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Abstract

The steady-state behavior of thermal transport in bulk and nanostructured semiconductors has been

widely studied, both theoretically and experimentally. On the other hand, fast transients and frequency

dynamics of thermal conduction has been given less attention. The frequency response of thermal conduc-

tivity has become more crucial in recent years, especially in light of the constant rise in the clock frequencies

in microprocessors and terahertz sensing applications. Thermal conductivity in response to a time-varying

temperature field starts decaying when the frequency exceeds a cut-off frequency Ωc, which is related to

the inverse of phonon relaxation time τ , on the order of 2-10 ps in most bulk semiconductors. Phonons in

graphene have much longer phonon relaxation times, which we show leads to far lower Ωc. Our calcula-

tions, based on the phonon Boltzmann equation coupled with first-principles dispersion, show that dynami-

cal thermal conductivity of graphene resembles a low-pass filter that decays beyond an Ωc ranging from 100

MHz to 10 GHz, controlled by temperature and ribbon width. The response parallels the Drude model of

electrons, but with far lower cut-off. Moreover, the presence of strong normal processes in graphene results

in a complex-valued conductivity and gradual transition around Ωc, with the resistive contribution to the

heat flux having higher cutoff frequency and smaller phase lag than the hydrodynamic part. The dynamical

conductivity will impact dissipation in high-frequency applications of graphene. Our findings also provide

a platform for future studies of hydrodynamic transport and wave-like, or second sound, heat transfer by

tuning the frequency of the applied temperature field.
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I. INTRODUCTION

In the context of developing of on-chip heat management, thermoelectric, and other energy con-

version applications, the ability to tailor the thermal conductivity of a material is of fundamental

importance. The steady-state behavior of the thermal transport in bulk semiconductors,1,2 metals3

and, more recently, in two-dimensional (2D) materials4–8 has been widely studied, expanding the

upper9 and lower10 bounds on thermal conductivity. Significant efforts have also been devoted

to understand the reduction of thermal conductivity due to atomically rough interfaces11–13 and

boundaries14–16 in nanostructured materials ranging from nanowires17–19 to thin films,20,21 super-

lattices,22–25 and nanocomposites.26,27 Heat conduction at short length scales, comparable to the

phonon mean-free-path (MFP), and from small heat sources is a related type of size effect that has

also drawn significant research attention in recent years.28–30 When the temperature gradient varies

over a length scale comparable to the phonon MFP, Fourier’s concept of local thermal equilibrium

breaks down31,32 and transport becomes nonlocal33 and partially ballistic.34,35

To treat this situation, Mahan36 proposed a nonlocal theory of heat conduction, while Chen37

derived ballistic-diffusive heat equations to capture this nondiffusive nature of phonons. There

have been numerous observations of the reduced thermal transport at length scales comparable to

the phonon MFP38–41 and the interplay between phonon MFP spectra and size effects is now quite

well understood.42,43 On the other hand, the effect of fast transients and the frequency response

of thermal conduction, sometimes called the dynamical thermal conductivity, has been given less

attention. The response of thermal conductivity to rapidly varying heat sources may become more

crucial in the future, especially with the constant growth in the clock frequencies in micropro-

cessors and increase in giga- and terahertz applications of semiconductor devices. Analogous to

transport at short scales in nanostructures, transport of heat at short time scale smaller than the

phonon lifetime also becomes non-diffusive in nature, where local non-equilibrium prevails. It

has been theoretically predicted in 3D materials that the heat flux in response to a time-varying

temperature gradient starts decaying when the frequency of the applied heat source (Ω) exceeds

a certain cut-off frequency Ωc, which was related to the inverse of the average phonon relaxation

time τC .44–46 This dynamical and transient behavior has also been quantified in metals47–49 and

argon crystals.50

Using molecular dynamics simulation, Volz44 found that the phonon relaxation time in bulk

semiconductors such as silicon is short, on the order of 30-140 ps, and concluded that a frequency-
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dependent behavior of thermal conductivity can only be observed when the applied temperature

gradient is varying at frequencies exceeding 10 gigahertz (GHz). Sellitto and co-workers51 used

a phonon-hydrodynamical model with suitable boundary conditions to study the frequency de-

pendent thermal conductivity in silicon nanowires, while Yang and Dames52 extended the gray

BTE model for periodic heating on the surface of bulk materials. Ezzahri and Joulain46 solved

the Boltzmann-Peierls transport equation in the frequency domain within single-mode relaxation

time (SMRT) approximation and used the Debye-Callaway model53 to obtain expressions for dy-

namical thermal conductivity of natural silicon and germanium crystals, and semiconductor alloys

Si0.7Ge0.3, In0.53Ga0.47As, and In0.49Ga0.51P. Among these materials, Si0.7Ge0.3 alloys exhibited the

most pronounced dynamical thermal conductivity trend with cut-off frequencies ranging from 0.1

megahertz (MHz) at 3 K to 2 GHz at the room temperature. Chaput54 solved frequency-dependent

phonon Boltzmann transport equation (pBTE) by linearizing it and transforming it into an inte-

gral equation over the irreducible Brillouin zone to compute dynamical thermal conductivity in

diamond, silicon, and magnesium silicide. The frequency-dependent behavior was observed only

beyond 10 GHz, corroborating the results of Volz.44

In contrast to the aforementioned bulk semiconductors, 2D materials, especially graphene, have

longer phonon relaxation times.55 The presence of strong momentum-conserving normal phonon-

phonon processes in graphene, overshadowing momentum-destroying umklapp processes, results

in hydrodynamic transport.56,57 Therefore, in suspended graphene and wide graphene ribbons the

cut-off frequency Ωc is much lower than that of silicon, even at room temperature. This could

impact thermal dynamics and transients58 in graphene at comparatively lower frequency ranges.

Therefore, the dynamical thermal conductivity is expected to play a significant role in remov-

ing heat from electronic devices based on graphene and other related two-dimensional materials

switching at high frequencies. Some of the other interesting phenomena that can be studied us-

ing dynamical thermal conductivity are Poiseuille flow59 and second sound, where heat does not

diffuse but rather propagates in a wave-like fashion.60–63 This phenomenon, which has been ob-

served at low temperatures in liquid helium,64 NaF,65,66 Bi,67,68 and SrTiO3,
69 was predicted from

first-principles calculations to persist even at room temperature in graphene.56
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II. METHODOLOGY

In this paper, we focus on the dynamical thermal conductivity of suspended graphene ribbons.

We calculate a frequency-dependent thermal conductivity by solving the time-dependent phonon

Boltzmann transport equation (pBTE). In response to a rapidly time-varying temperature field, the

heat conduction in solids becomes non-local in time and space κ(~r, t; ~r′, t′).70 Phonons that are

driven by a temperature gradient at position ~r′ and time t′, move from ~r′ to ~r in time between t′

and t to cause a heat current at position ~r and time t. The heat current J(~r, t) is given by the

convolution of thermal conductivity with the temperature gradient ∇~rT at position ~r′ and time t′

as42

J(~r, t) = −

∫
d~r′dt′κ(~r, t; ~r′, t′)∇~rT (~r′, t

′).

It is mathematically convenient to express the heat current in Fourier domain, where the convolu-

tion becomes a simple product of a frequency- and wavenumber-dependent thermal conductivity

and temperature gradient. On taking the Fourier transform of the time-domain heat current, we get

J̃( ~Q,Ω) = −κ̃( ~Q,Ω)× ∇̃T ( ~Q,Ω), (1)

where J̃( ~Q,Ω), κ̃( ~Q,Ω) and ∇̃T ( ~Q,Ω) are the Fourier-transformed heat current, thermal conduc-

tivity, and temperature gradient, respectively, while Q and Ω are the wavenumber and frequency

of the temperature gradient.

The time-dependent pBTE is given by

∂Nq,b(~r, t)

∂t
+ ~vq,b · ∇~rNq,b(~r, t) =

[
∂Nq,b(~r, t)

∂t

]

coll

, (2)

where Nq,b(~r, t) is the phonon distribution function, which is a function of position ~r as well as

time t. From here on, we suppress (~r, t) in T (~r, t) and Nq,b(~r, t), and ( ~Q,Ω) in Ñq,b( ~Q,Ω) for

clarity, where Ñq,b( ~Q,Ω) is the Fourier-transformed distribution function. ~vq,b = ∂ωq,b/∂q is the

group velocity of the phonon wavevector q in branch b, ωq,b being its vibrational frequency. Using

Callaway’s idea,53 we write the collision term as the sum of two terms

[
∂Nq,b

∂t

]

coll

= −

(
Nq,b −N0

q,b

τRq,b

)
−

(
Nq,b −N∗

q,b

τNq,b

)
, (3)

where the first term on the right hand side of the equation represents the rate at which the non-

equilibrium distribution returns to the equilibrium Bose-Einstein distributionN0
q,b = [exp(h̄ωq,b/kBT )−

1]−1 due to momentum-destroying resistive scattering mechanisms. The second term represents
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how the perturbed distribution function in the presence of collective momentum-conserving nor-

mal phonon-phonon processes relaxes to a drifted distribution N∗
q,b, often referred to as flowing

equilibrium. The flowing equilibrium distribution is written as N∗
q,b = [exp(h̄ωq,b/kBT + ~λ ·

q) − 1]−1, where ~λ is the displacement vector of the drifted distribution and is related to the drift

velocity by ~λ = h̄~νd /kBT . The τRq,b and τNq,b are the average resistive and normal scattering times

respectively.

Resistive processes include umklapp phonon-phonon processes, isotope, and line-edge rough-

ness scattering so the resistive scattering rate is calculated by combining them as 1
/
τRq,b =

1
/
τUq,b + 1

/
τ Isoωq

+ 1
/
τLER
q,b . While Callaway’s approach of separating the collision integral into

resistive and normal components is not as exact as the iterative71–73 and direct pBTE solvers,74

it has been widely used and shown to be reasonably accurate in graphene75 and graphite rib-

bons76 when combined with ab initio dispersion. Here we compute the phonon dispersion of

suspended graphene from first-principles Density Functional Theory (DFT) as implemented in the

open-source package Quantum Espresso.77 The expressions for all the relevant scattering rates, in-

cluding anharmonic umklapp and normal phonon-phonon,78 isotope,79 and line-edge roughness,80

are taken from our recent work8 and given for reference in the Supplemental Material.81

The deviation of the phonon distribution function from equilibrium is Φq,b(~r, t) = Nq,b −

N0
q,b. We detail the derivation of this deviated distribution in frequency domain Φ̃q,b(Q,Ω) in the

Appendix; once it is obtained, the non-local heat current is related to Φ̃q,b(Q,Ω) through

J̃(Q,Ω) = −κ̃(Q,Ω)× ∇̃T (Q,Ω) =
∑

q,b

h̄ωq,bvq,bΦ̃q,b(Q,Ω) (4)

from which we obtain an expression for the frequency-dependent thermal conductivity composed

of two parts κeff(Q,Ω) = κRTA(Q,Ω)+κcorr(Q,Ω). The κRTA(Q,Ω) is the resistive component

thermal conductivity given by

κRTA(Q,Ω) =
1

Aδ

∑

q,b

h̄ωq,bv
2
q,b

τCq,b
1 + jΩτCq,b + jQΛq,b

∂N0
q,b

∂T
(5)

where A and δ are the area of the unit cell and thickness of the graphene monolayer. This κRTA is

the component of thermal conductivity originating from the relaxation time approximation (RTA),

where all the scattering mechanisms including normal scattering are treated as resistive. Hence,

we refer to κRTA as the resistive or RTA thermal conductivity. The frequency dependence and

non-locality enter the κRTA through the term 1 + jΩτCq,b + jQΛq,b in the denominator, which acts
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as a suppression function: when frequency exceeds the scattering rate Ω > 1/τCq,b of a phonon

mode or the wavelength is smaller than its MFP Q−1 < Λq,b, the contribution of that mode to the

conductivity is correspondingly reduced.

In graphene, momentum-conserving normal scattering mechanisms are strong and the RTA

solution κRTA underestimates the total thermal conductivity.72 Following Allen’s improved Call-

away (AIC) model,82 the hydrodynamic effect of normal processes is encapsulated as a correction

term κcorr =
λ1λ2

λ3

, where

λ1(Q,Ω) =
1

Aδ

∑

q,b

vq,bq‖
τCq,b

1 + jΩτCq,b + jQΛq,b

∂Ñ0
q,b

∂T
(6)

λ2(Q,Ω) =
1

Aδ

∑

q,b

vq,bq‖

[
τCq,b/τ

N
q,b

1 + jΩτCq,b + jQΛq,b

]
∂Ñ0

q,b

∂T
(7)

λ3(Q,Ω) =
1

Aδ

∑

q,b

q2‖
h̄ωq,b

[
1−

τCq,b/τ
N
q,b

1 + jΩτCq,b + jQΛq,b

]
∂Ñ0

q,b

∂T
(8)

The effective thermal conductivity κeff is a sum of the RTA, which treats all scattering mecha-

nisms as resistive, and a correction that accounts for an additional collective contribution from

momentum-conserving normal processes, both of which are complex-valued and depend on the

frequency and spatial wavenumber of the temperature gradient. Similar to κRTA, each of the cor-

rection terms has an Ω- and Q-dependent suppression function. However, the dependence of κcorr

due to the combined three terms λ1λ2 /λ3 is more complex than κRTA.

III. RESULTS AND DISCUSSION

A. Frequency Dependence

First we focus on the effect of the dynamical temperature gradient on thermal conductivity.

We separate the temporal dependence from the spatial dependence by setting Q = 0 in Eqs. 5-

8. Fig. 1a shows the real part of thermal conductivity vs. frequency of the temperature gradient

(Ω) for various ribbon sizes at room (300 K) temperature. For any given ribbon size, thermal

conductivity shows two distinct behaviors: the first is a constant thermal conductivity regime at

low frequencies of the temperature gradient, where the thermal conductivity is equal to its steady-

state value κeff(Ω = 0) and the second is a high frequency regime, where thermal conductivity
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exhibits a decaying frequency-dependent behavior with Ω. The high-frequency regime resembles

the response of a typical low-pass filter. The zero-frequency (steady-state) thermal conductivity is

highest for the flake of dimensions 100 µm×100 µm (largest size considered here) and lowest for

the narrowest ribbon, whose width equals 1.5 µm, due to the strong edge-roughness scattering in

the narrow ribbon.

The low-pass frequency-dependent behavior can be explained as follows: thermal conductivity

is a sum of a broad distribution of modal thermal conductivities. At low frequencies, all the

thermally-excited phonon modes have sufficient time to undergo multiple scattering events during

one cycle of the temperature gradient. As a result, a local thermal equilibrium is restored to

yield a steady-state thermal conductivity. In contrast, when the frequency is increased beyond

the cut-off, phonons with relaxation times larger than one period of the temperature gradient do

not have sufficient time to scatter and equilibrate. Such phonon modes do not fully contribute

to conductivity; instead, their contribution is suppressed by an amount determined by the term

(1+ jΩτCq,b)
−1, leading to an apparent reduction in thermal conductivity at high frequencies. Thus,

the frequency of temperature oscillations Ω can be used to control which phonon modes contribute

towards thermal conductivity, and to what extent, based on their lifetimes. Frequency-dependent

measurements can potentially be used to probe the distribution of phonon lifetimes, analogously

to recent advances in MFP spectroscopy.83–85

The frequency-dependent dynamical suppression is depicted in Fig. 1b, where the mode-

dependent thermal conductivity is plotted against their scattering rates for frequencies Ω equal to

0, 109, and 1010 s−1, shown by black, red, and blue markers respectively. For Ω equal to 109 s−1,

it can be seen that the phonon modes with scattering rates smaller than Ω do not thermalize and

thus contribute less towards thermal conductivity than in steady-state. The contribution of phonon

modes with small scattering rates to thermal conductivity is further suppressed when Ω equals

1010 s−1, while modal thermal conductivities for phonon modes with scattering rates much larger

than the frequency of the temperature gradient remain unaffected. The reduced contribution from

the phonon modes with scattering rates smaller than Ω is also demonstrated in the cumulative

thermal conductivity vs. scattering rate plot shown in the inset of Fig. 1b.

The frequency-dependent thermal conductivity exhibits a low-pass thermal filter behavior,

analogous to the frequency response of electrical conductivity for time-varying electric fields,

as described by Drude’s model. We normalize the frequency-dependent thermal conductivity

for a given ribbon size and temperature by dividing with its corresponding steady-state value
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FIG. 1. (a) shows the frequency dependence of the real part of thermal conductivity ℜ(κeff ) for several

ribbon sizes at 300 K. In (b), the mode-dependent thermal conductivity is plotted against the scattering

rate of the corresponding phonon modes at different frequencies of temperature gradient, Ω = 0, 109, and

1010 s−1 shown by black, red and blue markers respectively. The inset in (b) shows the accumulative

thermal conductivity with modal scattering rates for the same set of frequencies as described by the markers

previously. The normalized thermal conductivity κeff (Ω)/κeff (Ω = 0) in dB vs. frequency of temperature

gradient (Ω) is plotted in (c) for 100 and 300 K. The solid, dashed, and dotted lines represent normalized

κeff , κRTA, and κcorr, respectively. The inset shows the components of thermal conductivity at 300 K. In

(c), the size of the ribbon considered is 100 µm× 100 µm. The cut-off frequency corresponding to κeff is

plotted against temperature for various ribbon sizes in (d). The rms value of edge roughness is taken to be

2 nm for all the cases.
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and then express it in decibels (dB), as one would describe the gain of an electronic filter,

20 log10 [κeff(Ω)/κeff (0)]. The solid lines in Fig. 1c show the frequency response of the normal-

ized thermal conductivity in dB at 100 and 300 K temperatures. If all the phonon modes scattered

at the same rate, then the two thermal conductivity regimes, constant and frequency-dependent,

would be separated by a single corner frequency Ωcorner = τ−1 such that κ(Ω) = κ(0) /(1 + jΩτ) .

Multiplying both sides of this expression by ∇T and taking the inverse Fourier transform, as fur-

ther elaborated in Supplemental Material,81 produces the Cattaneo-Vernotte (C-V) equation for

the heat current τ dJ(x,t)
dt

+ J(x, t) = κ(0)∇T (x, t), which describes wave-like heat transfer with a

finite velocity of propagation,86 x is considered as the direction of transport here. For comparison,

the single-τ frequency response is plotted by yellow-dotted lines for different corner frequencies

ranging from about 108 to 1012 Hz.

In contrast, in most solids including graphene, each phonon mode scatters at a vastly different

rate. Owing to this broad spectrum of scattering rates, the transition of κeff from constant at low

frequencies to decaying at high frequencies is broad and smooth. In Fig. 1c, the thermal conduc-

tivity at both temperatures shows a much gradual decay than the yellow-dotted lines. As there is

no single corner frequency to demarcate the transition between the constant thermal conductiv-

ity regime at low frequencies and decaying thermal conductivity at high frequencies, we define a

cut-off frequency Ωeff where the real part of the thermal conductivity decays to -6 dB or half of

its steady-state value, shown by the black-dashed horizontal line in Fig. 1c. The inset in Fig. 1c

shows the frequency response of the RTA (κRTA), correction (κcorr), and effective (κeff ) thermal

conductivity at room temperature (RT, 300 K) by the dashed, dotted, and solid lines respectively

for a graphene ribbon of size 100 µm × 100 µm. κeff is much greater than κRTA indicating hy-

drodynamic transport, where it is no longer sufficient to describe thermal conductivity with the

RTA term alone. We normalize the resistive, normal, and effective thermal conductivities by their

steady-state values in Fig. 1c and observe different cut-off frequencies for each of the κRTA, κcorr,

and κeff . In suspended graphene ribbons, where a major fraction of the scattering events are

momentum-conserving normal scattering, the heat flux is dissipated at a much slower rate than the

purely resistive case and the relaxation time is larger than the one obtained under the RTA, leading

to ΩRTA > Ωeff > Ωcorr.

As Ωeff is closely associated with the scattering rates, it can be tuned by both temperature and

size of the ribbon. In Fig. 1d, the cut-off frequencies for various ribbon sizes have been plotted

against temperature. For a given ribbon size, owing to the increase in phonon-phonon scattering
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FIG. 2. (a) Imaginary part of thermal conductivity vs. frequency of the temperature gradient for L = W =

100 µm at 20, 100, and 300 K. The frequency response of the ℑ(κRTA) is shown by the dashed lines for

different temperatures. (b) shows the normalized real as well as the imaginary part of thermal conductivity

for the same set of temperatures and ribbon size. The solid lines represent the normalized ℜ(κeff ) and the

dotted-lines their imaginary counterparts ℑ(κeff ).

with temperature Ωeff shows an increasing trend. At a given temperature, Ωeff decreases with in-

creasing ribbon size, which we attribute to the decrease in the boundary scattering with increasing

ribbon size. At temperatures around 300 K, the size dependence of Ωeff becomes weak because

phonon-phonon scattering dominates over the boundary scattering. The cut-off frequencies in

graphene ribbons are found to range from 100 MHz to 2 GHz at 20 K, and 3-10 GHz at room

temperature, depending on ribbon width. We contrast these frequencies to the analogous behavior

of high-frequency electrical conductivity of graphene, which was found to follow a Drude model87

with a decay at frequencies exceeding 4-6 THz, depending on substrate and carrier concentration.88

Hence, there is a wide swath of frequencies between ∼3 GHz and ∼4 THz where thermal conduc-

tivity is strongly suppressed while electrical conductivity is at its DC value, offering a potential

avenue for dynamic enhancement of the thermoelectric figure-of-merit ZT (Ω) ∝ σ(Ω)/κ(Ω).89

The dynamical thermal conductivity can be split into real and imaginary parts, where ℜ(κeff) is

related to heat flux dissipation via scattering while the imaginary part of the thermal conductivity is

related to the storage of thermal energy in the ballistic phonon modes. The imaginary component

turns the heat diffusion equation (HDE) ρCV dT/dt = κd2T/dx2 into a dampened wave equation;
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in fact, a purely imaginary conductivity turns the HDE into a wave equation, analogous to the

Schrödinger equation, admitting solutions of the form T (x, t) ∝ exp[j(Qx − Ωt)] that satisfy

jΩρCV T = −κ(Ω, Q)Q2T (ρ and C are density and specific heat capacity). Furthermore, the

relative sizes of the real and imaginary components dictate the phase of the heat flux relative to

the temperature gradient that drives it, with the imaginary component representing phase lag. This

lagging behavior can be traced back to the C-V equation, which is to first order equivalent to

J(x, t+ τ) = −κ(0)∇T (x, t),90 with τ being the flux-gradient phase lag. The frequency response

of the imaginary part of thermal conductivity ℑ(κeff), shown by the solid curves in Fig. 2a for 100

µm× 100 µm at different temperatures. ℑ(κeff) shows an increasing trend beyond the frequency

where the real part of thermal conductivity starts to fall off. Then ℑ(κeff) peaks before decaying

to zero at high frequencies. The height of the peak depends on temperature in the same way as the

steady-state thermal conductivity.

The dashed and solid lines in Fig. 2a represent the imaginary parts of the RTA component

ℑ(κRTA) and total thermal conductivity ℑ(κeff ); the imaginary part of correction κcorr is omitted

for clarity. At both 100 and 300 K, ℑ(κRTA) peaks at a higher frequency than the corresponding

ℑ(κeff) due to the presence of strong normal scattering, associated with hydrodynamic thermal

transport, indicating that the RTA component has a smaller phase delay. There is a window of

frequencies between the two peaks where κcorr is complex, thus lagging in phase, while κRTA

is real and in-phase with the gradient. In Fig. 2b, we observe that the imaginary part of thermal

conductivity peaks at the same frequency Ωeff where the real part of thermal conductivity decays

to half of its steady-state value. Thus, the peak of the imaginary part can also be used to determine

the cut-off frequency, at which the phase angle between flux and gradient is 45◦ for a first-order

and 90◦ for a second-order frequency slope. In the frequency range between Ωeff and ΩRTA, the

κcorr will be complex while κRTA is still real-valued, indicating a phase difference between these

two components of the heat flux.

B. Spatial Dependence

Now we turn to the spatial dependence of thermal conductivity. To isolate it from the temporal

response of thermal conductivity, we set Ω=0 in Eqs. (5-8). The real part of thermal conductivity

is plotted in Fig. 3 against the wavelength (Q−1) of the temperature gradient for ribbon dimensions

ranging from 1.5 to 100 µm at 300 K. The wavelength of temperature gradient Q−1 is the relevant
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FIG. 3. Real part of the thermal conductivity vs. wavelength of temperature gradient (Q−1) for several

ribbon sizes at 300 K, showing super-linear scaling in the narrow (Kn < 1) regime. Dashed line indi-

cates a linear (∝ Q−α with α = 1) trend for comparison. The inset shows the corresponding wavelength

dependence of the imaginary part of thermal conductivity.

lengths scale; when it is larger than the phonon MFP (Λ), all the phonons undergo multiple scat-

tering events within a single temperature node, leading to thermalization. On the other hand, when

the wavelength is comparable to the phonon MFP, a fraction of the phonons having Λ > Q−1

travel ballistically and do not scatter on the length scale over which the temperature is varying.

The modal dependence is captured by the suppression 1 /(1 + jQΛq,b) in Eqs. (5-8), where the

dimensionless term Kn = QΛq,b plays the role of an effective modal Knudsen number. This also

leads to an apparent reduction of thermal conductivity for Kn > 1, as observed previously in

thermal grating experiments,41 and in narrow ribbons of width W < Λavg ; Λavg being the phonon

MFP averaged over all phonon modes and across all branches. When the ribbon edges are rough,

heat flux decays at the edges due to diffuse scattering and components of the flux having whose

wavelength exceeds the width, or QW < 1, are suppressed so the wavelength dependence informs

us about size scaling. Fig. 3 shows that in narrow ribbons, thermal conductivity scales as κ ∝ Q−α

with a slope α > 1, indicating super-linear scaling. In contrast to the ballistic-to-diffusive tran-

sition91 where size scaling is sub-linear, the hydrodynamic correction κcorr has a stronger size
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dependence as all three terms Eqs. (6-8) explicitly depend on Q. The imaginary component of

thermal conductivity is shown in the inset, displaying a peak around the same wavelength where

the real part reduces to one-half of its Q = 0 value. At the peak, Kn = 1 and the wavelength

equals the average phonon MFP Q−1 = Λavg ≈1 µm.79
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FIG. 4. Surface plots of the frequency and spatial dependence of real part in (a) and imaginary part in (b)

of thermal conductivity in a graphene ribbon of size L=W=100 µm and at 300 K.

The complete temporal and spatial dependence of the thermal conductivity at RT are shown

in Fig. 4a and 4b, respectively. At small wavenumbers (Q) and frequencies (Ω) of temperature

gradient, the real part of thermal conductivity goes to its highest value ℜ[κeff (Ω = 0, Q = 0)]

for a given temperature and ribbon size. The ℜ[κeff (Ω, Q)] decays to zero when either Ω exceeds

the average scattering rate or the wavelength Q−1 ≪ Λavg, the average phonon MFP. For any

intermediate values, ℜ[κeff (Ω, Q)] decays from ℜ[κeff (0, 0)] to zero with increasing Q and Ω.

The imaginary part of thermal conductivity against frequency and wavenumber of the temperature

gradient is plotted in Fig. 4b. For small wavenumbers, Q−1 ≪ Λ, ℑ[κeff(Ω, Q)] shows a resonant

behavior: it is equal to zero at low as well as high frequencies with a peak at the cut-off frequency

(also shown in Fig. 2). ℑ[κeff (Ω, Q)] vs. Q shows a similar trend for small frequencies below the

scattering rate, also shown in the inset of Fig. 3. However, for intermediate values of Ω and Q,

the imaginary part of thermal conductivity exhibits a very interesting behavior: for Q ≫ 105m−1,

it is constant and decays to zero at high frequencies of temperature gradient. On the other hand,

for Ω close to the cut-off, ℑ[κeff ] starts constant, then reaches a broad peak where Q−1 = Λavg

(Kn =1) before decaying to zero at very high wavenumbers Q ≫ 107m−1, implying larger phase

13



shift for spatially localized or peaked heat pulses whose wavelength is around the phonon MFP

≈1 µm.
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FIG. 5. (a) shows the combined, normal, and resistive scattering rates along with the cut-off frequencies for

a ribbon size of L = W = 100 µm as a function of temperature ranging from 20 to 300 K. (b) variation

in phase of κRTA (solid) and κcorr (dashed lines) vs. frequency at T=20 (blue), 200 (red), and 300 K

(green), showing first and second-order behavior, respectively, along with a constant lag in the second sound

frequency window ΓR < Ω < ΓN , marked by vertical dashed lines in colors matching the corresponding

temperatures.

C. Conductivity in the Second Sound Regime

The propagation of a heat pulse in the form of a temperature wave is referred to as second

sound. For a material to host such a wave-like thermal transport, the primary condition is that it

should exhibit hydrodynamic transport,which occurs when there is significantly more momentum-

conserving normal scattering than momentum-destroying resistive scattering mechanisms. Then

there exists a ”window” of frequencies ΓR < Ω < ΓN
61 where second sound can be observed.

This makes suspended graphene a promising candidate to host second sound even at room tem-

perature.56 Second sound has also been characterized by a two-fluid flow where superfluid (in this

case hydrodynamic, represented by κcorr) and non-superfuid (here resistive, κRTA) components

are out of phase.92 This is in contrast to purely ballistic transport where all the components of the

heat flux are in phase. We compare the cut-off frequencies to the scattering rates, which are all
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plotted in Fig. 5a as a function of temperature for a large (L = W =100 µm) graphene flake. ΩRTA

corresponds to the cut-off frequency of κRTA from to the combined scattering rate ΓC = ΓR+ΓN ,

while Ωcorr and Ωeff represent cut-off frequencies corresponding to κcorr and κeff , respectively.

The frequency window ΓR < Ω < ΓN coincides with the regime where the dissipative and hydro-

dynamic components of thermal conductivity, κRTA and κcorr, are out of phase by a constant shift,

shown in Fig. 5b. Ultimately, we find that the hydrodynamic transport should be treated as two

fluxes, each with its own lag arising out of the corresponding cut-off frequencies ΩRTA and Ωcorr.

IV. CONCLUSION

We have studied the dynamical response of thermal conductivity to time- and spatially-varying

temperature gradients at several temperatures and ribbon sizes. We derived a compact and compu-

tationally efficient model for dynamical thermal conductivity by Fourier-transforming the pBTE,

while including first-principles phonon dispersion and differentiating between resistive and normal

scattering mechanisms. We found that the frequency-dependent thermal conductivity in suspended

graphene resembles a low-pass thermal filter, whose cut-off frequency is related to the scattering

rate and can be tuned over a wide range from a few MHz to several GHz by size and temper-

ature. At low temperatures when the phonon-phonon scattering is weak, the cut-off frequency

rises inversely to ribbon width. The RTA contribution always has a higher cut-off, related to the

total scattering rate, than the hydrodynamic correction. Both are complex-valued in the transition

region, indicating a phase lag. The dynamical response of thermal conductivity can be used as a

platform for phonon lifetime spectroscopy in frequency-dependent measurements. The dual cut-

offs and phase lags of the two components of heat flux can be employed to study the hydrodynamic

phenomenon of second sound.
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APPENDIX

To obtain an expression for Φ̃q,b(Q,Ω), we first Fourier-transform the time-dependent pBTE

(Eq. 2), akin to the work by Ezzahri and Joulain,46 and write the pBTE in Fourier domain as

jΩΦ̃q,b + jΩÑ0
q,b + j ~Q · ~vq,bΦ̃q,b + ~vq,b · ∇̃T (Q,Ω)

∂Ñ0
q,b

∂T

= −
Ñq,b − Ñ0

q,b

τRq,b
−

Ñq,b − Ñ∗
q,b

τNq,b
,

(A.9)

where the right-hand side is the collision term from Eq. (3). The flowing equilibrium Ñ∗
q,b is

expanded around ~λ = 0 in a Taylor series,46,82 keeping terms up to first order in ~λ

Ñ∗
q,b ≈ Ñ∗

q,b(
~λ = 0) + ~λ ·

(
∂Ñ∗

q,b

∂~λ

)

~λ=0

= Ñ0
q,b −

kBT
2

h̄ωq,b

∂Ñ0
q,b

∂T
(~λ · ~q). (A.10)

On replacing Ñ∗
q,b on the right side of Eq. (A.9) with the expression in Eq. (A.10), and Ñq,b − Ñ0

q,b

with Φ̃q,b, we write Eq. (A.9) as

jΩΦ̃q,b + jΩÑ0
q,b + j ~Q · ~vq,bΦ̃q,b + ~vq,b · ∇̃T (Q,Ω)

∂Ñ0
q,b

∂T

= −
Φ̃q,b

τCq,b
−

1

τNq,b

[
kBT

2

h̄ωq,b

∂Ñ0
q,b

∂T
~λ · ~q

]
,

(A.11)

where 1/τRq,b + 1/τNq,b is the combined quasi-particle relaxation rate 1/τCq,b.
82 By rearranging the

terms, Φ̃q,b can be written as

Φ̃q,b(Q,Ω) =−
τCq,b

1 + jΩτCq,b + jQΛq,b

~vq,b · ∇̃T (Q,Ω)
∂Ñ0

q,b

∂T

−
τCq,b/τ

N
q,b

1 + jΩτCq,b + jQΛq,b

kBT
2

h̄ωq,b

∂Ñ0
q,b

∂T
(~λ · ~q)− jΩÑ0

q,bτ
C
q,b,

(A.12)

where Λq,b = vq,bτ
C
q,b is the modal phonon MFP and Q is the component of the wavevector of the

temperature gradient ~Q, both along the direction of transport.

To obtain an expression for the displacement of the drifted distribution ~λ we follow Allen’s

improved Callaway (AIC) model,82 according to which the total crystal momentum should be the

same for both the actual distribution Ñq,b and the flowing equilibrium Ñ∗
q,b. This means

∑

q,b

~q(Ñq,b − Ñ∗
q,b) = 0 =

∑

q,b

~q(Φ̃q,b + Ñ0
q,b − Ñ∗

q,b). (A.13)
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Using the Taylor series expansion for Ñ∗
q,b obtained in Eq. (A.10), we write Ñ0

q,b−Ñ∗
q,b on the right

hand side of Eq. (A.13) as

Ñ0
q,b − Ñ∗

q,b =
kBT

2

h̄ωq,b

∂Ñ0
q,b

∂T
~λ · ~q. (A.14)

Taking ~λ to be in the direction of the applied temperature gradient, ~λ · ~q can be simplified to λq‖,

where q‖ is the phonon wavevector in the transport direction. Then, combining Eqs. (A.12) and

(A.14), Φ̃q,b and Ñ0
q,b − Ñ∗

q,b can be replaced in Eq. (A.13) to solve for the displacement

λ̃(Q,Ω) =

∑

q,b

q‖

(
τCq,b

1 + jΩτCq,b + jQΛq,b

vq,b
∂Ñ0

q,b

∂T

)
∇̃T (Q,Ω) + jΩ

∑

q,b

~qÑ0
q,bτ

C
q,b

∑

q,b

q2‖
∂Ñ0

q,b

∂T

kBT
2

h̄ωq,b

(
1−

τCq,b/τ
N
q,b

1 + jΩτCq,b + jQΛq,b

) . (A.15)

The term
∑

q,b

qÑ0
q,bτ

C
q,b in the numerator of Eq. (A.15) is equal to zero because both the equilibrium

distribution and the scattering rates are even functions while the wavevector ~q is odd; consequently,

the displacement λ̃(Q,Ω) ∝ ∇̃T (Q,Ω). We also find λ̃ to be dependent on both wavenumber Q

and frequency Ω, unlike earlier derivations that assumed it to be constant.46 The deviation Φ̃q,b can

now be expressed by substituting λ̃(Q,Ω) in Eq. A.12. Now Φ̃q,b(Q,Ω) is replaced in Eq. 4 to

obtain thermal conductivity as a function of wavenumber and frequency.
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