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Using random-phase approximation spin-fluctuation theory, we study the influence of the hy-
bridization between iron d-orbitals and pnictide p-orbitals on the superconducting pairing state in
iron-based superconductors. The calculations are performed for a 16-orbital Hubbard-Hund tight-
binding model of BaFe2As2 that includes the As-p orbital degrees of freedom in addition to the
Fe-d orbitals and compared to calculations for a 10-orbital Fe-d only model. In both models we
find a leading s± pairing state and a subleading dx2−y2 -wave state in the parent compound. Upon

doping, we find that the s± state remains the leading state in the 16-orbital model up to a doping
level of 0.475 electrons per unit cell, at which the hole Fermi surface pockets at the zone center
start to disappear. This is in contrast to the 10-orbital model, where the d-wave state becomes
the leading state at a doping of less than 0.2 electrons. This improved stability of s± pairing is
found to arise from a decrease of dxy orbital weight on the electron pockets due to hybridization
with the As-p orbitals and the resulting reduction of near (π, π) spin-fluctuation scattering which
favors the competing d-wave state. These results show that the orbital dependent hybridization of
Fermi surface Bloch states with the usually neglected p-orbital states is an important ingredient in
an improved itinerant pairing theory.

PACS numbers: 74.70.Xa, 74.20.Rp, 74.20.Fg, 74.25.Jb

The detailed nature of the pairing mechanism that
gives rise to superconductivity in the iron-based super-
conductors continues to be a matter of debate. Based
on the proximity of the superconducting state to the
magnetic stripe order observed in most parent and
weakly doped materials, antiferromagnetic spin fluctua-
tions have been widely discussed to play a major role.
Early on it was predicted that these fluctuations, oc-
curing at a wavevector Q = (π, 0) that separates the
Fermi surface hole pockets at the zone center and the
electron pocket at (π, 0), will mediate an s± supercon-
ducting state, in which the gap changes sign between the
hole and electron pockets [1].

Given the metallic character of the iron-based parent
compounds, a weak-coupling fluctuation exchange pic-
ture is a natural platform for understanding supercon-
ductivity in these systems. Random phase approxima-
tion (RPA) based spin-fluctuation calculations for real-
istic tight-binding models of these systems indeed find
an s± superconducting state [2]. However, these calcula-
tions also suggest a strongly competitive dx2−y2 pairing
channel [3, 4], which can even become dominant with ei-
ther electron or hole doping. In fact, for certain cases,
this transition from an s-wave to a d-wave ground state
happens already at very small levels of electron doping.
Fig. 1, for example, displays the results of an RPA calcu-
lation for a three dimensional (3D) 10-orbital model (2
Fe per unit cell) of BaFe2As2, where this change already
occurs at a doping level of 0.1 electrons per Fe. Experi-
mentally, the existence of an s-wave superconducting gap
in doped BaFe2As2 is broadly supported by experiments

including ARPES, muon spin relaxation, optical reflec-
tivity, heat capacity, neutron scattering, and other tech-
niques [5–8]. However, there is no evidence for a change
to d-wave gap symmetry at small doping levels.

This problem of spin-fluctuation RPA theory is inti-
mately linked to the momentum structure of the spin-
fluctuation interaction. For systems with both hole- and
electron pockets of approximately equal size such as in
the parent compounds, the RPA spin susceptibility is
dominated by a strong peak at Q = (π, 0), which arises
from the nesting between the hole pockets and the elec-
tron pockets and which favors the s± state. But addi-
tional scattering between opposite sides of the electron
pockets gives rise to a ridge-like structure around (π, π),
which becomes dominant already at small levels of elec-
tron doping and which favors the d-wave state [9].

The low-temperature phase of optimally superconduct-
ing BaFe2As2 crystallizes with tetragonal I4/mmm sym-
metry containing an inversion center. This gives rise to
two distinct iron sublattices and, as a result, a model
containing ten iron-d orbitals (five each for the two in-
equivalent iron sites in the unit cell) is the minimal model
required to generate the appropriate orbital eigenstates
at the Fermi energy.

In this work, we show that by including the six inequiv-
alent arsenic p orbitals in addition to the ten iron d or-
bitals, the competing d-wave pairing state is suppressed
and the s± state remains the leading pairing state up
to an electron doping level where the hole pocket dis-
appears and low energy spin-fluctuations near (π, 0) are
suppressed. These results suggest that the hybridization
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of the d-orbitals with the arsenic p states, despite their
relatively small spectral weight at the Fermi energy, is an
important factor in a complete picture of superconduc-
tivity in these materials.
Iron in BaFe2As2 is nominally in the 2+ oxidation

state, leaving a 3d6 shell (12.0 carrier electrons per two-
iron unit cell); optimal SC occurs at BaFe1.9Ni0.1As2,
corresponding to a donation of two electrons per
3d8 Ni (12.2 carriers), while SC is extinguished near
BaFe1.75Ni0.25As2 (12.5 carriers). For the 16-orbital
models, As takes the 3- state, yielding 4p6 and contribut-

ing an extra 12 carriers per unit cell; BaFe1.9Ni0.1As2
then corresponds to 24.2 carriers. We use the WIEN2K
software package [10] to generate multi-orbital tight-
binding models for the parent (undoped) compounds us-
ing the experimentally-determined lattice positions of the
As ions, which we project into a tight-binding Wan-
nier basis with WIEN2WANNIER [11] and WANNIER90
[12]. From these models, our methods proceed as de-
scribed before [3, 4, 13–17], first calculating the bare
magnetic susceptibility tensor

χ0
ℓ1ℓ2ℓ3ℓ4(q, ω) = −

1

N

∑

k,µν

aℓ4µ (k)aℓ2,∗µ (k)aℓ1ν (k+ q)aℓ3,∗ν (k+ q)

ω + Eµ(k) − Eν(k+ q) + iδ
[f(Eµ(k), T )− f(Eν(k + q), T )] , (1)

with the band indices µ and ν, and orbital indices ℓi.
The matrix elements aℓµ(k) = 〈ℓ|µk〉 represent the orbital
projection of the Bloch states, f(Eµ(k), T ) is the Fermi
function for band energy Eµ(k) at temperature T which
we set to 100K. For the sum over k we use a mesh of
40×40×4 points over the 3D Brillouin zone. We then
compute the RPA spin and charge susceptibility tensors

χ
s/c,RPA

ℓ1ℓ2ℓ3ℓ4
(q, ω) =

{

χ0(q, ω)[1− Us/cχ0(q, ω)]−1
}

ℓ1ℓ2ℓ3ℓ4

(2)

using the interaction matrices in orbital space for the
spin (Us) and charge (Uc) channels, which contain linear
combinations of intra- and inter-orbital Coulomb repul-
sions U and U ′, respectively, as well as Hund’s rule and
pair-hopping terms J and J ′, respectively [4]. We have
used spin rotational invariant combinations that satisfy
U ′ = U/2 and J = J ′ = U/4 [18]. We find that adjusting
the ratios of the Coulomb interaction parameters, such
as the choice J = U/10, has no effect on the conclu-
sions of this work, except to scale the RPA susceptibility
and pairing eigenvalues. We choose different values for
U for the 10- and 16-orbital models (keeping the param-
eter ratios fixed) as explained below. The physical spin
susceptibility is then given by

χs,RPA(q, ω) =
1

2

∑

ℓ1ℓ2

χs,RPA
ℓ1ℓ1ℓ2ℓ2

(q, ω) . (3)

The superconducting properties are calculated from
the pairing vertex in band representation

Γij(k,k
′) = Re

∑

ℓ1ℓ2ℓ3ℓ4

aℓ1,∗νi (k)aℓ4,∗νi (−k) (4)

× Γℓ1ℓ2ℓ3ℓ4(k,k
′, ω = 0)aℓ2νj (k

′)aℓ3νj (−k′) ,

where the momenta k ∈ Ci and k′ ∈ Cj are restricted
to the electron and hole Fermi surface sheets Ci/j and
νi/j are the band indices of these sheets. The scattering
vertex Γℓ1ℓ2ℓ3ℓ4 describes the particle-particle scattering
in orbital space and is given in RPA approximation as

Γℓ1ℓ2ℓ3ℓ4(k,k
′, ω) =

[

3

2
Usχs

RPA(k− k′, ω)Us (5)

+
1

2
Us −

1

2
Ucχc

RPA(k− k′, ω)Uc +
1

2
Uc

]

ℓ1ℓ2ℓ3ℓ4

.

The momentum structure g(k) of the pairing state can
then be found by solving the eigenvalue problem [4]

−
∑

j

∮

Cj

dk′
‖

2πvF (k′
‖)
Γij(k,k

′)gα(k
′) = λαgα(k) (6)

where the eigenfunction gα(k) corresponding to the
largest eigenvalue λα gives the leading pairing instabil-
ity of the system. We calculate the pairing states for
different electron dopings by applying a rigid band shift.
For the undoped case (12 electrons per unit cell), we

generally find a leading s-wave solution with s± structure
where the gap changes sign between hole and electron
pockets. In both the 10- and 16-orbital models, the gap
is fairly isotropic on the hole pockets and displays similar
angular variation on the electron pockets but is nodeless.
The second leading solution we observe in the 10-orbital
model has dx2−y2 structure with nodes on both the hole
and electron pockets (due to hybridization of the lat-
ter). In the 16-orbital model, we also observe this dx2−y2

state, but, in addition, there are other d-wave solutions
(including dxy) with larger eigenvalues. Since these other
states rapidly disappear with electron doping we ignore
them in the following discussion and focus on the doping
dependence of s± and dx2−y2-wave states.
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FIG. 1: Pairing eigenvalues for the 10-orbital (a) and 16-
orbital model (b) for electron-doped BaFe2As2 using a rigid
band shift. The parent compound has 〈n〉 = 12.0 electrons
per two iron, whereas 〈n〉 =12.5 corresponds to a nominal
doping of BaFe1.75Ni0.25As2 or BaFe1.5Co0.5As2. The dashed
lines show that different RPA interactions are used for the
undoped compounds that give eigenvalues close to 1.

Fig. 1 shows the doping dependence of the s± and d-
wave eigenvalues for the 10-orbital model, which does
not include the arsenic orbitals, and the full 16-orbital
model that includes the three (per arsenic) p-orbitals. In
the moderate to strong doping regime (12.2/24.2 elec-
trons per unit cell and higher), the RPA interactions are
chosen to generate eigenvalues roughly in the range 0 to
1; we use U = 1.10 and 1.72 for the 10- and 16-orbital
models, respectively. The fact that a larger interaction
U needs to be chosen to give similar pairing strengths
in the 16-orbital model reflects the fact that the addi-
tional screening from the p-orbitals is not included in
the bare interaction parameters of the 16-orbital models.
Using the same interaction parameter U for the parent
compound (12.0/24.0 electrons per unit cell) would lead
to an antiferromagnetic spin-density wave instability at
(π, 0). In order to suppress this instability and study
the order of the leading pairing solutions in this regime,
we choose a different U for the undoped case. For the
10-orbital model we set U = 0.92 and choose 1.40 for
the 16-orbital model. This choice gives the same d-wave
eigenvalues λd = 0.3 for both models.

With this choice of interaction parameters, we find that

the s± state is the leading instability in the undoped case
for both models, but the margin by which it is leading
over the d-wave state is much larger in the 16-orbital
model than in the 10-orbital model. Most importantly
in the 16-orbital model the s± state remains the leading
state up to a doping of approximately 0.475 electrons per
unit cell. In contrast, in the 10-orbital model, the d-wave
state becomes the leading state already at a doping of less
than 0.2 electrons per unit cell.

In order to understand this significant increase in
the stability of the s± state over the d-wave state in
the 16-orbital model, we now examine the momentum
structure of the zero frequency RPA spin susceptibility
χs,RPA(q, ω = 0) (Eq. (3)), which enters the paring inter-
action Eq. (5). Fig. 2 shows χs,RPA(q, ω = 0) for q along
high symmetry directions in the 1 Fe/unit cell Brillouin
zone for different dopings in the 10-orbital (a) and 16-
orbital (b) models. As noted before, the spin-fluctuation
scattering at (π, 0) favors the s± pairing state, while the
d-wave state arises from scattering near (π, π). For the
undoped case, one sees a peak at (π, 0) for both the 10-
orbital and the 16-orbital models, leading to the domi-
nant s± state that is found in Fig. 1. However, this peak
is much more enhanced over the scattering near (π, π) in
the 16-orbital model than in the 10-orbital case. This
explains the larger difference between the s± and the d-
wave eigenvalues in the 16-orbital model at half-filling.
As the doping increases, one sees that the (π, 0) peak
relative to the (π, π) peak diminishes slower in the 16-
orbital model than in the 10-orbital model. For example
at x = 0.2 the susceptibility maximum is no longer at
(π, 0) in the 10-orbital model, whereas in the 16-orbital
model it still is. As a result, the s± state remains more
stable with increasing doping and dominant over the d-
wave up to a doping level of ∼ 0.475 electrons.

This doping corresponds exactly with the filling where
the Fermi surface hole pockets at the zone center start
to disappear. Fig. 3 shows the Fermi surface of the 16-
orbital model for a filling of 12.4 (a) and 12.475 (b)
and one sees that the hole pockets at the zone cen-
ter are disappearing for a filling of 12.475. The fact
that the d-wave pairing state becomes leading at this
doping is a consequence of our Fermi surface restricted
treatment of the pairing problem, since the low energy
spin fluctuations near (π, 0) that favor the s± state are
suppressed when the hole bands move below the Fermi
energy. This is shown in the bottom panel in Fig. 3,
where we plot the real part of the RPA spin susceptibility
Reχs,RPA(q, ω = 0) for different dopings. Here we have
integrated the susceptibility over small 2D regions of size
(0.2π, 0.2π) around the nominal position, and averaged
over qz, although we find little difference for any single qz.
In the 10-orbital model, upon doping, the (π, π) scatter-
ing immediately becomes much stronger than the (π, 0)
scattering. In contrast, in the 16-orbital model the (π, 0)
scattering remains dominant up to a doping of 0.25 elec-
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FIG. 2: (Note log scale) Cuts of the RPA susceptibility along high-symmetry directions in the 1 Fe/unit cell Brillouin zone, for
the electron-doped system, and for the 10-orbital (a) and 16-orbital (b) models. The RPA interaction U is chosen just below
the critical strength that leads to a divergence of χRPA. This divergence occurs at U=1.19 for the 10-orbital model, and 1.73
for the 16-orbital model, for 12.2 electrons per iron in both cases. For the parent compounds, interactions are chosen to give
pairing eigenvalues close to 1.
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FIG. 3: Fermi surface in the 16-orbital model for a filling of
12.4 electrons (a) and 12.475 electrons (b) per uni cell. Doping
dependence of the RPA spin susceptibility χs,RPA(q, ω = 0)
for q near (π, 0) and (π, π) in the (c) 10-orbital and (d) 16-
orbital model. The Fermi surfaces in (a-b) are for the 16-
orbital model but are found to be indistinguishable from those
in the 10-orbital model.

trons, and for higher doping the two regions show very
similar magnitude. We also find that the spin gap at
(π, 0) in the imaginary part of χ(q, ω) also increases sig-
nificantly upon crossing the threshold of 12.475 electrons,
and spectral weight is transferred to higher energies upon
further doping. This is similar to what is observed in neu-
tron scattering experiments. Data on BaFe1.7Ni0.3As2,
which corresponds to nominally 24.6 electrons per unit
cell, shows that a spin gap remains open and the spectral
weight has shifted upward to 60 meV [19]. In our calcula-
tions in the 16-orbital model, we find a spin gap of about
30 meV at 0.4 electrons is pushed upwards to nearly 60
meV at 0.475 electrons. This agreement suggests that
the low-energy dynamics may be well represented in our

model.
Moreover we note that, experimentally, the criti-

cal doping x ≈ 0.25 at which Tc goes to zero in
BaFe2−xNixAs2 corresponds to nominally 24.5 electrons
per unit cell. Thus we find witin the 16-orbital model,
that the s± state is the leading pairing state over almost
the full superconducting dome in Ni-doped BaFe2As2.
We further note that a full theory that takes into account
the dynamics of the interaction would pick up the spec-
tral weight in the spin fluctuation spectrum at higher
energies and thus likely extend the doping range over
which the s± state is dominant [20, 21].
In order to better understand how the arsenic p-

orbitals give rise to this behavior, we calculate the orbital
contributions to the the Fermi surface Bloch states

wℓ
i =

∫

Ci

dk

(2π)2
∣

∣aℓµ(k)
∣

∣

2
. (7)

Here the integral is over the Fermi surface momenta of
sheet i and µ is the band index of the sheet.
In Fig. 4 we plot the orbital weights wℓ

i for both the
10-orbital (dashed outline) and the 16-orbital (solid out-
line) model summed over the different hole pockets (a)
and electron pockets (b). In the 16-orbital model, one
observes that the arsenic p-orbitals hybridize with all of
the iron d-orbitals, reducing the orbital content of all 5
d-orbitals on the Fermi surface states. The most signif-
icant change in terms of total orbital weight is the re-
duction of the dxy content on the electron pockets. Also
shown in Fig. 4 are the largest intra-orbital contributions
(ℓ1 = ℓ2) to the spin susceptibility χ0(q, ω = 0) in Eq. (1)
for both the 10-orbital and 16-orbital models. From this
one sees that that the (π, 0) peak in χ0(q, ω = 0) arises
mainly from scattering between the dyz orbitals on the
hole and electron pockets, while the dxy contribution is
dominant in the near (π, π) scattering. Relative to the
10-orbital model, the dxy scattering is reduced more than
the dyz scattering, consistent with the larger reduction of
the xy orbital weights on the electron pockets. Hence, it
is the fact that the arsenic p-orbitals have the strongest
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FIG. 4: (a-b) Orbital weights of the Fermi surface Bloch
states for 12.4 electrons per two iron atoms (overdoped;
BaFe1.8Ni0.2As2) for the 10- (dashed borders) and 16-orbital
models (solid borders). (a): Orbital weights for the two Γ-
centered hole pockets. (b): Orbital weights for the two elec-
tron pockets. The reduction in dxy intensity on the electron
pockets leads to a reduction of the spin susceptibility near the
wavevector (π, π) connecting them. (c) Bare (noninteracting)

susceptibility χ0 and intra-orbital χℓ1,ℓ1,ℓ1,ℓ1
0

for ℓ1 = dxz,dyz,
and dxy, for the 10-orbital (dashed) and 16-orbital model
(solid).

hybridization with the dxy orbitals on the electron pock-
ets that leads to the reduction of the near (π, π) spin-
fluctuation scattering and ultimately to the increased sta-
bility of the s± pairing state with electron doping.

To summarize, we have carried out RPA spin-
fluctuation calculations of the spin susceptibility and
the leading pairing states in a 16-orbital Hubbard-Hund
tight-binding model of electron-doped BaFe2As2. In ad-
dition to the 10 Fe-d orbitals per unit cell, this model
includes the 6 p-orbitals from the As atoms and their
hybridization with the d-orbitals. We have compared
the results of these calculations with those of a Fe-d, 10-
orbital only model that does not include the As-p degrees
of freedom. In both models we find a leading s± pairing
state and a subleading dx2−y2-wave state in the parent

compound. Upon doping, the 10-orbital model has the
d-wave state become the leading state already at an elec-
tron doping level of less than 0.2 electrons per unit cell.
In contrast, in the 16-orbital model the s± state is much
more stable and remains the leading pairing state and
dominant over the d-wave state up to doping levels of
0.475 electrons. At this doping level, the hole Fermi sur-
face pockets at the zone center are found to disappear.
The increased stability of the s± over the d-wave state is
found to arise from an increased ratio of the strength of
spin-fluctuation scattering near q = (π, 0) which connects
hole- and electron pockets and q = (π, π) which connects
the electron pockets. This reduction of the near (π, π)
scattering is found to be unrelated to a change in the
Fermi surface shape, which is nearly identical between
the 10- and 16-orbital models, but rather can be traced
to a decrease in the dxy orbital weight on the electron
pockets due to their hybridization with the As-p degrees
of freedom.

Orbital selectivity, i.e. the orbital dependent coher-
ence of quasiparticles, has been argued to play a major
role in the Cooper pairing in iron-based superconduc-
tors [22–25]. In particular, Kreisel et al. [24] have found
that the incorporation of quasiparticle weight factors can
modify the results of RPA spin-fluctuation calculations
of the pairing state via suppression of the pair scatter-
ing processes involving the less coherent dxy states. Here
we have shown that the orbital dependent hybridization
of Fermi surface Bloch states with the usually neglected
p-orbital states provides another, complementary ingre-
dient for an improved itinerant pairing theory.
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