correc-
tions are of several sorts. The NVH region contribution is
of order E2/W , as usual. The corrections from a nonzero

0.0 0.2 0.4 0.6 0.8 1.0

|p+|/VF

0.0

0.2

0.4

0.6

0.8

1.0

h
(|p

+
|/
V
F
)

FIG. 7. Numerical results for the dependence of h on |p+|/VF

in units of g2 assuming a constant coupling. h is normalized
to g2 for VF → ∞.

µ are of order µ2/E. Finally, higher orders in perturba-
tion theory will give the function h a weak (logarithmic)
dependence on E.
One of the defining properties of the MFL is that the

quasiparticle width, defined via the imaginary part of
the on-shell self-energy, is proportional to energy. The
above arguments show that the Marginal Fermi Liquid
behavior13 is a robust consequence of the proximity to a
van Hove singularity. On the other hand, the dependence
of the width on the “large” component of momentum can
be nontrivial, unlike in the simplest models of Marginal
Fermi Liquids.

IX. CONCLUSIONS

We have presented a systematic effective field theory
description of systems with a van Hove singularity. The
formalism is valid to leading power in an expansion in
E/W and generalizes the classic results in16,17. We have
shown that the theory is renormalizable with all coun-
terterms being local in the sense that they are finite in
the zero energy limit. That such a formalism exists had
to be the case given that any well-defined microscopic lo-
cal theory must yield a renormalizable description, if it is
properly formulated. A crucial ingredient in generating
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such a theory is the inclusion of all the relevant modes
on the Fermi surface. Given that the entire surface is
necessarily part of the IR description of the theory, it is
not surprising that focusing solely on one region leads to
nonlocalities.
The EFT that we constructed depends on a coupling

function g(k1, k2, k3,−k1 − k2,−k3) that cannot be ex-
panded in powers of momenta (except when all momenta
are ultrasoft). The appearance of an arbitrary function
of six variables makes the theory much less predictive
than the usual Fermi surface RG which has two marginal
couplings which depend on two variables each (for a 2D
Fermi liquid). Nevertheless, we showed that in the BCS
channel the EFT can be greatly simplified, provided we
keep only logarithmically-enhanced terms. In this chan-
nel, one is left with a single function of two variables
which satisfies a simple RG equation.
We have utilized our formalism to show that generic

theories with van Hove singularities will lead to Marginal
Fermi Liquid behavior as previously anticipated using
toy models1,2. This behavior arises in both the soft and
collinear subsectors of the VH region, the latter of which
can constitute a considerable fraction of the Fermi sur-
face. Thus our conclusions disagree with5, where it was
argued that for E ≫ µ the Fermi liquid picture is valid.
Our treatment of the collinear region clarifies the physics
of Fermi surfaces with flat regions as discussed in23. We
also show that the running of the coupling in the BCS
channel is logarithmically enhanced, and the coupling it-
self runs double logarithmically, in agreement with3,4.

Appendix: One-loop beta function calculations

We consider only the spin-singlet interaction. The in-
teraction part of the Lagrangian is

g

4
ǫabǫcdψ†

aψ
†
bψcψd. (A.1)

The tree-level four-point amplitude is

Sabcdg, (A.2)

where

Sabcd = ǫabǫcd (A.3)

is the spin structure of the amplitude. Momentum con-
servation means the coupling is a function of three mo-
menta (six real variables) g(p1, p2, p3) which we take to
be symmetric under p1 ↔ p2 and p3 ↔ p1 + p2 − p3.
The one-loop four-point amplitude has contributions

from the s, t, and u channels. The s channel has the
same spin-singlet structure as the tree-level amplitude,
but the t and u channels generically contain both spin-
singlet and spin-triplet contributions. To simplify this
analysis, we ignore the spin-triplet contributions entirely.
Then the amplitude takes the form

Aabcd = Sabcd(AS +AT +AU). (A.4)

The u-channel amplitude follows from the t-channel am-
plitude via exchange of the two outgoing momenta. Be-
sides the momentum dependence of the coupling, the s-
and t-channel diagrams only depend on the external mo-
menta through K = p1+p2 and Q = p1−p3 respectively.
After performing the energy integrals via contours,

changing coordinates to p± = px ± py, and assuming
time-reversal invariance for the dispersion,

AS = − 1

8π2

∫

d2k
θS+ − θS−

εk + εK−k − E − iǫ sign εk

× g(p1, p2, k)g(k,K − k, p3)f(k)f(K − k), (A.5)

where

θS± ≡ θ(±εk)θ(±εK−k) (A.6)

constrain the momenta of the loop progagators. E is
the net energy of the external particles. f contains all
information regarding the cutoffs:

f(k) = θ(Λ − |εk|)θ(Υ − |k+|)θ(Υ − |k−|). (A.7)

Similarly, the t-channel amplitude is

AT =
1

16π2

∫

d2k
θT+ − θT−

εk − εk+Q + ET − iǫ sign εk

× g(p1, k, p3)g(k +Q, p2, k)f(k)f(k +Q), (A.8)

with

θT± ≡ θ(±εk)θ(∓εk+Q). (A.9)

ET is the transfer energy of the external particles. The
extra factor of 1/2 arises from isolating the spin-singlet
contribution.
We are interested in the beta function for g. Taking

the logarithmic derivative with respect to Λ yields

Λ
dAS

dΛ
= − 1

4π2
(IS+ + IS−), (A.10)

Λ
dAT

dΛ
=

1

8π2
(IT+ + IT−), (A.11)

where

IS± ≡ ±Λ

∫

d2k
δ(Λ ∓ εk)θ(±εK−k)

εk + εK−k

× θ(Υ− |k+|)θ(Υ − |k−|)f(k −K)

× g(p1, p2, k)g(k,K − k, p3), (A.12)

IT± ≡ ±1

2
Λ

∫

d2k
δ(Λ∓ εk)θ(∓εk+Q)

εk − εk+Q

× θ(Υ − |k+|)θ(Υ − |k−|)f(k +Q)

× [g(p1,−k −Q, p3)g(−k, p2,−k −Q)

+ g(p1, k, p3)g(k +Q, p2, k)]. (A.13)
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We have dropped E and ET because they lead to power-
suppressed terms in the beta function. The remaining
integrals are similar to each other. They involve inte-
grating over the one-dimensional space where one of the
particles in the loop has ε = ±Λ and the other has either
the same sign for ε (for the s channel) or the opposite
sign (for the t channel).
Define P to be equal to K for the s-channel dia-

gram and −Q for the t-channel diagram. We exploit
the O(1, 1) invariance of the dispersion to replace P in

by P̃ =
√

|εP |(signP+, signP−) in each of the integrals
by changing variables:

k+ = k′+/η, (A.14)

k− = ηk′−, (A.15)

with

η ≡
√

|εP |
|P+|

=

√

∣

∣

∣

∣

P−
P+

∣

∣

∣

∣

. (A.16)

We may take η to be less than one by exchanging k+ and
k− if necessary. The step functions involving the rapidity
cutoff Υ are not invariant under this change of variables.
In particular,

θ(Υ− |k+|) → θ(ηΥ − |k+|), (A.17)

θ(Υ − |k−|) → θ(Υ/η − |k−|), (A.18)

and simlarly for the step functions constraining k − P .
These set the limits of integration on the remaining k+
integrals (once we have performed the k− integrals with
the delta function) if the energy constraints do not set
stricter limits. With that in mind, let us first analyze the
limits in the absence of a rapidity cutoff.

1. Integration limits

We can write generic expressions for the various possi-
ble integration limits in each of the four remaining inte-
grals. As before, take P to be either K or −Q. Define

s± = signP±, (A.19)

sk =

{

1 for IS+, IT+,

−1 for IS−, IT−,
(A.20)

sp =

{

1 for IS+, IT−,

−1 for IS−, IT+.
(A.21)

The remaining k+ integrals have limits at

λA ≡ s+
√

|εP |, (A.22)

λB ≡ s−sk
Λ

√

|εP |
. (A.23)

Whenever the quantities

λ± ≡ 1

2

√

|εP |
(

s+ + s−(sk − sp)
Λ

|εP |

±
√

1− 2s+s−(sk + sp)
Λ

|εP |
+ (sk − sp)

2 Λ2

εP 2

)

(A.24)

are purely real, the remaining integrals also have limits
at λ±. In that case the integration region splits into two
disjoint pieces.
For IS+ and IS−, sk = sp and Eq. (A.24) simplifies to

λ± =
1

2

√

|εP |
(

s+ ±
√

1− 4s+s−sk
Λ

|εP |

)

. (A.25)

For IT+ and IT−, sp = −sk and this simplifies to

λ± =
1

2

√

|εP |



s+ +
2s−skΛ

|εP |
±
√

1 +
4Λ2

εP 2



 . (A.26)

Therefore the t-channel integrals always split into two
pieces. The s-channel integrals split unless

|εK | ≤ 4Λ, (A.27)

in which case ISsign εK is over a single contiguous region
bounded by λA and λB. In that case,

ISsign εK =

∫ max (λA,λB)

min (λA,λB)

. . . (A.28)

We will see that this integral (and only this one) is gen-
erally divergent as εK → 0, and that this divergence is
cured by the rapidity cutoff.
For the remaining three integrals (and for ISsign εK

if (A.27) is not satisfied), the integration regions are
bounded on one side by either λA or λB and on the other
by either λ+ or λ−. The remaining integrals take the
form

I =

(

∫ λ2

λ1

+

∫ λ4

λ3

)

dk+ . . . (A.29)

where λ1 through λ4 are the limits sorted in ascending
order.

2. Rapidity limits

At this point, let us simplify the discussion by tak-
ing g to be a momentum-independent constant. We will
find that this assumption is not consistent, because the
beta function depends on the momentum. Suppressing
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the integration limits, the remaining integrals take the
following form:

I = g2
∫

d2k
δ(εk − skΛ)θ(spεk−P )F (k, P )

1 + sp
εk−P

Λ

, (A.30)

where

F (k, P ) = θ(Υ − |k+|)θ(Υ − |k−|)f(k − P ). (A.31)

Note that the step function constrains the value of the
denominator to be between 1 and 2 throughout the inte-
gration region, so all of the integrals are nonnegative.
Under P+ → −P+ or P− → −P−, IS+ ↔ IS− and

IT+ ↔ IT−. Thus we can take both components of
K and Q to be positive without loss of generality. This
simplification would have held earlier if we had assumed
the coupling function obeys particle-hole symmetry, but
this symmetry is generically broken by the NVH region.
We can now find the effect of the rapidity cutoff on

the integration limits for the various integrals. The lower
limit on k+ imposed by the rapidity cutoff for IS+ and
IS− is

λR1 = ηmax

(

Λ

Υ
, P+ −Υ

)

, (A.32)

where η =
√

|P−/P+|. The upper limit is

λR2 =

{

ηΥ, P− ≤ Υ

ηmin
(

Υ, Λ
P−−Υ ,

)

, P− > Υ.
(A.33)

λR1/λR2 replaces the lower/upper limits in (A.28)
or (A.29) when it is within either integration region. Al-
ternatively, if it is less than/greater than both limits in
one of the integrals, the integral is set to zero.
For IS− and IT−, one of the integration regions has

negative k+ and the other has positive k+. There are
four possible rapidity limits:

λR3 = η(P+ −Υ), (A.34)

λR4 = −ηΛ
Υ
, (A.35)

λR5 =
ηΛ

Υ− P−
, (A.36)

λR6 = ηΥ. (A.37)

λR3/λR4 replace lower/upper limit for the negative in-
tegration region and λR5/λR6 replace the lower/upper
limit for the positive region, or they set the appropriate
integrals to zero, acting in a manner analogous to that
described above for λR1 and λR2.

3. Indefinite integrals

Evaluating the delta function in (A.30) and changing

variables to x = k+√
Λ
yields

I = g2
∫

dx

|x|
1

1 + sk − spα(x+ sk/x− α)
, (A.38)

where

α ≡
√

|εP |
Λ

. (A.39)

We can directly compute the indefinite integrals for IS±
and IT± as long as we make use of the restrictions on the
integration limits implied by Section 1. We find

IS+(x) =
g2√
α4 + 4

× log

∣

∣

∣

∣

∣

−2− α2 +
√
α4 + 4 + 2αx

2 + α2 +
√
α4 + 4− 2αx

∣

∣

∣

∣

∣

, (A.40)

IS−(x) =
g2signx√
α4 + 4

× log

∣

∣

∣

∣

∣

−2 + α2 +
√
α4 + 4− 2αx

2− α2 +
√
α4 + 4 + 2αx

∣

∣

∣

∣

∣

. (A.41)

For IT+, the appropriate indefinite integral depends on
the magnitude of α, or in other words on the relative size
of |εQ| and Λ:

IT+(x) = − 2g2

α
√
4− α2

arctan

(

α− 2x√
4− α2

)

(A.42)

for |εQ| < 4Λ and

IT+(x) =
g2

α
√
α2 − 4

log

∣

∣

∣

∣

∣

α+
√
α2 − 4− 2x

−α+
√
α2 − 4 + 2x

∣

∣

∣

∣

∣

(A.43)

for |εQ| > 4Λ. Finally,

IT−(x) =
g2signx

α
√
α2 + 4

log

∣

∣

∣

∣

∣

−α+
√
α2 − 4 + 2x

α+
√
α2 − 4− 2x

∣

∣

∣

∣

∣

. (A.44)

4. Collinear-anticollinear limit

Consider scattering between generic collinear and an-
ticollinear particles. In this case, |εP | ≫ 4Λ, so α ≫ 2.
In the α→ ∞ limit,

1

α
√
α2 + 4

≈ 1

α
√
α2 − 4

≈ 1√
α4 + 4

→ Λ

|εP |
. (A.45)

This suggests the beta function is suppressed by Λ/|εP |
for collinear-anticollinear scattering, although we must
also check the behavior of the log functions.
When a > 2, there are always two disjoint integration

regions. Exchanging k+ and k− exchanges the two re-
gions, so when we ignore the rapidity cutoff they must
have the same value. Evaluating the integral between
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λ+√
Λ

=
1

2
α

(

1 + (sk − sp)
1

α2
+

√

1− 2(sk + sp)
1

α2
+ (sk − sp)

2 1

α4

)

(A.46)

and

λA√
Λ

= α, (A.47)

reversing the order if λ+ > λA, and taking the α → ∞
limit yields the same result for each integral:

I = (2 log 2)
Λ

|εP |
g2 +O

(

Λ2

εP 2

)

(A.48)

for collinear-anticollinear scattering. All one-loop con-
tributions to the beta function are therefore power sup-
pressed in this limit. This remains true when we in-
clude the rapidity cutoff, since it can only reduce the
size of the integration region. Furthermore, such interac-
tions continue to be power suppressed after we drop the
assumption of a momentum-independent coupling, since
the integration region always shrinks to zero size as εP
becomes large.

5. Collinear limit

Consider the scenario where all scattered particles are
restricted to the collinear region and assume the external
momenta pi+ and their sums/differences (K+, Q+, and

Q′
+) are all order Υ and much larger than

√
Λ. Further-

more, assume the scattered particles have energies well
below the cutoff, so εp ≪ Λ. Together, these imply that
the perpendicular components of momenta are small:

pi− =
εpi

pi+
= O

(εpi

Υ

)

≪ Λ

Υ
. (A.49)

The following results also hold, with appropriate modifi-
cations, if all momenta lie in the anticollinear region.
In this limit, only the rapidity cutoff on the collinear

components of momenta comes into play. Furthermore,

εK = εp1

(

1 +
p2+
p1+

)

+ εp2

(

1 +
p1+
p2+

)

≪ Λ (A.50)

since we have assumed that the collinear components of
the incoming particles are all of the same order. As a
result,

α =

√

εK
Λ

≪ 1. (A.51)

Similar statements hold for the t- and u-channel contri-
butions.
After a change of variables, the integration limits for

both the IS+ and IS− integrals are
√

|εK/Λ| = α and

0 1 2 3 4
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ε(K)/Λ

0.00
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d
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∣ ∣

FIG. 8. The log derivatives of the s- and t-channel diagrams
in units of g2 with no rapidity cutoff for a Fermi surface with
a van Hove singularity. We assume a constant coupling.

ηΥ/
√
Λ = αΥ/|K+|. Only one of the integration re-

gions for IS− remains after we impose the rapidity cutoff.
Substituting these limits into the indefinite integrals and
taking the small-α limit yields

IS+ ≈ IS− → g2

2
log

(

2Υ

K+
− 1

)

. (A.52)

For the IT+ and IT− integrals, only one of the two
integration regions remains. The limits are

λ∓√
Λ

=
1

2
α

(

1± 2

α2
∓
√

1 +
4

α4

)

, (A.53)

with λ− for IT+ and λ+ for IT−, and λA/
√
Λ = α. Sub-

stituting these into the appropriate indefinite integrals
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FIG. 9. Plots demonstrating how the rapidity cutoff modifies
Fig. (8).

gives

IT+ ≈ IT− → g2

2
(A.54)

in the collinear limit.
There are two important features of (A.52) and (A.54).

First, the contributions from the s, t, and u channels will
all be order g2. Second, the integrals are independent of
the small (anticollinear) components of the external mo-
menta. These conclusions do not depend of our assump-
tion of a momentum-independent coupling. Backtrack-
ing through our derivation and restoring the momentum
dependence yields (28).

6. Forward scattering

If both components of Q are smaller than Λ/Υ, both
integration regions for IT+ and IT− shrink to zero size.
Thus, the t-channel contribution to the beta function dis-
appears in the forward-scattering limit in the presence of
a rapidity cutoff; see Fig. 9. This is analogous to the sit-
uation discussed in16, where the forward scattering func-
tion makes no contribution to the beta functions for a

round Fermi surface. As in the case of a round Fermi
surface, there is a sharp change in the contribution to
the beta function once εQ exceeds a threshold; compare
Fig. 4 and Fig. 9.

7. BCS limit

Consider IS+ in the K± → 0 limit. Since εK < 4Λ,
there is a single contiguous integration region, bounded
by λA =

√

|εK | and λB =
√

Λ/|εK |. The extent of this
region diverges as we lower εK . We find

IS+ =
g2√
α4 + 4

× log

(

(−2 + α2 +
√
α4 + 4)(α2 +

√
α4 + 4)

(−α2 +
√
α4 + 4)(2− α2 +

√
α4 + 4)

)

. (A.55)

Taking the small α limit yields

IS+ → 1

2
g2 log

4Λ

εK
, (A.56)

which diverges at εK = 0. This is the divergence that
forced us to introduce the rapidity regulator. IS− has
the same value as IS+ in the small α limit.
Introducing the rapidity cutoff regulates the diver-

gence. The rapidity cutoff restricts the IS+ integral to

run from η
√
Λ/Υ to ηΥ/

√
Λ and the IS− integral to run

from η to ηΥ/
√
Λ. Plugging these into (A.40) and (A.41)

and taking the α → 0 limit yields

I± → 1

2
g2 log

Υ2

Λ
, (A.57)

so

Λ
dAS

dΛ
= − g

4π2
log

Υ2

Λ
(A.58)

for back-to-back interactions.

8. Generic BCS beta function

The previous results indicate that we may take the cou-
pling for fixed ultrasoft net momentum (the BCS configu-
ration) to be analytic in the other momenta to leading-log
order. Furthermore, we may drop all but the s-channel
diagram to this order. Parameterize the BCS coupling
gB(p1, p3) in terms of one of the incoming momenta p1
and one of the outgoing momenta p3 at fixed ultrasoft
K. The log derivative of the amplitude is (A.10), with

IS± ≡ ±Λ

∫

d2k
δ(Λ ∓ εk)θ(±εK−k)F (k,K)

2εk − E

× gB(p1, k)gB(k, p3) (A.59)

and F (k,K) from (A.31). Take the components of K to
be positive but infinitesimal to avoid ambiguity from the
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FIG. 10. The integration regions for IS±.

definition of the step functions. Eq. (A.59) receives con-
tributions from several one-dimensional regions of mo-
mentum space; see Fig. 10.

Call I++ the contribution from the region with k+ >
k− > 0. Evaluating the k− integral with the delta func-
tion yields

I++ =
1

2

∫ Υ

√
Λ

dk

k
gB(p1, k)gB(k, p3) (A.60)

up to power-suppressed terms. Assume it is possible to
expand the coupling function in k+ and k−. The resulting
expression for I++ will include terms of the form

∫ Υ

√
Λ

dk+
k+

km+

(

Λ

k+

)n

∂mk+
∂nk−

[gB(p1, 0)gB(0, p3)]. (A.61)

The natural scale for the derivatives is (1/VF )
m+n. As

a result, terms with m 6= n give at most order-one con-
tributions to the beta function. When m = n, terms

in (A.61) take the form

(

Λ

V 2
F

)n ∫ Υ

√
Λ

dk+
k+

=
1

2

(

Λ

V 2
F

)n

log
Υ2

Λ
. (A.62)

Since we assume Λ ≪ V 2
F , these are suppressed unless

n = 0. The n = m = 0 term is log enhanced, and the
leading-log result is therefore

I++ =
1

4
gB(p1, 0)gB(0, p3) log

Υ2

Λ
. (A.63)

A similar analysis holds for each of the the terms in
IS++IS−. Adding the NVH region cancels the Υ depen-
dence. Finally, setting the log derivative with respect to
Λ of the sum of the tree-level amplitude gB(p1, p3) and
the one-loop amplitude equal to zero implies

Λ
dgB(p1, p3)

dΛ
=

1

4π2
gB(p1, 0)gB(0, p3) log

V 2
F

Λ
. (A.64)

The beta function for the the coupling between modes
in the vicinity of the VH point, gV ≡ gB(0, 0), is inde-
pendent of the other couplings, and the solution is

gV(Λ) =
gV(Λ0)

1 + gV(Λ0)
8π2

(

log2
V 2
F

Λ − log2
V 2
F

Λ0

) . (A.65)

Using this, the beta function for gB(p1, 0) becomes

Λ
dgB(p1, 0)

dΛ

=
1

4π2

gB(p1, 0)gV(Λ0)
V 2
F

Λ

1 + gV(Λ0)
8π2

(

log2
V 2
F

Λ − log2
V 2
F

Λ0

) , (A.66)

with solution

gB(p1, 0; Λ) =
gB(p1, 0; Λ0)

1 + gV(Λ0)
8π2

(

log2
V 2
F

Λ − log2
V 2
F

Λ0

) . (A.67)

An analogous result holds for gB(0, p3; Λ). Substituting
these into the beta function for gB(p1, p3) and solving
yields

gB(p1, p3; Λ) = gB(p1, p3; Λ0)−
(

1

8π2

) gB(p1, 0; Λ0)gB(0, p3; Λ0)
(

log2
V 2
F

Λ − log2
V 2
F

Λ0

)

1 + gB(0,0;Λ0)
8π2

(

log2
V 2
F

Λ − log2
V 2
F

Λ0

) . (A.68)

We see that the expressions for gB(0, 0; Λ), gB(p1, 0; Λ),
and gB(0, p3; Λ) are in fact special cases of this general
result.
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