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Motivated by the recent observation of the time-reversal symmetry broken state in K-doped BaFe2As2 super-
conducting alloys, we theoretically study the collective modes and the short time dynamics of the superconduct-
ing state with s + is-wave order parameter using an effective four-band model with two hole and two electron
pockets. The superconducting s + is state emerges for incipient electron bands as a result of hole doping and
appears as an intermediate state between s± (high number of holes) and s++ (low number of holes). The ampli-
tude and phase modes are coupled giving rise to a variety of collective modes. In the s± state, we find that the
collective excitations are the Higgs (amplitude) modes, while the Leggett mode is absent due to strong interband
interaction. In the s + is and s++ state, we uncover a new coupled collective soft mode. Finally we compare
our results with the s+ id solution and find similar behaviour of the collective modes as in the s+ is state.

PACS numbers: 05.30.Fk, 32.80.-t, 74.25.Gz

I. INTRODUCTION

Ultrafast pump-probe experiments recently become a pow-
erful tool to probe the temporal dynamics of symmetry bro-
ken states and relaxation in conventional and unconventional
superconductors1–13. For high frequency excitation with fre-
quency exceeding the superconducting gap, ∆, the radiation
breaks Cooper pairs into quasiparticles, which yields rapid
dissipation and thermalization of the system. However, an in-
tense pulse as used in Ref.7 couples non-linearly to the Cooper
pairs of the superconductor. This, as was argued theoretically,
should lead to a coherent excitation of the Higgs amplitude
mode ∆(t)14–25. In the experiments4,7,12 the detection is per-
formed over a window of about 10 picoseconds (ps), well be-
fore thermalization occurs (likely due to acoustic phonons on
a timescale of 100 ps26).

While non-equilibrium collective modes in conventional
single-gap superconductors are relatively well understood, the
investigation of collective excitations in unconventional non-
equilibrium superconductors with multicomponent or multi-
ple gaps is a very intriguing topic due to a very rich spec-
trum of the collective excitations27–32. Fe-based superconduc-
tors are particularly interesting in this regard due to its variety
and complexity of their phase diagrams. For example, recent
experimental studies of the Fe-based superconductors have
demonstrated the emergence of superconducting state with in-
cipient bands, i.e. bands which do not cross Fermi level.33,34

Furthermore, the formation of the incipient bands is often
connected to the Lifshitz transition, where one of the bands
continuously moves away from the Fermi level as a function
of doping35. A peculiar example of an iron-based supercon-
ductor with a Lifshitz transition is Ba1xKxFe2As2 where the
Fermi surface topology changes from the one having both
the electron and the hole pockets to the one where the elec-
tron pockets sink below the Fermi level. Angle-resolved pho-
toemission (ARPES)36,37 and thermopower38 measurements
point toward the existence of such a transition in the over-
doped hole-doped compounds with x ∼ 0.7 − 0.9. Intrigu-
ingly, in the same doping range, the structure of the super-
conducting gaps undergoes dramatic changes, seemingly in-
consistent with a two-band description. While multiple ex-

periments supports the nodeless s+−-wave superconducting
gap near the optimal doping x ∼ 0.439–42, the situation is
very different for the extremely overdoped case. In this dop-
ing range the experiments indicate either strongly anisotropic
s−wave Cooper-pairing with sign change on the remaining
two hole pockets43–45 or the d-wave pairing with well-defined
nodes46,47 on the hole Fermi surface sheets. Moreover, in the
intermediate doping region, frustration between the two super-
conducting channels has been theoretically predicted to result
in a time-reversal symmetry-breaking s+is state48–52 or s+id
state53,54. In these states, the phase difference φ between the
order parameters at the two hole bands is not equal to a mul-
tiple of π with the φ → −φ symmetry being spontaneously
broken.

The time-reversal symmetry breaking s+is and s+id states
possess several interesting properties and should demonstrate
an unusual dynamics. For example, as a result of simultaneous
breaking of U(1) and Z2 symmetries, the vortex fractionaliza-
tion and unusual vortex cluster states have been predicted to
exist for the s + is state49. The collective excitations of the
phase differences between order parameters of different bands
(Leggett modes) in the s + is state is expected to have pecu-
liar phase-density nature49 and have been predicted to soften
at the s + is critical points51,52. The time-reversal symmetry
breaking is most directly manifested in spontaneous currents
around nonmagnetic impurities55 or quench-induced domain
walls56. The currents result in local magnetic fields in the
superconducting phase and provide a signature of the time-
reversal symmetry broken state.

Recent measurements on Ba1−xKxFe2As2 report an en-
hanced zero field muon spin relaxation rate at x = 0.73,57 close
to the region where the Lifshitz transition is expected to oc-
cur. These results are consistent with a time-reversal symme-
try breaking s+ is state or s+ id state. This observation stim-
ulates to analyze further details of the time-reversal symmetry
broken states in strongly overdoped iron-based superconduc-
tors.

Given these theoretical and experimental developments, in
this paper we study the signatures of the s+is Cooper-pairing
in the pump-probe spectroscopy. Specifically, we adopt the
four-band model developed in Ref. 52 to analyze the pairing
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dynamics within mean-field approximation. In addition, we
also analyze the nature of the collective excitations. One of the
our main findings are the emergence of the s+is pairing when
initially the superconductor is in the s± state and existence of
the sharp collective in the s + is state. In addition, we also
studied the pump-probe dynamics in the s+ id state and find
that this state shows a very similar soft mode dynamics as it is
the case for the s+ is state.

Our paper is organized as follows. Sections II and III con-
tain a description of the model and its ground state within the
mean-field theory approximation. In Section IV we study the
non-adiabatic dynamics of the of a s± superconductor initi-
ated by a sudden change of the pairing strength or an appli-
cation of an external electromagnetic field. In Section V we
present our results for the collective excitations depending on
the doping level. Section VI is devoted to the discussion of
our results.

II. MODEL

Motivated by the optimally doped Ba1−xKxFe2As2 com-
pound around x ∼ 0.4 we consider a model with four bands -
two hole-like and two-electron like - with fully local particle-
particle interactions, the Fermi surface topology is sketched
in Fig. 1(a) Upon further hole doping the electron bands are
shifted away from the Fermi surface and the system undergoes
the Lifshitz transition with hole only Fermi surface sheets in
KFe2As2 (Fig. 1(b)) and the electron pockets become incip-
ient. The evolution of unconventional superconductivity has
been considered previously for this model52. Despite the fact
that the electronic bands become incipient, the hole bands still
have Fermi energies much larger than the superconducting
gaps, thus remaining in the BCS limit. Furthermore, as the
dominant interaction is assumed to be the interband one, it
further limits the phase space of the BCS-BEC crossover58

In particular, the four-band Hamiltonian has the form52

Ĥ =
∑
k,a,σ

ξakĉ
a†
kσ ĉ

a
kσ+

+
∑
kk′

∑
ab

(
Uabĉ

a†
k↑ĉ

a†
−k↓ĉ

b
−k′↓ĉ

b
k′↑ + h.c.

)
.

(2.1)

Here {a, b} ∈ {h1, h2, e1, e2} are the band labels, ĉa†kσ (ĉakσ)
are the fermionic creation (annihilation) operators, Uab > 0
are coupling constants and ξak are the single particle disper-
sions in each band. In what follows, we simplify our model by
considering two identical electron- and hole-like bands within
the tight-binding approximation:

ξhik = th(2− cos kx − cos ky) +
ED
2
− µ,

ξeik = te(2− cos kx − cos ky)− ED
2
− µ,

(2.2)

where i = 1, 2, te,h are the hopping amplitudes, µ is the chem-
ical potential and ED accounts for the changes in the relative
occupation numbers of the electron and hole bands.

FIG. 1: Fermi surface sketch for the optimally (a) and overdoped (b)
Ba1−xKxFe2As2 plotted for the folded (black) and unfolded (grey)
Brillouin-zone consisting 1 and 2-Fe atoms per unit cell, respectively.
Blue circles represent the two hole pockets at the Γ-point and the red
ellipses represent the two electron pockets at the M -Point. In the
overdoped regime (x ∼ 1) the electron pockets shift away from the
Fermi level and become incipient.

For simplicity we set intraband interaction in iron-based
superconductors to zero. Furthermore, as the relevant phase
transition occurs due to increasing hole-hole interaction, we
also simplify our model by neglecting the interaction between
the electron pockets. Therefore we set the coupling constants
as

Uh1h1 = Uh2h2 = 0, Ue1e1 = Ue2e2 = 0,

Uh1h2
= Uh2h1

= Uhh, Ueihj = Uhjei = Ueh
(2.3)

(in the last expression i 6= j). Effectively, we reduce the
model to an effective three-band model, focusing only on
the frustration between hole-hole and electron-hole scattering.
Having formulated the model, we now review its ground state
properties within the mean-field approximation.
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III. MEAN-FIELD THEORY

Using the standard methodology, we decouple the two-
fermion interaction term (2.1) in the particle-particle chan-
nel introducing the following mean-field pairing amplitudes:
∆e ∝

∑
k

〈ĉe†k↑ĉ
e†
−k↓〉 and ∆hi ∝

∑
k

〈ĉhi†k↑ ĉ
hi†
−k↓〉 (i = 1, 2).

Minimizing the free energy with respect to the mean-field am-
plitudes yields the following system of equations

∆e = −Ueh (∆h1
Ih1

+ ∆h2
Ih2

) ,

∆h1 = −2Ueh∆eIe − Uhh∆h2Ih2 ,

∆h2 = −2Ueh∆eIe − Uhh∆h1Ih1 .

(3.1)

where we introduced

Ia =
∑
k

tanh (Eak/2kBT )

2Eak
, a ∈ {e, h1, h2} (3.2)

for brevity and Eak =
√

(ξak)2 + |∆a|2 are the single-particle
energies. The mean-field equations (3.1) have to be supple-
mented by the particle-number equation which determines the
changes in the chemical potential due to the onset of super-
conducting order. It turns out to be convenient to evaluate the
chemical potential as a function of the carrier number nc (per
spin), i.e. the difference between the electrons and holes:

nc =
∑
k

[
ξek
Eek

tanh

(
Eek

2kBT

)
+

+
ξhk

2Eh1

k

tanh

(
Eh1

k

2kBT

)
+

ξhk
2Eh2

k

tanh

(
Eh2

k

2kBT

)]
.

(3.3)

The detailed analysis of mean-field equations (3.1) can be
easily performed numerically. Upon closer inspection of these
equations, however, it becomes clear that one can basically
guess the solution of these equations without resorting to nu-
merics. Indeed, for the values of the chemical potential well
below the bottom of the electronic bands, it is clear that there
should be no pairing on the electronic pockets, ∆e = 0, so
from the mean field equations it follows that ∆h1

= −∆h2
,

while the |∆h1 | = |∆h2 | = ∆h will be given by the root
of UhhIh[∆h] = 1. Thus, for µ � −ED/2 the supercon-
ductivity is described by s± order parameter. At this point
one needs to keep in mind that an incipient electron bands
raise the question of the applicability of the BCS approxima-
tion. This question has been addressed previously52,58, where
it was found that despite the fact the electron bands become
incipient the mean-field approximation remains valid for the
dominant interband interaction. The only effect outside of the
mean-field approximation is a necessity to include the renor-
malization of the chemical potential in Eq. (3.3).
Let us now consider the opposite limit of filled electronic
band, µ > −ED/2. Without any loss of generality, let us con-
sider the pairing order parameter on the electron pockets to be
purely real. Furthermore, the structure of the mean-field equa-
tions suggests that the pairing amplitudes in the hole bands
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FIG. 2: Solution of the mean-field equations for the pairing ampli-
tudes on the electron and hole pockets shown here as a function of the
parameter EFe = µ + ED/2 with ED = 0.12 eV, te = th = 2.54
eV, Uhh = 2.1925 eV, Ueh = 2.3205 eV. Note that the width of the
s+ is region is approximately 1.5 meV.

must be the same:

∆e = |∆e|, ∆h1 = |∆h|eiφ1 , ∆h2 = |∆h|eiφ2 . (3.4)

We can now insert these equations into (3.1) and separate the
real and imaginary parts. It then follows that for the phases
the following relation must hold

φ1 = −φ2 = ϕ/2, (3.5)

where the relative phase ϕ is determined by

cos
(ϕ

2

)
= − Uhh

2Ueh
· |∆e|
|∆h|

, (3.6)

while the amplitudes |∆e| and |∆h| are the roots of the fol-
lowing two equations: UhhIh (∆h) = 1 and

|∆e| ·
[
1− 2U2

ehIe (∆e) Ih (∆h)
]

= 0. (3.7)

Clearly, these equations have a root corresponding to the s±

state (∆e = 0, ϕ = π) and a conventional s-wave state
(∆e 6= 0, ϕ = 2π). It is therefore natural to expect that there
also should be a solution corresponding to the intermediate
values of phase ϕ ∈ (π, 2π). By analyzing the mean-field
equations above numerically, we have confirmed that it is in-
deed the case and, moreover, the solution corresponding to
the state with ϕ ∈ (π, 2π) has the lowest energy. In Fig. 2
we present the results of the numerical analysis of the mean-
field equations. Having reviewed the mean-field results for the
model, we turn our discussion to the analysis of the collective
response of the s+ is superconductor.

IV. TEMPORAL EVOLUTION OF THE s+ is ORDER
PARAMETER

In this Section we discuss the short-time dynamics of the
s + is superconductor initiated by either sudden change of
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the pairing strength or by a short pulse of an external elec-
tromagnetic field. Although at first glance these two ways of
driving a system out-of-equilibrium seem to be very different,
one can employ the linear analysis of the equations of motion,
i.e. consider the limit of weak deviations from the ground
state, to demonstrate that for the time-dependent correction to
the ground state pairing amplitude external pulse has is many
ways the same effect as a quench of the pairing strength.59

To study the short time dynamics of a superconductor
within the mean-field approximation described above, it is
convenient to use the Anderson pseudospin variables60

Slk =
1

2
〈Ψ†klσΨ〉, (4.1)

where σ = (σx, σy, σz)
T are the Pauli-matrices and

Ψ†kl =
(
c†kl↑, c−kl↓

)
are spinors. In the equilibrium at zero

temperature the pseudospins Skl are given as

Sl,eq
k,x =

∆lx

2Ekl
, (4.2)

Sl,eq
k,y =

∆ly

2Ekl
, (4.3)

Sl,eq
k,z = − ξkl

2Ekl
. (4.4)

Here we introduced the shorthand notation ∆l = ∆lx− i∆ly.
In terms of these variables, the equations of motion are

∂tS
l
k = Bl

k × Slk, (4.5)

where l = {h1, h2, e} and Blk = 2(−∆lx,−∆ly, ξ
l
k). The

x- and y-component of Blk are given by the mean-field self-
consistency equations

∆±h1
(t) =

∑
k

[
−2UehS

±
ke(t)− UhhS

±
kh2

(t)
]
,

∆±h2
(t) =

∑
k

[
−2UehS

±
ke(t)− UhhS

±
kh1

(t)
]
,

∆±e (t) = −Ueh

∑
k

[
S±kh1

(t) + S±kh2
(t)
] (4.6)

and we use the shorthand notation ∆± = ∆x ± i∆y . In the
equilibrium a given pseudospin Slk is collinear with the cor-
responding Blk, so the sudden change of one of the coupling
constants entering into (4.6) brings a system far from its equi-
librium state.16,22

Given that the region in the parameter space of the relative
band occupation numbers where the s + is pairing state is a
ground state is quite narrow, we asked ourselves whether s+is
pairing amplitude will emerge dynamically when initially a
superconductor is in the s± pairing ground state. To address
this question, we solved the equations of motion numerically
on a discrete mesh of momentum points for quenched pairing
interactions. The results of the calculation are shown in Fig. 3.
Initially the system behaves like a two-band system oscillat-
ing with the Higgs-mode frequency ωH ' 2∆h10 = 2∆h20,
while Leggett mode is absent due to the dominant interband
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FIG. 3: Results of the numerical solution of the equations of mo-
tion (4.5) on the discreet momentum mesh with Nkx ×Nky = 4096
points. The values of the coupling parameters are chosen so that
the initial state is s± near the boundary separating the s± and
s + is ground states. Depending on the initial value of ∆e [pan-
els (a) and (b)] there is a critical time t∗ on which pairing amplitude
on the electron pocket grows signaling the onset of the emergence
s + is state. The relative phase oscillation of ∆h1 and ∆h2 for
∆e(t = 0) = 1.0e−9 is shown in (c).

interaction. When the final interaction values refer to an s+is
ground state, we indeed observe the dynamical onset of the
s + is-pairing state, albeit this onset happens rather slowly.
Specifically, it emerges on a time scale t∗ which far exceeds
τ∆e
∼ ~/∆e0 where ∆e0 is an equilibrium value correspond-

ing to a ground state with the new coupling Uhh(f).
In order to verify this result, we have performed the stabil-

ity analysis by considering the pseudospin configuration cor-
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responding to the s± state and allowing for small fluctuations
into the s + is state. Since numerical calculations show that
δ∆e(t) increases exponentially with time, we assume that

δ∆±e (t) = d±e e
(γ±iω)t, de � |∆h| (4.7)

and both γ and ω are some real parameters which we need
to determine. Employing the equations of motion, it is easy
to show that the linear correction to the pseudospins on the
electronic bands are

δS±ke(t) = ± δ∆±e (t)

iγ ∓ ω ± 2ξek
. (4.8)

Similarly to (4.8), the correction to the pseudospins on the
hole bands are found to be

δS±kh1
(t) = ∓

2δ∆±h1
(t)Shkz

iγ ∓ ω ± 2ξhk
,

δS±kh2
(t) = ∓

2δ∆±h2
(t)Shkz

iγ ∓ ω ± 2ξhk
.

(4.9)

By inserting these expressions into the self-consistency equa-
tions (4.6), one arrives at the system of linear equations for the
linear corrections to the pairing fields on each pocket. These
equations will have non-trivial solution provided the determi-
nant of the corresponding matrix is zero. This condition has
the form of the following equation

[1− Uhhχh(ζ)]
[
1 + Uhhχh(ζ)− 4U2

ehχe(ζ)χh(ζ)
]

= 0,
(4.10)

where ζ = γ + iω, χe(ζ) =
∑

k(iζ + 2ξek)−1 and χh(ζ) =
−
∑

k S
h
kz ·(iζ+2ξhk)−1. The reader can easily check that this

equation does not have a solution for Ueh = 0 which means
that the s± remains perfectly stable. However, for Ueh 6= 0
such that the s + is superconducting state is a ground state,
we found that (4.10) has a root γ ≈ 10−3∆h and ω � 2µ.

V. COLLECTIVE MODES

A. Response to fast perturbations: non-adiabatic regime

We now turn our discussion to the question of the collective
response of the s+ is superconductor. Therefore, we perturb
the system with a pump pulse to simulate the THz experiment.
The electric field of this laser pulse can be described by a time
dependent vector potential E = − 1

c∂tA. In contrast to the
usual linear response regime, one of the advantages in work-
ing in the non-adiabatic regime is that the driving frequency
does not need to be exactly in resonance with that of the col-
lective modes to excite them, since the perturbation of the
laser pulse changes the ground state non-adiabatically. Thus,
we choose the spectrum of this pulse to be a Gaussian enve-
lope with ∆hτ = 1 centered around a frequency ω0 = |∆h|
to cover the spectrum below the quasi-particle continuum,

A(t) = A0θ(−t)e−
(t−t0)2

2τ2 cos(ω0t). (5.1)

∆
h
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FIG. 4: Numerical solution of the equations of motion with a time
dependent vector potential A(t). The oscillation of both - the am-
plitude (panel (a)) and the relative phase (panel (b)) of the order pa-
rameters - are dominated by the same frequency ωc. For numerical
accuracy we choose a cutoff energy (Λ = 30 meV) and Uhh = 22
meV and Ueh = 20 meV.61

Here, τ controls the width of the time dependent signal and
therefore needs to be chosen in such a way, that the signal dis-
turbs the system non adiabatically. Also, we choose A0 small
enough to not change the ground state, i.e., ∆l

∞ ≈ ∆l(0).
The electromagnetic vector potential couples to the system
via minimal substitution, i.e., ξlk → ξl

k± eAc
. This changes the

pseudo magnetic field in the equations of motion (4.5) into

Bl
k =

(
−2∆lx,−2∆ly,

(
ξk+ e

cA(t)l + ξk− ecA(t)l

))
. (5.2)

The numerical solution of the non-equilibrium dynamics are
shown in Fig. 4. One clearly see that both the dynamics of the
amplitude and the relative phase are dominated by one fre-
quency ωc ∼ 0.8∆h

∞. All oscillations are undamped, because
the frequency is smaller than 2∆h

∞, i.e., the smallest possi-
ble Higgs-mode and the beginning of the quasiparticle contin-
uum. However, the absence of damping is a peculiarity of the
model, since we assume isotropic s-wave order parameters.
In the real system the nodal character of the order parameters
leads to dampening effects.
We examine the mode ωc by numerically solving the equa-
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FIG. 5: The mode ωc across the full s + is state. The dashed lines
mark the borders of the TRSB state. The system parameters are cho-
sen similar to Fig. 4.

tions of motions over the whole s + is phase. The result is
shown in Fig. 5. Obviously, the mode ωc softens close to the
borders of the s + is-state and has its maximum value deep
inside the s + is-regime. The coupling of both - amplitude
and relative phase oscillations - is a peculiarity of the collec-
tive excitations in time reversal symmetry broken systems and
differs from the usual dynamics of multiband superconduc-
tors. Also the softening of the mode close to the borders of
the s + is state can be explained by the second order phase
transition from the s + is into the s±/s++ state.49,51,52 For
comparison we show in Appendix B that this result still holds
if the system, via an intermediate s+id-state, ends up in a d-
wave symmetry at large hole doping.
The collective modes of the s + is state in the equilibrium
were discussed in previous publications.49,51,62 In the linear
response one requires to have resonant conditions to observe
these modes, while in the non-equilibrium one typically excite
a single mode, lowest in energy, which should be observed in
the experiment.

B. Collective response in the adiabatic regime

To study to collective mode at long wavelength limit, we
linearize equations of motion (4.5 ) with respect to the devia-
tions from the equilibrium, δSkl = Skl(t) − Skl, δ∆x

l (t) =
∆x
l (t)−∆lx, δ∆y

l (t) = ∆y
l (t)−∆y

l and the effect of pertur-
bation potential, δBzkl(t) = Bzkl(t) − ξk. The deviations are
homogeneous in space so they describe the collective mode at
long wavelength limit. The details of the calculations can be
found in the Appendix A. Here we discuss our main results.

The resulting linearized equations will have non-trivial so-
lution provided the corresponding determinant vanishes which
sets us the non-linear equation for the frequency of the collec-
tive modes. We solve the equation for mode, Eq. (A3), for
all the ground states pseudospin configurations - s±, s + is
and s++ - and near the transitions between these states. In
all three states, we find a solution at ω1 = 0: this mode is an
overall phase mode without changing amplitude and relative
phase difference, so this motion does not cost any energy. It

ω
 [m

eV
]

0

0.5

1

EFe [meV]
-59.5 -59 -58.5

ω1 
ω2

FIG. 6: (color online) Mode frequencies of collective mode at q =
0 by varying doping parameter EFe: ω1 (blue dashed line) is the
overall phase mode, ω2 (red solid line) is the coupled low energy
mode. We choose Uhh = 2.1925 eV and Ueh = 2.3205 eV.

is the Goldstone mode from U(1) symmetry breaking of BCS
ground state. Beside this, we also find a new low energy mode
ω2 as shown in Fig. 6. The energy of this mode decreases at
the boundary of s+ is state.

In s± state, we find that the mode is the motion of antisym-
metric phase change of two hole bands gaps coupled with am-
plitude change of electron band gap. We have the eigenvector
of mode, δ~∆± = [δ∆e, 0, δ∆he

−iπ, 0, δ∆he
−iπ, 0], where

δ∆e, δ∆h are positive real values, see Fig. 7. Similarly, in
s++ state, we find the mode is the motion of antisymmetric
phase change of two hole bands gaps. We have the eigenvec-
tor of mode δ~∆++ = [0, 0, δ∆he

iπ2 , 0, δ∆he
−iπ2 , 0]

In s + is state, the mode is an amplitude-phase coupled
mode between both incipient electron and partially filled hole
bands. Therefore it corresponds to ωc in Section V A. The
eigenvector is

δ~∆s+is = [δ∆x
e , δ∆

y
ee

iπ
2 , δ∆x

he
iφ, δ∆y

he
iφ,

δ∆x
he
−iφ,−δ∆y

he
−iφ].

(5.3)

Note that the first two components of δ~∆s+is has a relative
phase of π/2 which is a direct consequence of the incipiency
of the electron band, as follows directly from the structure
of the matrix elements (A3) and the fact that Γe(ω) in that
matrix is purely imaginary. Unlike the overall phase mode,
this low energy mode vector is not continuous at the boundary
between the two states. Near the boundary of s± and s + is

state, δ∆y
e = δ∆y

h = 0, the mode is a combination of δ~∆±
mode and overall phase mode, see Fig. 8. At the end, it is not
surprising because of both overall phase mode and low energy
mode are soft at the boundary. As EFe increasing, δ∆x

e , δ∆x
h

decrease and δ∆y
e , δ∆y

h increase. Near the boundary of s++

and s+ is state, δ∆x
e = δ∆x

h = 0, the mode is a combination
of δ~∆++ mode and overall phase mode, Fig. 8. We note that
our result differs slightly from previous ones,49,51,62 as in our
calculation the electron band is incipient.
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Δe 

Δh1 

Δh2 

Δh1 

Δh2 

Δe 

Δe 

Δh1 

Δh2 

FIG. 7: Big arrows are the gap vectors in complex plane, small ar-
rows are the mode vectors. Horizontal and vertical axis represent the
real and imaginary part. From top to bottom are s±, s+ is and s++

state.

VI. DISCUSSION AND CONCLUSION

It is well known, the problem of non-adiabatic dynamics of
the BCS model is exactly solvable18. The model presented
above can be also shown to be exactly integrable for a spe-
cial choice of the coupling constants, which however, do not
describe the regime where s + is state has the lowest energy.
Nevertheless, we have checked that despite the lack of the in-
tegrability in our model, the non-equilibrium dynamics of the
order parameter, which is initiated by a sudden change of the
pairing strength bears a lot of similarities with the results ob-
tained from exactly solvable version of the model.

Another important aspect related to similarities and differ-
ences for the short-time order parameter dynamics between
integrable and non-integrable models is concerned with the
emergence of the s+ is state in the incipient electronic band.
Indeed, within the both single-channel and two-channel pair-
ing models for the degenerate atomic Fermi gases22 the re-
alization of the steady state with periodically oscillating am-
plitude is limited to the weak-to-moderately strong coupling

						 						

+	δΔs+is	=	

δΔs+is	=		 +	

δΔs+-	

δΔs++	

overall	
phase	

overall	
phase	

FIG. 8: Decomposition of s + is mode near the transition between
s± and s+ is (top) and between s++ and s+ is (bottom).

quenches in the vicinity of the BCS-BEC crossover. Our re-
sults show that, on one hand we have a steady state with pe-
riodically oscillating pairing amplitude, while on the other
hand, the electronic band is incipient mimicking the BEC limit
in atomic gases. Thus observation of this effect may question
the interpretation of the s+ is state as being analogous to the
BEC pairing in atomic condensates.

It is also important to keep in mind that the observation
of the collective oscillations during the pump-probe experi-
ments can in principle be inhibited by two effects: (i) spatial
inhomogeneities of the pairing amplitude which may develop
by parametric instabilities63 and (ii) the Coulomb interactions
between the particles. The effects of the Coulomb interac-
tions on the non-equilibrium dynamics still remains a largely
open problem. However, since our model involves purely re-
pulsive interparticle interactions, we believe that the effects
of the Coulomb interactions will not affect the dynamics in a
profound way. We further note that we do not address here
behaviour of the optical conductivity, as its behaviour is also
influenced by the so called third-harmonic generation, origi-
nally discussed in Ref. 64, i.e., the observation of a frequency-
peak at three times the probe-laser frequency.

To conclude, we theoretically study the collective modes
and the short time dynamics of the superconducting state
with s + is-wave order parameter using an effective four-
band model with two hole and two electron pockets moti-
vated by the recent experiments on time-reversal symmetry
broken state in iron-based superconductors. The supercon-
ducting s + is state emerges for incipient electron bands as
a result of hole doping and appears as an intermediate state
between s± (high number of holes) and s++ (low number of
holes). The amplitude and phase modes are coupled giving
rise to a variety of collective modes. In the s± state, we find
the Higgs mode at frequencies similar to a two-band model
with an absent Leggett mode, which is pushed into the quasi-
particle continuum due to the dominant interband interaction,
while in the s + is and s++ state, we uncover a new cou-
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pled collective soft mode. We also compare our results with
the s + id solution and find similar behavior of the collective
modes.
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Appendix A: collective mode in continuous model at q=0

The linearized equations of motion are

∂tδS
x
kl(t) =− 2∆y

l δS
z
kl(t)− 2Szklδ∆

y
l (t)− 2ξklδS

y
kl(t)− 2SyklδB

z
kl(t),

∂tδS
y
kl(t) = 2ξklδS

x
kl(t) + 2SxklδB

z
kl(t) + 2∆x

l δS
z
kl(t) + 2Szklδ∆

x
l (t),

∂tδS
z
kl(t) =− 2∆x

l δS
y
kl(t)− 2Syklδ∆

x
l (t) + 2Sxklδ∆

y
l (t) + 2∆y

l δS
x
kl(t)

(A1)

Fourier transformation, e.g., f(t) =
∫
dω
2π f(ω)eiωt, give

 δSxkl(ω)
δSykl(ω)
δSzkl(ω)

 =
Szkl

ξkl(4E2
kl − ω2)

 4(ξ2
kl + ∆y

l
2
) 2iωξkl − 4∆x

l ∆y
l 2iω∆y

l + 4∆x
l ξkl

−2iωξkl − 4∆x
l ∆y

l 4(ξ2
kl + ∆x

l
2) −2iω∆x

l + 4∆y
l ξkl

−2iω∆y
l + 4∆x

l ξkl 2iω∆x
l + 4∆y

l ξkl 4(∆x
l

2 + 4∆y
l

2
)

 −δ∆x
l (ω)

−δ∆y
l (ω)

δBzkl(ω)

 (A2)

We take δBzkl = 0 since the collective mode should not depend on the perturbation and substitute the result into self-consistency
equation (4.6 ), we obtain

1 0 UehM
x
h1(ω) UehΓh1(ω) UehM

x
h2(ω) UehΓh2(ω)

0 1 UehΓh1(−ω) UehM
y
h1(ω) UehΓh2(−ω) UehM

y
h2(ω)

2UehM
x
e (ω) 2UehΓe(ω) 1 0 UhhM

x
h2(ω) UhhΓh2(ω)

2UehΓe(−ω) 2UehM
x
e (ω) 0 1 UhhΓh2(−ω) UhhM

y
h2(ω)

2UehM
x
e (ω) 2UehΓe(ω) UhhM

x
h1(ω) UhhΓh1(ω) 1 0

2UehΓe(−ω) 2UehM
x
e (ω) UhhΓh1(−ω) UhhM

y
h1(ω) 0 1




δ∆x

e (ω)
δ∆y

e(ω)
δ∆x

h1
(ω)

δ∆y
h1

(ω)
δ∆x

h2
(ω)

δ∆y
h2

(ω)

 = 0 (A3)

where the quantities in the equation at T=0 are given by

Mα
l (ω) =

∑
k

2[ξ2
kl + (∆α

l )2]

(4E2
kl − ω2)Ekl

, Γl(ω) =
∑
k

iωξkl − 2∆x
l ∆y

l

(4E2
kl − ω2)Ekl

(A4)

and α = x, y.

In usual one band or two bands superconductor, after choos-
ing proper gauge, Γl(w) = 0 due to electron-hole symmetry,
thus the amplitude and phase are decoupled in the equation. In
the time reversal symmetry broken system, one can not choose
a gauge to vanish all Γl(w). Besides, the broken electron-hole
symmetry of the incipient electron band makes Γe(w) always
non-vanishing. As a result, the amplitude and phase oscilla-
tion are coupled in the mode. The frequency of the mode is
determined by the solution of equation

Det[M] = 0 (A5)

where M is the 6×6 matrix in (A3). The eigenvectors of the
matrix

δ~∆(ω) = [δ∆x
e (ω), δ∆y

e(ω), δ∆x
h1

(ω),

δ∆y
h1

(ω), δ∆x
h2

(ω), δ∆y
h2

(ω)]
(A6)

tell how amplitude and phase are coupled in the collective ex-
citation.

Appendix B: collective modes inside the s+ id regime

In this section we discuss the collective dynamics inside a
s+id superconductor. Therefore, we modify the Hamiltonian
(2.1) and add another channel to the inter-hole-band interac-
tion Uhh to allow for d-wave pairing

Uh1h2

k,k′ ≡ Uhh,s + Uhh,d cos(2φk) cos(2φk′), (B1)

where Uhh,s, Uhh,d > 0 are constant and cos(2φk) = (k2
x −

k2
y)/(k2

x + k2
y). This leads to momentum dependent order pa-
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rameters for the two hole bands

∆hi
k = ∆s

hi + i∆d
hi cos(2φk), (B2)

where ∆s
hi

and ∆d
hi

are the s- and d-wave pairing amplitude.
It is important that the only possible pairing symmetry with
mixed s- and d-wave component is s+id, since s+d symmetry
breaks the C4-symmetry of the system. Also we choose the
d-wave component large enough to suppress a possible com-
petition between s+is and s+id superconductivity, i.e., we can
choose ∆s

hi
and ∆d

hi
real. This argument can also be shown by

free energy analysis. The pairing amplitude for the electron-
band remains constant and is chosen positive to fix the overall
phase.
Minimizing the free energy with respect to the five different
pairing amplitudes we obtain

∆e = −Ueh(∆s
h1
Ih1

+ ∆s
h2
Ih2

),

∆s
h1

= −2Ueh∆eIe − Uhh,s∆s
h2
Ih2 ,

∆s
h2

= −2Ueh∆eIe − Uhh,s∆s
h1
Ih1 , (B3)

∆d
h1

= −Uhh,d∆d
h2
Jh2 ,

∆d
h2

= −Uhh,d∆d
h1
Jh1

,

where Ia was introduced in Eq. (3.2) and

Ja =
∑
k

tanh(Eak/2kBT )

2Eak
cos2(2φk). (B4)

Since the order parameters are momentum dependent, the
single-particle energies of the hole-bands now have the form

Ehik =
√

(ξhik )2 + |∆s
hi
|2 + |∆d

hi
|2 cos2(2φk).

Again, we take a closer look into this set of equations. Clearly,
in the pure s-wave limit, i.e., ∆d

hi
= 0, we reproduce our pre-

vious set of mean field equations in Eq. (3.1). In the pure
d-wave limit, i.e., ∆s

hi
= 0, ∆e becomes zero and we end

with only the last two equations and it follows ∆d
h1

= −∆d
h2

.
Obviously this scenario is described in the case µ� −ED/2,
where the electron band is incipient and ∆e = 0. Since we
chooseUhh,d large enough to make the solution ∆s

h1
= −∆s

h2

energetically unfavorable we end up with the pure d-wave
solution. However for µ > −ED/2 we end up with finite
∆e > 0 and thus finite ∆s

h1
= ∆s

h2
< 0. For large enough

∆e, i.e., large enough µ, it is energetically unfavorable for the
system to condense an additional d-wave component and thus
∆d
h1

= ∆d
h2

= 0. However, in between these two configura-
tions we can end up in a state, where all five pairing ampli-
tudes are finite. This set of equations is solved numerically in
Fig. (9).
Similar to Section IV we obtain the equations of motion
for this model by making use of Anderson pseudospin vari-
ables. The equations of motions have the same form as
in Eq. (4.5) but the pseudo magnetic field is now Blk =
2(−∆x

kl,−∆y
kl, ξ

l
k), where we use ∆kl = ∆s

l +i∆d
l cos(2φk)

and ∆x
kl,∆

y
kl as introduced in the main text. Here, one needs

to keep in mind that the electron order parameter has only the
s-wave component, i.e., ∆d

e = 0. The x- and y- component of

-18-16-14-12-10
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FIG. 9: The solution of the mean-field equations at zero temperature.
In this picture the different order parameters are plotted againstEFe.
Between −10.5 meV and −18.5 meV both hole order parameters
consist out of a s-wave component and a d-wave component. We
introduced an energy cutoff Λ = 30 meV and Uhh,s = 20 meV,
Uhh,d = 50 meV and Ueh = 22 meV.

the pseudo magnetic field are given by

∆s,±
h1

(t) =−
∑
k

[
2UehS

±
ke(t) + Uhh,sS

±
kh2

(t)
]

∆d,±
h1

(t) =−
∑
k

Uhh,dS
±
kh2

(t) cos(2φk)

∆s,±
h2

(t) =−
∑
k

[
2UehS

±
ke(t) + Uhh,sS

±
kh1

(t)
]

(B5)

∆d,±
h2

(t) =−
∑
k

Uhh,dS
±
kh1

(t) cos(2φk)

∆±e (t) =−
∑
k

[
UehS

±
kh1

(t) + UehS
±
kh2

(t)
]
.

Including a time-dependent vector potential A(t) changes the
pseudo magnetic field in the equations of motion into

Bl
k =

(
−2∆x

kl,−2∆y
kl,
(
ξk+ e

cA(t)l + ξk− ecA(t)l

))
. (B6)

Choosing A(t) as in Eq. (5.1) we solve the equations of mo-
tion for a system inside the s+id regime numerically. Due to
the momentum dependence of the order parameters the result
is depending on the polarization of the vector potential. How-
ever, this does not change the qualitative dynamics. Similar
to the s+is scenario we obtain that the dynamics of both - am-
plitude and relative phase oscillation - are clearly dominated
by a single frequency ωc. We find that all pairing amplitudes
oscillate at the same frequency. While the relative phase be-
tween the hole order parameters remains constant for both s-
and d-wave component, the relative phase between s- and d-
wave component oscillate for each hole order parameter.
In Fig. (10) we investigate this frequency over the whole s+id
phase diagram. We find that ωc behaves similarly to the s+is
scenario and vanished close to the borders of the s+id state.
However, close to the border to the d-wave state one obtains
that ωc is coupling to 2|∆s

h2
|, which can be understood as the
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system’s decreasing Higgs-mode due to the transition into the
nodal d-wave state. This non-equilibrium effect is similar to
the one observed in Ref. 32. Once the collective mode of
a system exceeds the system’s smallest possible Higgs-mode
ωH , this mode couples to ωH and is therefore pushed below
the quasiparticle continuum. The effect is not dominant on
the border to the s-wave state, since the order parameter is
fully gapped on this site. These results are similar to previous
calculations done in the equilibrium for a single-band model,
with competing s- and d-wave instability.55
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FIG. 10: The frequency of the collective mode ωc over the whole
s+id regime. Here we also compare the data to 2|∆s,d

h | ≡ 2|∆s,d
h1
| =

2|∆s,d
h2
|.
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