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Quantum collapse of a small skyrmion in a thin magnetic film with Dzyalishinskii-Moriya (DMI)
interaction has been studied. The energy of the skyrmion and the stability threshold determined by
the DMI, the external magnetic field, and the underlying atomic lattice are investigated analytically
and numerically. The Lagrangian describing the coupled dynamics of the skyrmion size and the
chirality angle is derived. Equations of motion possess an instanton solution that corresponds to
the skyrmion underbarrier contraction via quantum tunneling with subsequent collapse and decay
of the topological charge. The tunneling rate is computed and the conditions needed to observe
quantum collapse of a skyrmion in a magnetic film are discussed.

PACS numbers: 12.39.Dc,75.45.+j,75.70.-i

I. INTRODUCTION

Skyrmions have been originally introduced in nuclear
physics as possible nonlinear field-theory prototypes of
hadrons1. They quickly attracted interest in condensed
matter physics in applications to topological defects
in 2D ferro- and antiferromagnetic films and layered
materials2–8, Bose-Einstein condensates9, quantum Hall
effect10,11, anomalous Hall effect12, and liquid crystals13.
Skyrmions are currently at the forefront of research in
magnetism due to their interesting topological properties
and their potential for topologically protected informa-
tion storage, see, e.g., reviews, Refs. 14–18.

Solid-state research on skyrmions is focusing on their
stability, dynamics and various symmetry properties.
The majority of published works treated skyrmions as
classical objects, although some attention has been paid
to their quantum excitations as well19. In most cases
application of classical theory is justified because even
the smallest nanometer-size skyrmion would be com-
prised of a macroscopic number of degrees of freedom.
Consequently, if one is interested in the dynamics of
the skyrmion as a whole and not in small excitations,
the field-theory action associated with such dynamics
would be large compared to the Planck constant. This
makes quantum features strongly suppressed. Neverthe-
less, they can be important in the context of information
storage if the topological charge of a skyrmion can decay
in the long run via quantum processes.

Besides its practical importance, if such a behavior of
a skyrmion was detected in experiment, it would man-
ifest another fascinating example of macroscopic quan-
tum tunneling (MQT) that has been intensively studied
in condensed matter physics in the past. MQT research
included tunneling of the magnetic moment in single-
domain magnetic nanoparticles and tunneling of domain
walls20, spin tunneling in molecular magnets21,22, tun-
neling of vortices in 2D superconductors and quantum
depinning of flux lines in 3D superconductors23, tunnel-
ing between supercurrent states in nano-SQUIDS24, etc.

In this paper we are asking a question whether quan-

tum collapse of a classically stable skyrmion can be ob-
served in experiment. In a pure exchange model in a 2D
crystal, skyrmions collapse classically due to the viola-
tion of the scale invariance by the presence of the dis-
crete atomic lattice25. Anisotropy, dipole-dipole interac-
tion (DDI), magnetic field, and confined geomery can sta-
bilize significantly large magnetic bubbles with skyrmion
topology26–30, while stability of small skyrmions requires
other than Heisenberg exchange coupling, strong random
anisotropy, or a non-centrosymmetric system with large
Dzyaloshinskii-Moriya interaction (DMI)16,31–36.

In this paper we study skyrmions stabilized by the DMI
and an external magnetic field, which is a typical situa-
tion in most experiments. At a given strength of the DMI
the size of the skyrmion is determined by the magnetic
field; the stronger the field the smaller the size. Sta-
ble skyrmions above critical size λc exist below a critical
field Hc determined by the strength of the DMI. Above
that field skyrmions collapse irreversibly. We assume
that skyrmion stability is dominated by the exchange,
DMI, and strong magnetic field, and neglect the effect of
the weaker dipolar fields that would make quantum prob-
lem significantly more involved. Classical dynamics of a
collapsing skyrmion has been studied in Ref. 25. For a
nanometer size skyrmion it occurs on a nanosecond time
scale. It has been shown that the skyrmion preserves
its topological charge until the final stage of the collapse
where it reaches an atomic size. At that point the topo-
logical charge of the skyrmion abruptly changes from 1
to 0.

The existence of the critical field in a system with DMI
allows one to control the energy barrier for the collapse
of a stable skyrmion by tuning the magnetic field close
to Hc. We show that such tuning of the field, which is
easily within experimental reach, allows one to achieve a
sufficiently large rate of underbarrier quantum contrac-
tion of the skyrmion below the critical size. Once such
a process occurs due to quantum tunneling the skyrmion
continues to collapse classically until it decays completely
into the magnons25. We solve the tunneling problem by
reducing it to the dynamics of a single parameter – the
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skyrmion size λ. We show that equations of motion for
λ in imaginary time possess an instanton solution that
corresponds to the quantum tunneling from λ > λc to
λ < λc. The Euclidean action along the instanton tra-
jectory gives the WKB exponent for the tunneling, while
the attempt frequency related to small oscillations of λ
near the energy minimum provides the pre-exponential
factor for the tunneling rate.

This paper is organized as follows. The dependence
of the various components of the skyrmion energy on its
size is discussed in Section II. The vicinity of the critical
field is studied in Section III. The Lagrangian and equa-
tions of motion are derived in Section IV. The rate of
quantum collapse is obtained in Section V. The results
and suggestions for experiments are discussed in Section
VI.

II. ENERGY

We consider the following Hamiltonian of a 2D spin
system

H = −J
2

∑
<ij>

Si · Sj

+ A
∑
i

[(Si × Si+x̂) · x̂+ (Si × Si+ŷ) · ŷ]

− H
∑
i

Siz. (1)

Here the first term represents the exchange interac-
tion between the nearest neighbors, with Si being the
spin at the i-th site of the crystal lattice and J being
the exchange constant. The second term describes the
Bloch-type Dzyaloshinskii-Moriya interaction (DMI) of
strength A in a non-centrosymmetric crystal16. For the
Néel-type DMI it should be replaced with A

∑
i[(Si ×

Si+x̂) · ŷ− (Si×Si+ŷ) · x̂]. The third term is the Zeeman
interaction between the spins and the magnetic field ap-
plied in the z-direction, perpendicular to the xy-plane of
the film.

The field theory counterpart of the above Hamiltonian
that one can obtain by switching from summation to in-
tegration according to

∑
i →
´
dxdy/a2 (where a is the

lattice constant) is

H = −1

2
Ja4

ˆ
dxdy

(∂S̃
∂x

)2

+

(
∂S̃

∂y

)2


+ Aa3

ˆ
dxdy

[(
S̃× ∂S̃

∂x

)
· x̂+

(
S̃× ∂S̃

∂y

)
· ŷ

]
,

− H

ˆ
dxdy S̃z (2)

where S̃(x, y) is the spin field of constant density S/a2.

Figure 1: Spin-field of the Bloch-type (upper panel) and the
Néel-type (lower panel) BP skyrmions with Q = 1.

Non-uniform configurations of the spin field in 2D are
characterized by the topological charge,

Q =

ˆ
d2r

8π
εαβsaεabc

∂sb
∂rα

∂sc
∂rβ

=

ˆ
dxdy

4π
s· ∂s
∂x
× ∂s
∂y
, (3)

that takes integer values Q = 0,±1,±2, .... Here s is
a unit vector specifying the direction of the spin field,
s = S̃/S̃. At H = 0 and A = 0 the non-uniform rota-
tions of the spin field that minimize the exchange energy
are Belavin-Polyakov (BP) skyrmions2. For example, for
Q = 1 the components of s are given by

sx = 2λ
r cos(φ+ γ)

r2 + λ2
, sy = 2λ

r sin(φ+ γ)

r2 + λ2
, sz =

λ2 − r2

λ2 + r2
,

(4)
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where r = (r cosφ, r sinφ) is the radius-vector in the xy-
plane, λ can be interpreted as the skyrmion size, and γ is
the chirality angle. In a continuous spin-field approxima-
tion the scale invariant 2D exchange energy of a Q = 1
BP skyrmion, Eex = 4πJS2, is independent of its size,
which is confirmed by substitution of Eqs. (4) in the first
term of Eq. (2). The spin-field in the Q = 1 Néel-type
(γ = 0) and Bloch-type (γ = π/2) skyrmions is shown in
Fig. 1.

In practice one typically has H � AS � JS, so that
the energy of the short-range rotations of S̃ is domi-
nated by the exchange. This suggests that for sufficiently
small λ and not very large r Eqs. (4) provide a good
approximation for the skyrmion shape. Indeed, the di-
mensional analysis of the energies in Eq. (2) shows that
the DM energy of the BP skyrmion scales as AS2(λ/a),
while its Zeeman energy (up to a logarithm) scales as
HS(λ/a)2. Both are small compared to the exchange en-
ergy of the BP skyrmion when λ/a� J/A and λ� δH ,
with δH ≡

√
JS/Ha. When these conditions are sat-

isfied, interactions other than the exchange may affect
skyrmion shape at r � λ. However at distances r . λ,
the skyrmion shape is determined by the exchange inter-
action and is close to the BP shape given by Eqs. (4).
This is confirmed by our numerical studies of skyrmions
on spin lattices, see Appendix.

Violation of the scale invariance by a discrete atomic
lattice leads to the −(2πJS2/3)(a/λ)2 contribution to
the energy of the BP skyrmion that forces it to collapse
with a lifetime proportional to (λ/a)5 in the absence of
any other stabilizing interactions25. The DMI and Zee-
man interaction can stabilize skyrmions. Substitution
of Eqs. (4) into Eq. (2) with the addition of the discrete-
lattice contribution gives the following dependence of the
skyrmion energy on size and chirality angle:

E = −2πJS2

3λ̄2
− 4πAS2λ̄ sin γ + 4πHSλ̄2l(H, λ̄), (5)

where we have dropped the dominant exchange contribu-
tion, 4πJS2, that does not depend on λ and introduced
dimensionless λ̄ = λ/a. The function l(H, λ̄), having log-
arithmic dependence on δH/λ, is given by Eq. (A3) of the
Appendix. For certainty we consider a Bloch-type DMI
with A > 0, but all formulas can be modified in a trivial
manner for other types of DMI. The plus sign of the last
(Zeeman) term in Eq. (5) comes from the direction of
the field being opposite to the magnetic moment of the
skyrmion. The first (lattice) term and the last (Zeeman)
term in the energy favor collapse of the skyrmion, while
the second (DMI) term favors expansion of the skyrmion
and γ = π/2. This provides the energy minimum on λ at
H < Hc. The dependence of the skyrmion energy on the
skyrmion size, λ, for fields close to Hc is shown in Fig. 2.

To increase confidence in our results we will develop
and compare three approaches. At first we will treat the
function l as a constant. This is justified when dl/dλ con-
tributes little to the derivative with respect to λ of the
Zeeman energy, 4πHSλ̄2l(H, λ̄), which requires δH � λ,

Figure 2: Dependence of skyrmion energy on skyrmion size
given by Eq. (5) near the critical (collapse) field.

2l � 1. Such approximation elucidates the key features
of the tunneling problem and it provides the leading de-
pendence of the tunneling rate on parameters. It will be
further improved by the numerical solution of the contin-
uous problem that takes into account logarithmic correc-
tions and also by computation of all energies in a discrete
model on 500×500 spin lattices.

If one neglects logarithmic dependence of l on λ the
condition that the first and the second derivative of E(λ)
equal zero give the following dependence of the critical
field Hc and the critical skyrmion size λc (at H = Hc)
on parameters:

Hc

JS
=

21/3

16lκ4/3
, λ̄c = (4κ)1/3, κ =

J

3A
� 1. (6)

This approximation can be improved by assuming loga-
rithmic dependence of l on κ in the expression for Hc.
The scaling of Hc/(JS) and λc/a on κ provided by Eqs.
(6) has been tested by finding these parameters numeri-
cally from Eq. (5) without assuming l = const, and also
by computing the inflection point of the total energy nu-
merically on spin lattices of large size, see Appendix for
details. All three methods produce close results, see Fig.
3 that represents the lattice method believed to be the
most accurate one. Note that in the numerical work κ4/3

multiplied by a function that contains logarithmic depen-
dence on κ can easily be interpreted as a power of κ that
is slightly different from 4/3, e.g., 3/2 = 4/3 + 1/6, and
this is what is seen in the upper panel of Fig. 3.

III. VICINITY OF THE CRITICAL FIELD

It is expected that only the smallest skyrmions will
have an appreciable rate of quantum collapse and only
when the corresponding energy barrier is sufficiently
small. Thus the quantum problem we are interested in
must be studied near H = Hc. In this region the energy
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Figure 3: Dependence of Hc (upper panel) and λc (lower
panel) on A/J obtained on 500 × 500 spin lattices, see Ap-
pendix for details.

shown in Fig. 4 is given by

E

JS2
=

π

21/33κ5/3

[
|δ̄t|(δλ̄)2 + (δλ̄)3

]
, (7)

where δλ̄ = λ̄− λ̄1, δ̄t = λ̄t − λ̄1 = −21/64κ1/3ε1/2, and

ε = 1− H

Hc
� 1. (8)

The energy minimum corresponds to γ = π/2, any de-
parture of γ from π/2 is related to the time derivatives
of λ. In that sense Eq. (7) gives the potential energy of
the skyrmion in the field just below H = Hc, shown in
Fig. 4.

At any H < Hc the reduced skyrmion size λ̄1 corre-
sponding to the energy minimum satisfies

−1 +
κ

λ̄3
1

+ ω̄0λ̄1 = 0, (9)

Figure 4: Schematic representation of the energy of the
skyrmion below the critical field that shows the energy barrier
U and parameters λ1, λm, λt used in the text.

where ω̄0 = 2lH/(AS). Close to the critical field

ω̄0 = ω̄c(1− ε), ω̄c =
3

4λ̄c
=

3

4(4κ)1/3
(10)

and the characteristic values of λ shown in Fig. 4 are

λ̄1 = λ̄c + 21/6κ1/3ε1/2 (11)

λ̄m = λ̄c − 21/62κ1/3ε1/2 (12)

λ̄t = λ̄c − 21/63κ1/3ε1/2. (13)

The energy barrier, U = E(λm)− E(λ1), is given by

U

JS2
=

4π 21/6

3κ2/3
ε3/2. (14)

Note that close to Hc these results, obtained under the
assumption l = const, do not depend on l and, therefore,
must be valid regardless of that assumption. The depen-
dence of l on λ and H simply renormalizes Hc, preserving
the dependence of all variables on ε = 1 − H/Hc while
yielding l = lc independent of ε.

IV. LAGRANGIAN AND EQUATIONS OF
MOTION

To solve the tunneling problem we need the dynamical
equations for S̄(r, t). In the absence of dissipation they
are given by

~
∂S̄

∂t
= S̄×Beff , Beff = −δH

δS̄
. (15)

Writing components of the spin field in terms of the an-
gles in spherical coordinates gives:

S̄x =
S

a2
sin Θ(x, y) cos Φ(x, y) (16)

S̄y =
S

a2
sin Θ(x, y) sin Φ(x, y) (17)

S̄z =
S

a2
cos Θ(x, y). (18)
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Noticing that ~S̄z and Φ form a canonically conjugate
pair of the generalized momentum and generalizede co-
ordinate, it is easy to see that Eqs. (15) written in com-
ponents of S̄ follow from the Lagrangian

L = ~S
ˆ
dxdy

a2
Φ̇(cos Θ + 1)−H. (19)

Here 1 is added to cos Θ to make the first term zero
at infinity where cos Θ = −1. This adds a total time
derivative to the Lagrangian that does not affect classi-
cal equations of motion. It may, however, contribute a
phase, S∆Φ, to the amplitude of quantum transition if
Φ changes by ∆Φ when going from the initial to the final
state. Note that the first integrated quantity in Eq. (19)
has a geometrical meaning20 of the surface area swept by
the spin field in a closed path around the south pole of
the sphere of radius S̄.

According to Eqs. (4) for the skyrmion

tan Φ =
sy
sx

= tan(φ+ γ), Φ̇ = γ̇ (20)

cos Θ + 1 = sz + 1 =
2λ2

λ2 + r2
. (21)

Substituting this into Eq. (19) and replacing H with E
of Eq. (5) one obtains

L = 4πS(~γ̇ −H)λ̄2l(H, λ̄) +
2πJS2

3λ̄2
+ 4πAS2λ̄ sin γ.

(22)
The equations of motion are

∂L
∂λ̄

= 0,
d

dt

∂L
∂γ̇

=
∂L
∂γ

. (23)

If one treats the logarithm as a constant l the equations
of motion become

dλ̄

dτ
= cos γ

λ̄
dγ

dτ
= − sin γ +

κ

λ̄3
+ ω̄0λ̄, (24)

where we have introduced dimensionless time τ =
[AS/(2~l)]t. The minimum of the energy corresponds
to a stationary solution of the above equations with
γ = γ1 = π/2 and λ = λ̄1 satisfying Eq. (9). Writing
near the minimum

γ =
π

2
+ δγ, λ̄ = λ̄1 + δλ̄ (25)

one obtains the following linearized equations

dδλ̄

dτ
= −δγ (26)

dδγ

dτ
=

1

λ̄1

(
4ω̄0 −

3

λ̄1

)
δλ̄ (27)

that describe harmonic oscillations of δγ and δλ̄ at a
frequency

ω̄1 =

√
1

λ̄1

(
4ω̄0 −

3

λ̄1

)
. (28)

According to Eq. (9) λ̄1 → 1/ω̄0 at H → 0. In this
limit ω̄1 → ω̄0 and ω̄1τ → (H/~)t, making the skyrmion
size oscillate in real time at the ESR frequency. As the
magnetic field increases the oscillation frequency becomes
smaller than the ESR frequency H/~. It first increases
with the field, but then decreases and becomes zero at
H = Hc, where the energy minimum disappears.

Close to the critical field one has

ω̄1 =
31/221/12ε1/4

2κ1/3
. (29)

Note again independence of the reduced frequency ω̄1 of
l. The real-time frequency of the small oscillations of
skyrmion size near the energy minimum for ε� 1 is

ωε =
31/221/12ε1/4

2κ1/3

(
|A|S
2~l

)
. (30)

V. QUANTUM COLLAPSE OF A SKYRMION

In this problem it is important to notice that quantum
decay of a skyrmion does not require a direct transition
to the uniformly magnetized state. Instead, it involves
underbarrier contraction of the skyrmion via quantum
tunneling from λ1 to λt (see Fig. 4), without changing
its exchange energy. After that the skyrmion collapses
classically, with its exchange energy emitted in the form
of spin waves25. Thus, to obtain the rate of the quan-
tum decay of a skyrmion, one has to study the quantum
transition λ1 → λt.

At H close to Hc, one has λ̄ = λ̄1 + δλ̄, γ = π
2 + δγ,

with δγ satisfying Eq. (26). Switching to the imaginary
time, u = it, ū = iτ , one obtains from the equations of
motion (24) the following equation for δλ:

d2δλ̄

dū2
=

1

8κ

[
2|δ̄t|(δλ̄) + 3(δλ̄)3

]
. (31)

It is easy to see that this equation corresponds to the
condition of constant total energy (5) for the motion in
imaginary time, which describes quantum tunneling of
λ from λ1 to λt, see Fig. 4. By subtracting E(λ1) this
energy can be made zero:

E

JS2
=

4π

3κ

[
3ε1/2

21/64κ1/3
δλ̄2 +

2κ

λ̄5
c

δλ̄3 +
λ̄c
2
δγ2

]
(32)

=
π

21/33κ5/3

[
|δ̄t|(δλ̄)2 + (δλ̄)3 − 4κ

(
dδλ̄

dū

)2
]

= 0.

(33)

Choosing reduced variables,

δλ̄ =
δλ

|δt|
, ū′ =

|δt|1/2

2κ1/2
ū. (34)

Eq. (31) can be written as(
dδλ̄

dū′

)2

= (δλ̄)2 + (δλ̄)3. (35)
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The solution is

δλ̄ =
−1

cosh2(ū′/2)
, (36)

that is,

δλ =
δt

cosh2(ωiu)
, ωi =

ωε
2

=
31/221/12ε1/4

4κ1/3

(
|A|S
2~l

)
.

(37)
It corresponds to the instanton (bounce trajectory in the
imaginary time) that goes from λ1 at u = −∞ to λt at
u = 0 and back to λt at u = +∞, see Fig. 4. Note
that dλ/du is zero at u = ±∞ and on approaching λt at
u = 0. According to the equations of motion, γ = π/2 at
u = ±∞ and u = 0, and it is complex along the bounce
trajectory under the barrier.

The tunneling rate is

Γ = AeB (38)

where A ≈ ωε/(2π) is the attempt frequency given by
Eq. (30) and B is the action integrated over the bounce,
B = (i/~)

´
dtL, which gives the WKB exponent for the

tunneling7,20. In the absence of dissipation the equa-
tions of motion conserve energy. Adding a constant,
E(π/2, λ1), to the Lagrangian to have E = 0 at the en-
ergy minimum and along the bounce trajectory, one has

B =
i

~

ˆ
dt(4π~Slγ̇λ2). (39)

For the instanton at ε � 1 one has γ = π/2 + δγ with
δγ satisfying the first of Eqs. (26), so that dδγ/dū =
−i(d2δλ/dū2). This gives

B = 4πSli

ˆ +∞

−∞
dū
dγ

dū
λ2 = 4πSl

ˆ +∞

−∞
dū
d2λ

dū2
λ2. (40)

where for the moment we treated l as a constant. In-
tegrating by parts, and using the condition dλ/du = 0
at the boundaries of the integration, one obtains for the
integral in Eq. (40)

ˆ +∞

−∞
dū
d2λ

dū2
λ2 = −2

ˆ +∞

−∞
dū

(
dλ

dū

)2

λ

= −4λc

ˆ |δt|
0

d|δλ|
(
d|δλ|
dū

)
= −4λc

ˆ |δt|
0

d|δλ| 1

(4κ)1/2

[
|δt|(|δλ|)2 − (|δλ|)3

]1/2
= −21/1231/248

5
κ2/3ε5/4. (41)

This gives

B = −21/12192π

31/65
Sl

(
J

A

)2/3

ε5/4 ≈ −106Sl

(
J

A

)2/3

ε5/4.

(42)

Independent check of the scaling of the WKB exponent
with J/A and ε comes from noticing that for smooth po-
tentials B scales as −U/(~ωm) where ωm is a frequency
of small oscillations of the skyrmion size at the bottom
of the inverted potential20. A simple calculation shows
that in our problem ωm = ωε. This frequency plays an
important role in the tunneling problem37; the crossover
from thermal overbarrier collapse of the skyrmion to ther-
mally assisted quantum tunneling occurs at a tempera-
ture Tc = ~ωm. Below that temperature the skyrmion
tunnels under the barrier from the energy levels E < U
to which it is thermally activated.

To further check the above analytical results obtained
by approximating the log in the Zeeman energy by a
constant, we also solved the problem without making
such an assumption by considering the Lagrangian L =
4πS~γ̇λ̄2l(H, λ̄)− E with

E = 4πSHλ̄2l(H, λ̄)− 2πJS2

3λ̄2
− 4πAS2λ̄ sin γ. (43)

and finding the WKB exponent numerically with l(H, λ̄)
given by Eq. (A3).

The dynamics of the skyrmion near the collapse field,
ε = 1 − H/Hc � 1, corresponds to γ = π/2 + δγ with
|δγ| � 1. This gives sin γ = 1− δγ2/2,

E = 4πSHλ̄2l(H, λ̄)− 2πJS2

3λ̄2
− 4πAS2λ̄+ 2πAS2λ̄δγ2.

(44)
From the second of Eqs. (23) one obtains

δγ = − ~
ASλ̄

d

dt

[
λ̄2l(H, λ̄)

]
. (45)

Substitution into the energy gives

E = 4πSHλ̄2l(H, λ̄)−2πJS2

3λ̄2
−4πAS2λ̄+

2π~2

Aλ̄

[
d(λ̄2l)

dt

]2

.

(46)
where the last term can be interpreted as the kinetic
energy of the skyrmion.

Parameters λ1, λm, and λt should now be determined
numerically by finding the minimum λ1, the maximum
λm, and the tunneling point λt of the stationary energy
in Fig. 1 given by

E0 = 4πSHλ̄2l(H, λ̄)− 2πJS2

3λ̄2
− 4πAS2λ̄. (47)

The critical parameters Hc and λc should also be deter-
mined numerically from the condition that first and sec-
ond derivatives of E0 are zero. For the tunneling problem
one should consider E0 at H = Hc(1− ε), with small ε.

Along the instanton trajectory E = E(λ1). This gives
(u = it)

d(λ̄2l)

du
= −1

~

(
Aλ̄

2π

)1/2√
E0(λ)− E0(λ1) (48)
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with the minus sign determined by the fact that λ2 de-
creases when going from λ1 to λt. For the WKB exponent
one has

B = 4πSi

ˆ +∞

−∞
dt
dδγ

dt
λ̄2l = −4πSi

ˆ +∞

−∞
dtδγ

d(λ̄2l)

dt

= −4πSi

ˆ
d(λ̄2l)δγ =

4π~i
Aλ̄c

ˆ
d(λ̄2l)

d(λ̄2l)

dt

= 2

(
2π

Aλ̄c

)1/2 ˆ
d(λ̄2l)

√
E0(λ̄)− E0(λ̄1)

= −4

(
2π

Aλ̄c

)1/2 ˆ λ̄1

λ̄t

dλ̄

[
d(λ̄2l)

dλ̄

]√
E0(λ̄)− E0(λ̄1)

= −4

(
2π

Aλ̄c

)1/2 [
d(λ̄2l)

dλ̄

]
λ̄=λc

ˆ λ̄1

λ̄t

dλ̄
√
E0(λ̄)− E0(λ̄1).

(49)

The last step is taken by keeping in mind that λ is close
to λc at ε� 1.

The limits of integration in Eq. (49), as well as the
integral, must be computed numerically. However, the
scaling of B on J/A and ε can be seen right away by
noticing that the integral Eq. (49) is of order |λ̄1−λ̄t|

√
U .

This immediately gives

B ∝ Slc(J/A)

(
J

A

)2/3

ε5/4. (50)

with lc(J/A) being the value of the log at the critical
field, thus confirming the result of Eq. (42). Numerically
obtained dependence of the WKB exponent on parame-
ters is shown in Fig. 5. The agreement of all aproaches
with each other provides good confidence in the results.

VI. DISCUSSION

In the classical field theory skyrmions are topologically
protected. Violation of scale invariance by the atomic
lattice makes small classical skyrmions collapse within
a microscopic time. The combined effect of the DMI
and the external magnetic field can stabilize skyrmions
above a critical size λc. Quantum contraction of the
skyrmion studied above conserves topological charge.
Consequently, the skyrmion that emerges on the other
side of the energy barrier with λt < λc is the same
BP skyrmion but of a smaller size and smaller magnetic
moment. The change in the magnetic moment of the
skyrmion that accompanies its quantum contraction is
possible solely due to the DMI because it is the only
interaction present in the problem that violates commu-
tation of the Hamiltonian with Sz. This explains the
presence of the power of A in the denominator of the ex-
pression for the WKB exponent, Eqs. (42) and (50). At
A → 0 one has B → −∞, resulting in the exponential
smallness of Γ, that is, quantum tunneling of a skyrmion
in our model is driven by the DMI. After the skyrmion

Figure 5: Numerically computed dependence of the WKB ex-
ponent on J/A (upper panel) and ε (lower panel). Its scaling
with parameters confirms scaling obtained by other methods.

contracts below λc due to quantum tunneling it contin-
ues to contract towards λ = 0 in real time, radiating its
energy into magnons25. At the last stage of the collapse,
when the skyrmion reaches the atomic size, it disappears
with its topological charge jumping from Q = 1 to Q = 0.

Not very close to Hc the probability of quantum un-
derbarrier contraction of the skyrmion, followed by its
collapse, would generally be exponentially small owing to
the large numerical factor in Eq. 42. It reflects the fact
that even the smallest skyrmion would be rather macro-
scopic; that is, the action associated with it is large com-
pared to ~. Indeed, the magnetic moment of a skyrmion
of size λ ≈ λc would typically be in excess of 100µB .
Quantum dynamics of systems comprised of a large num-
ber of degrees of freedom, such as, e.g., nano-SQUIDs and
magnetic nanoparticles, have been observed in the past.
Comparison with theory for such systems has been often
hampered by the difficulty of preparing identical objects
that exhibit tunneling. For example, quantum depinning
of flux lines or 2D vortices in superconductors and of do-
main walls in ferromagnets depends on the local pinning
potential that usually is widely distributed in magnitude.
Studies of spin tunneling in single-domain magnetic par-
ticles always faced inability of experimentalists to prepare
an array of identical nanoparticles. It received serious at-
tention only after the discovery of resonant spin tunneling
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in magnetic molecules. Similar studies in superconduc-
tors are even more difficult as they require measurements
of individual nano-SQUIDs.

The advantage of small skyrmions for the studies of
macroscopic quantum tunneling is that, similar to crys-
tals of magnetic molecules, they can form an array of
identical small magnetic objects. For, e.g., J ∼ 1000K
and A/J ∼ 0.02 the critical collapse field Hc should be
around one tesla while the critical size of the skyrmion
λc should be on the order of four lattice spacings. As has
been discussed above, the frequency of small oscillations
of the skyrmion near the energy minimum should be gen-
erally in the ESR range and, therefore, easily observable.
This frequency also determines the pre-exponential factor
in the expression for the tunneling rate given by Eq. (38)
as well as the crossover to thermally assisted quantum
tunneling as the temperature is lowered.

In this paper we neglected the dipole-dipole interaction
(DDI) between the spins, as has been done for other tun-
neling problems in magnets. It is justified by the weak-
ness of the DDI compared to all other interactions in
the range of parameters used for the smallest skyrmions
we are interested in. Incorporation of the DDI into our
quantum tunneling model presents a challenge that we
do not know how to address at this time. Another effect
neglected by us is the effect of dissipation of the skyrmion
motion on the probability of quantum collapse. In mag-
netic systems the effect of dissipation on tunneling of
the magnetic moment is typically weak. It can be stud-
ied along the lines of Caldeira-Leggett aproach20. The
measure of the dissipation in magnetic materials is pro-
vided by the Landau-Lifshitz-Gilbert parameter which
determines the FMR width and is usually small. For
that reason, similar to the case of molecular magnets, it
is unlikely that dissipation can significantly change our
conclusions.

To observe quantum tunneling on a time scale of a
typical experiment the WKB exponent should be in the
ballpark of 25-30. This can be achieved by applying the

field close to Hc as was done in experiments with indi-
vidual magnetic particles in the past. According to Eq.
(42) for A/J ∼ 0.02 it requires ε ∼ 0.02, that is, the
field tuned within 100G from the critical field, which is
easily achievable. The onset of thermally assisted quan-
tum tunneling must occur at Tc = ~ωm, which for the
above parameters is in the ballpark of 1K. The above
numbers are given for a 2D monolayer of spins. Since
the action is proportional to the number of layers, N ,
the WKB exponent in a multilayered film would change
as B → NB. Correspondingly, a smaller ε, that is, the
field closer to the collapse field will be required to observe
quantum collapse of a skyrmion in thicker film. However,
the temperature of the crossover from thermal overbar-
rier collapse to thermally assisted quantum collapse will
remain the same.

We conclude with a notion that calculations presented
here can be easily adjusted to other models and concrete
materials chosen for experimental studies. Observation
of the quantum collapse of a skyrmion, while challeng-
ing since it requires low temperatures and fine tuning of
the field, appears to be within experimental reach and
may even be less demanding than other MQT experi-
ments performed to date. Here we have not addressed the
problem of quantum creation of skyrmions or skyrmion-
antiskyrmion pairs. The corresponding exchange barrier
could be reduced by, e.g., a magnetic tip approaching
the film. The formalism developed in this paper can be
extended to this and other problems involving quantum
tunneling and creation of skyrmions.
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Appendix A: Skyrmion energy on a spin lattice

Numerical minimization of the skyrmion energy was
performed on a 500 × 500 lattice using the method of
Ref. 38 that consists in successive rotations of spins at
lattice sites i in the direction of the effective field Heff,i =
−δH/δSi with the probability α and overrelaxation (i.e.,
flipping spins around Heff,i) with the probability 1 − α.
The first operaton reduces the energy of the system while
the second serves to better explore the phase space of the
system via conservative pseudo-dynamics, with α playing
the role of the relaxation constant. The fastest energy
minimization towards the deepest minum is achieved for
α� 1. We use α = 0.01.

The skyrmion size λ can be extracted from the numer-
ical data as25

λ2
m =

m− 1

2mπ
a2
∑
i

(siz + 1)
m
, (A1)

Figure 6: Numerically computed exchange, DMI, and Zeeman
energies of the Q = 1 skyrmion on a 500×500 lattice with S =
1. Good agreement with analytical theory is seen, especially
for smaller skyrmions that are of interest for the tunneling
problem.

where it is assumed that siz = −1 in the background
and siz = 1 at the center of the skyrmion. For the BP
skyrmions with sz given by Eq. (4), one has λm = λ for
any m. In this paper, we used λeff = λ4 to represent the
numerically computed skyrmion size.

The numerical solution allows one to compute differ-
ent contributions to the equilibrium skyrmion energy,
as well as λeff , for different values of the applied field
H. Also, one can infer a more general information
via plotting the energy contributions in the parametric
form vs λeff . The Zeeman energy vs λeff is defined as
EZ = −H∆Mskyrmion(λeff) with the skyrmion magnetic
moment ∆Mskyrmion =

∑
i (siz + 1) , first computed nu-

merically as a function of H and then represented para-
metrically via λeff . The results are represented in Fig. 6.

One can see that for λeff below ten lattice spacings the
exchange energy of the skyrmion is close to the ground-
state energy, 4πJS2, of the BP skyrmion. This is an
indication that such small skyrmions are close to the BP
shape on the scale r . λ that dominates the exchange
and the DMI energies. The latter is due to the fact that
these energies contain spatial derivatives of the spin field.
Any deformation of the BP shape on the scale r . λ
would make the exchange energy higher. According to
Fig. 6, as λeff increases, the exchange energy slowly de-
parts from 4πJ , indicating more significant deformations
of the skyrmion shape. Since the quantum collapse prob-
lem is relevant for skyrmions of size well below 10a the
BP shape must be a good approximation for the exchange
and DMI energies of such skyrmions.

For the Zeeman energy the situation is somewhat dif-
ferent. Since it does not contain the derivatives of the
spin field it is sensitive to the shape of the skyrmion tail
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at r � λ for which Zeeman interaction becomes the dom-
inant one. The scaling of the numerically computed Zee-
man energy, see Fig. 6, with the skyrmion size shows the
λ2

eff trend with some logarithmic contribution. Propor-
tionality to λ2

eff is related to the fact that the magnetic
moment of the skyrmion is roughly proportional to the
area inside which the spin field undergoes a significant ro-
tation. The logarithm comes from the magnetic moment
of the tale accumulated over a large area. Substitution of
Eqs. (4) into the last term of Eq. (2) gives for the Zeeman
energy of the skyrmion EZ = 4πHS(λ/a)2 ln(rmax/λ),
where rmax � λ is the upper limit of integration on r
determined by the size of the system, L, or the cutoff
due to the magnetic field, δH = a

√
JS/H, whichever is

smaller. In practice one always has δH � L.
For a skyrmion of size λ � δH , a more rigorous ap-

proach can be developed if one explicitly takes into ac-
count the screening of the skyrmion profile by the mag-
netic field at r � λ, where the problem can be linearized
near sz = −1. Splicing the asymptotic solution for λ� r
with the BP solution, Eq. (4), for r � δH and computing
the integral over r yields

EZ = 4πHS

(
λ

a

)2(
ln
δH
λ
− γ + ln 2− 1

2

)
' 4πHS

(
λ

a

)2

ln
0.681δH

λ
, (A2)

where γ = 0.5772 is the Euler constant. This formula
requires a strong inequality λ � δH that is difficult to
fulfill in practice. To extend the applicability range, one
can add a constant to the argument of the logarithm
so that the resulting formula fits most satisfactorily the
Zeeman energy computed numerically on the lattice, see
Fig. 6. The best fit is provided by

EZ = 4πHS

(
λ

a

)2

ln

(
1.5 + 0.68

δH
λ

)
. (A3)

In the continuous model we used for numerical work
the value of log given by the above formula, l =
ln (1.5 + 0.68δH/λ). At the critical (collapse) field, us-
ing Eq. (6), one obtains l = ln

[
1.5 + (1.06/l) (J/A)

1/3
]
.

One can fit Hc of Eq. (6) to the numerical data tak-
ing into account the dependence of the logarithm on A
and considering 1.5 and 1.06/l as fitting parameters. The
best values of the latter used in Fig. 3 are 1.4 and 0.14.


