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Iron phonon partial densities of states (pDOS) of Pd57
3 Fe were measured from room tempera-

ture through the Curie transition at 500 K using nuclear resonant inelastic x-ray scattering. The
experimental results were compared to ab initio spin-polarized calculations that model the finite
temperature thermodynamic properties of L12-ordered Pd3Fe with stochastically-generated atomic
displacements, coupled with magnetic special quasirandom structures (SQSs) of noncollinear mag-
netic moments. The scattering measurements and first-principles calculations show that the Fe
partial vibrational entropy is close to what is predicted by the quasiharmonic approximation owing
to a cancellation of effects. Anharmonicity and a magnon-phonon interaction approximately cancel
a ferromagnetic optical phonon stiffening.

I. INTRODUCTION

Advances in the design of magnetic materials are en-
abled by understanding how their properties depend on
the external conditions of temperature, pressure, and
magnetic field. In particular, it is important to under-
stand their thermodynamic properties over a range of
temperatures. This requires modeling a magnetic mate-
rial not only in its ground state at 0 K, but also in its
magnetically disordered states at finite temperatures.

Progress has been made in first-principles simulations
of magnetic disorder in materials [1]. Recent approaches
to modeling the paramagnetic state of magnetic materi-
als include disordered local moment molecular dynamics
(DLM-MD) [2, 3], spin-space averaging [4–7], and spin
dynamics [8–10]. With such advances, a computational
study accounting for the interaction of the magnetic and
atomic degrees of freedom, which has been demonstrated
to provide a more complete calculation of the Gibbs free
energy of magnetic materials [11], is now within reach.
In the present study of the thermal excitations in Pd3Fe,
magnetic disorder is included in the finite temperature
calculations of vibrational thermodynamic properties.

Fe−Pd alloys have been a subject of numerous studies
owing to their magnetic and mechanical behavior. Prop-
erties of interest include a martensitic transformation in
Fe-rich alloys [7, 12, 13], noncollinear magnetic structures
[14–17], and Invar behavior [18]. Pd3Fe, a ferromagnetic
metallic compound with an fcc-based L12 structure and a
Curie temperature of approximately 500 K [19], exhibits
Invar behavior under an applied pressure [20]. This com-
pound also exhibits an anomalous dependence of phonon
frequencies and volume with pressure as a consequence
of a magnetic transition [16, 21]. In this present work, we
investigate this interaction between lattice dynamics and
magnetic excitations at temperatures through the Curie
temperature, using nuclear resonant inelastic x-ray scat-
tering and first-principles calculations.

II. METHODS

A. Experiment

Measurements were performed on the L12-ordered
Pd57

3 Fe sample used in a pressure-induced Invar exper-
iment [20], which was prepared by arc-melting Pd of
99.95% purity and 57Fe of 95.38% isotopic enrichment
before being cold rolled to a thickness of 25 µm. This or-
dered sample was further annealed with a heat treatment
at 873 K for 18 hours under vacuum, 773 K for 54 hours,
and subsequent cooling to 293 K over 2 hours. X-ray
diffraction confirmed the L12 structure and long-range
order, and Mössbauer spectroscopy confirmed the short-
range order (shown in the Supplemental Material [22]).

Nuclear resonant inelastic x-ray scattering (NRIXS)
measurements were performed on Pd57

3 Fe at seven tem-
peratures from 298 to 786 K. NRIXS is a low background
technique that provides direct access to the phonon par-
tial density of states (pDOS) of 57Fe [24, 25]. Measure-
ments were performed at beamline 16ID-D of the Ad-
vanced Photon Source at Argonne National Laboratory.
The synchrotron flashes had durations of 70 ps and were
separated by 153 ns. Electronic scattering occurs within
femtoseconds of the pulse arrival at the sample. The rela-
tively long lifetime of the nuclear resonant state (τ = 141
ns) allowed for a clear separation of the prompt electronic
scattering from the delayed resonant scattering.

The Pd57
3 Fe foil sample was held in vacuum under ac-

tive evacuation in a resistive heating furnace with a kap-
ton window for x-ray transmission. Errors in the val-
ues of the temperature ranged from ±10 to ±27 K. The
ambiguity comes from comparing the furnace thermo-
couple measurements to NRIXS-derived detailed balance
temperature calculations following procedure described
in the literature [26, 27].

An avalanche photodiode was positioned at approxi-
mately 90◦ from the incident beam to collect incoherently
reradiated photons. The energy was scanned from −80
to +80 meV around 14.413 keV, the resonant energy of
57Fe, in several scans that were combined for final anal-
ysis. The energy resolution of all NRIXS measurements



2

was measured to be 2.2 meV (FWHM) at the elastic line.
The PHOENIX software package was used to extract the
57Fe pDOS from the measured NRIXS spectra [26].

Nuclear forward scattering (NFS) measurements were
collected immediately prior to NRIXS scans. The NFS
spectra provide a measure of the magnetic state of
Pd57

3 Fe, using an avalanche photodiode in the path of
the forward-scattered x-ray beam to measure the trans-
mitted intensity as a function of time.

In situ synchrotron x-ray diffraction (XRD) measure-
ments were performed concurrently with the NRIXS and
NFS measurements with the same monochromatic beam
of 14.413 keV x-rays and a Mar CCD detector plate. Re-
sults from synchrotron XRD were used to obtain lattice
parameters for the quasiharmonic (QH) approximation
of the Fe pDOS.

B. Computational: Phonon Calculation

Phonon frequencies at elevated temperatures were cal-
culated with a variation of the temperature dependent ef-
fective potential (TDEP) method [29–31]. In the TDEP
procedure, the Born-Oppenheimer surface of a material
at a given temperature is sampled with ab initio molecu-
lar dynamics (AIMD). The energies, displacements, and
forces on thermally-displaced atoms are recorded over
time. With these energy-force-displacement datasets,
force constants are obtained with a least-squares fit of
the following model Hamiltonian to the potential energy
surface at a given temperature

H = U0 +
1
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β
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γ
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where ui is the displacement of atom i and αβγ are Carte-
sian components. The temperature-dependent U0 is a fit
parameter for the baseline of the potential energy sur-
face [30]. The quadratic force constants Φij from the
thermally-displaced atoms capture nonharmonic effects
such as magnon-phonon interactions at a given temper-
ature, and are used to calculate phonon frequencies ωs
shifted by these effects [30], where s is an index for
phonon modes. The cubic force constants Φijk capture
phonon-phonon interactions (PPI) that contribute to the
broadening and additional shifts of phonon modes [31].

The same procedure was applied in this work, ex-
cept the Born-Oppenheimer surface was sampled through
multiple DFT calculations on supercells of thermally-
displaced atoms generated by stochastic sampling of a
canonical ensemble. For a cell of Na atoms with mass
mi, a harmonic normal mode transformation was used
to generate positions {ui} consistent with a canonical
ensemble:

ui =

3Na∑
s=1

εis〈Ais〉
√
−2 ln ξ1 sin (2πξ2), (2)

where ωs and εis are the eigenvalues and eigenvectors of
phonon modes s obtained from trial force constants cal-
culated from short AIMD simulations. Other quantities
include ξn, uniformly distributed random numbers be-
tween 0 and 1 producing the Box-Muller transform, and
〈Ais〉, the thermal average of the normal mode ampli-
tudes [33, 34]:

〈Ais〉 =

√
~(2ns + 1)

2miωs︸ ︷︷ ︸
quantum

≈ 1

ωs

√
kBT

mi︸ ︷︷ ︸
classical

, (3)

where ns = (e~ωs/kBT − 1)−1 is the thermal occupa-
tion of mode s, and ~ω � kBT denotes the classical
limit at high temperatures. These stochastically gen-
erated thermal displacements from Eqs. 2 and 3 sam-
ple the Born-Oppenheimer surface in the stochastically-
initialized temperature dependent effective potential (s-
TDEP) method [29–32].

This method approximates the inclusion of zero-point
motion not included in AIMD simulations, and connects
seamlessly to the classical limit at high temperature. The
s-TDEP procedure can be used to calculate force con-
stants capturing anomalous high temperature effects [32]
to low temperature quantum effects [35, 36] at a much
lower computational cost than what is required of AIMD.
The force constants calculated with this method are nu-
merically converged with respect to the number of config-
urations and supercell size. Fewer configurations would
be required if the size of the supercell were larger. The
convergence of the force constants and the baseline U0

was further ensured by repeating DFT calculations on
new snapshots generated by Eq. 2, where the frequen-
cies ωs were calculated from the force constants from
the previous iteration of s-TDEP. The weakness of the s-
TDEP method is that it relies on Gaussian distributions
of coordinates generated by Eq. 2.

The ab initio spin-polarized density functional theory
(DFT) calculations with spin-orbit coupling were per-
formed with the projector augmented wave [37] formal-
ism as implemented in VASP [38, 39]. All calculations
used a 3 × 3 × 3 supercell with 108 atoms, a 2 × 2 × 2
Monkhorst-Pack [40] k-point grid, and a plane wave en-
ergy cutoff of 520 eV. The exchange-correlation energy
was calculated with the Perdew-Burke-Ernzerhof (PBE)
functional [41]. It was observed from calculations and
from past experiments [42–44] that the magnetic moment
of Pd atoms in Pd3Fe is small compared to that of Fe
atoms. The Pd moments were approximated as zero.

At a given temperature, the forces and energies of
25 stochastically-generated supercells were calculated at
five volumes within −2.5 to +5% around the 0 K equi-
librium volume through three iterations of the s-TDEP
procedure. For each volume, the Helmholtz free energy
F (V, T ) was calculated:

F (V, T ) = U0(V, T ) + Fvib(V, T ). (4)

U0(V, T ) is the baseline from Eq. 1. Fvib(V, T ) is from
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lattice vibrations:

Fvib =

∫ ∞
0

g(ω)

{
kBT ln

[
1− exp

(
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kBT

)]
+

~ω
2

}
dω,

(5)
where g(ω) is the phonon density of states calculated
from the phonons in the first Brillouin zone:

g(ω) =
∑
s

δ(ω − ωs). (6)

At a given temperature, the equilibrium volume VT was
obtained through the minimization of the Helmholtz free
energy F (T, V ). The force constants were then interpo-
lated to this volume, giving us phonon frequencies that
capture volume expansion and temperature-dependent
nonharmonic effects.

We then corrected our phonon frequencies ωs(T, VT )
by calculating the linewidths Γs and shifts ∆s aris-
ing from anharmonicity, or phonon-phonon interactions.
This required the many-body perturbation calculation of
the real and imaginary parts of the phonon self-energy
[45, 46] Σ(Ω) = ∆(Ω) + iΓ(Ω), where E = ~Ω is a prob-
ing energy. The imaginary component Γ(Ω) is

Γs(Ω) =
~π
16

∑
s′s′′

|Φss′s′′ |2 {(ns′ + ns′′ + 1)

× δ(Ω− ωs′ − ωs′′) + (ns′ − ns′′)
× [δ(Ω− ωs′ + ωs′′)− δ(Ω + ωs′ − ωs′′)]}, (7)

and the real component is obtained by a Kramers-Kronig
transformation

∆(Ω) =
1

π

∫
Γ(ω)

ω − Ω
dω. (8)

The imaginary component of the self-energy is a sum over
all possible three-phonon interactions, where Φss′s′′ is the
three-phonon matrix element determined from the cubic
force constants Φijk. Γ(Ω) and ∆(Ω) were calculated
with a 36× 36× 36 q-grid.

Anharmonic phonon DOS curves were calculated with
the real and imaginary parts of the phonon self-energy:

ganh(ω) =
∑
s

2ωsΓs(ω)

[ω2 − ω2
s − 2ωs∆s(ω)]

2
+ 4ω2

sΓ2
s(ω)

. (9)

It is noted that if both ∆ and Γ go to zero, Eq. 9 reduces
to Eq. 6.

This procedure was implemented to calculate two sets
of phonon dispersions and DOS: for Pd3Fe maintaining
complete ferromagnetic order at 0, 300, 480, 600, and
800 K (illustrated with Fig. 1(a)), and for Pd3Fe with
increasing magnetic disorder at 300, 480, and 800 K (il-
lustrated with Fig. 1(b)). Pd3Fe is expected to be com-
pletely ferromagnetic only at 0 K. The calculations of the
completely ferromagnetic Pd3Fe at nonzero temperatures
were performed for comparison with computations with
magnetic disorder.

For comparison with the s-TDEP phonon spectra, the
phonon energies predicted by the quasiharmonic (QH)
approximation were calculated by interpolation of the 0 K
quadratic force constants to volumes obtained from the
minimization of the free energy. This “QH DFT model”
assumes that the only temperature dependence in Eq. 4
and 5 is from volume expansion and the Planck distri-
bution. The “QH DFT model” excludes the anharmonic
corrections provided by Eqs. 7 and 8.

C. Computational: Magnetic Disorder

The magnetic disorder from thermal fluctuations was
modeled with special quasirandom structures (SQSs) [47]
of noncollinear Fe magnetic moments. The magnetic
SQSs mimic the most relevant local correlation functions
of random magnetic structures [48], where the correlation
function of the coordination shell α is

Πα =
1

Nα

∑
i,j∈α

ei · ej , (10)

where ei = mi/ ‖mi‖ is a unit vector in the direction of
the magnetic moment mi on site i, and Nα is the num-
ber of magnetic moment pairs in the coordination shell α.
This use of SQSs with noncollinear Fe magnetic moments
is related to the disordered local moment (DLM) model,
where magnetic disorder is modeled with randomly ori-
ented local magnetic moments [49–54].

A histogram of magnetic SQSs was generated by simu-
lated annealing, where Fe magnetic moments were flipped
into random orientations until the local correlation func-
tions matched target correlation functions. These bins
were of increasing levels of magnetic disorder, from com-
pletely ordered to completely disordered. In the same
bin of the histogram, the set of magnetic SQSs {λ} were
equivalent in their correlation functions.

All correlation functions of magnetic SQSs modeling
complete ferromagnetic order equaled 1 (Πα = 1,∀α),
and the resulting Fe magnetic moments were aligned in
the same direction. All correlation functions of mag-
netic SQSs modeling complete magnetic disorder equaled
0 (Πα = 0,∀α), and the resulting Fe magnetic moments
were randomly oriented. The correlation functions for
magnetic SQSs from a bin that was between complete
order and complete disorder had values between 0 and
1. For a given bin, the generated magnetic SQSs had an
averaged normalized magnetization

〈M/M0〉SQS =
1

Nm

∥∥∥∥∥∑
λ

(∑
i

mi

)∥∥∥∥∥ , (11)

where Nm is a normalization constant.
For the phonon calculations of Pd3Fe with increas-

ing magnetic disorder, we coupled the s-TDEP proce-
dure with these magnetic SQSs. For a given temperature
T , 25 stochastically sampled supercells {κ} with thermal
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FIG. 1. (a) Schematic of supercells with Fe atoms (dark blue) stochastically displaced from their ideal positions (light blue) in
the 0 K ferromagnetic calculations, where the magnetic moments (red arrows) are aligned in the same direction. (b) Supercells
with randomly oriented magnetic moments and stochastically displaced Fe atoms in the 800 K paramagnetic calculations. Each
set of randomly oriented magnetic moments is a magnetic special quasirandom structure (SQS). Pd atoms are not shown for
this illustration.

atomic displacements characteristic of T were generated.
Separately, 25 magnetic SQSs {λ} were selected from a
bin where the SQSs have an averaged normalized magne-
tization 〈M/M0〉SQS approximately equal to the normal-
ized magnetization M(T )/M0 expected at temperature
T . A spin-polarized DFT calculation was performed on
a supercell κ paired with a magnetic SQS λ. The forces
from these spin-polarized DFT calculations on the en-
semble of SQS-supercell (κ, λ) pairs, illustrated in Fig.
1b, are used to obtain force constants used in the cal-
culation of phonon dispersions and DOS, as described
previously. This computational method can be consid-
ered to be a stochastic ensemble-averaged variant of dis-
ordered local moments molecular dynamics (DLM-MD)
[2, 3] with local spin correlations.

For the calculations at 800 K, the magnetic structure
was treated as a random distribution of magnetic mo-
ments characterized by the vanishing of the spin cor-
relation functions (Πα = 0,∀α) so that the average
magnetization 〈M〉SQS is zero, in accordance with the
DLM model. The force constants calculated at 800 K
were interpolated to a volume that minimized a modified
Helmholtz free energy F (T, V )

F (T, V ) = U0(T, V ) + Fvib(T, V ) + Fmag(T, V ), (12)

where Fmag(T, V ) is the magnetic free energy. Because
there is no exact formulation for the magnetic free energy,
this free energy was approximated with a mean-field term

Fmag(T, V ) = −TSmag = −kBT ln(〈m(V )〉+ 1), (13)

where 〈m(V )〉 is the average magnitude of the magnetic
moments in units of µB. The magnetic entropy Smag

is the maximum orientational disorder of magnetic mo-
ments in the paramagnetic state for systems with local
magnetic moments. This approach is widely used to
describe the magnetic entropy of paramagnetic systems
[6, 55].

For calculations at 300 and 480 K, the magnetic struc-
tures were sampled so the averaged normalized magneti-
zations 〈M/M0〉SQS were approximately equal to normal-
ized hyperfine fields H(T )/H0 obtained from Mössbauer
spectroscopy measurements performed in this study and
by Longworth [19], as seen in Fig. 3. Because there is no
reliable method for calculating the magnetic free energy
of Pd3Fe at intermediate temperatures, force constants
were calculated at volumes obtained by scaling the vol-
ume calculated at 800 K by volumes obtained from syn-
chrotron x-ray diffraction measurements.

III. RESULTS

A. Nuclear Forward Scattering

The NFS spectra measured from the Pd57
3 Fe sample

are shown in Fig. 2. The NFS spectrum at 298 K ex-
hibits a clear magnetic beat pattern expected from a
magnetically-ordered material, similar to a previous NFS
measurement of Pd57

3 Fe at ambient conditions [20]. The
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FIG. 2. The 57Fe nuclear forward scattering spectra from
L12-ordered Pd3Fe at several temperatures. The fits (black
curves) overlay experimental data (points). The spectra are
displayed using a log scale, and offset for clarity.
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FIG. 3. The magnetization curve of Pd3Fe obtained from an
empirical fit of a magnetic shape function [56] to hyperfine
magnetic fields obtained from the NFS spectra in this study
(green) and Mössbauer data from a study by Longworth [19]
(orange). The shaded region indicates the temperature range
where Pd3Fe exhibits ferromagnetic order.
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FIG. 4. The normalized 57Fe pDOS extracted from NRIXS
measurements at various temperatures. The spectra from
measurements above 298 K are offset and compared with the
298 K pDOS (black curve). Error bars are from counting
statistics.

amplitudes and periods of the magnetic beats dimin-
ish with temperature, and the magnetic beats disappear
above 485 K, consistent with a second-order phase transi-
tion in which the magnetic order continuously decreases
through the Curie temperature. The remaining beats
above 485 K are from the thickness of the sample.

A quantitative analysis of the NFS spectra was per-
formed with the software package CONUSS [26, 57]. The
refined fits overlay the experimental spectra in Fig. 2.
Parameters extracted from these fits include the hyper-
fine field H, shown together with the magnetization of
Pd3Fe in Fig. 3, and the Lamb-Mössbauer factor, shown
in the Supplemental material [22]. The decrease in the
hyperfine field of Pd57

3 Fe with temperature is in agree-
ment with the hyperfine fields measured by Longworth
[19], and the decrease in this quantity with temperature
tracks the decrease in magnetization through the Curie
temperature.

B. Phonons

The 57Fe pDOS curves measured from the Pd57
3 Fe sam-

ple are shown in Fig. 4. The pDOS do not show signif-
icant energy shifts below the Curie temperature. The
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energies from the Grüneisen parameter model (green line) and
the QH DFT model (red line).
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of Pd3Fe calculated with the s-TDEP method from 0 to 800 K.

phonons begin to show a small but significant thermal
softening beyond the Curie temperature, made apparent
when the 627 and 786 K pDOS are compared with the
298 K curve in Fig. 4. This trend is seen more clearly
with the average Fe phonon energies calculated from the
57Fe pDOS, shown in Fig. 5. These phonon shifts are
similar to the experimental trends observed in the ferro-
magnetic cementite through the Curie temperature [58].
It is noted that the quality of the high temperature 57Fe
pDOS at 786 K was impacted by reduced counting statis-
tics.

The phonon DOS curves calculated at 0, 300, 480, and
800 K with s-TDEP are shown in Fig. 6. The phonon
DOS curves soften with temperature, although features
like the peak at 21 meV in the Fe pDOS or at 25 meV in
the Pd pDOS do not soften until the Curie temperature.
The s-TDEP phonon DOS curves also exhibit a thermal
broadening that is most prominent at 800 K, indicative
of phonon-phonon interactions (PPI) [45, 46, 59, 60].

0.00

0.05

0.10

D
O
S
(1
/m
eV
) (a) NRIXS 298 K

786 K

0 5 10 15 20 25 30 35 40
0.04

0.00

0.04

0.00

0.05

0.10

0.15

D
O
S
(1
/m
eV
) (b) s-TDEP 300 K

800 K

0 5 10 15 20 25 30 35 40
Energy (meV)

0.04

0.00

0.04

FIG. 7. (a) NRIXS 57Fe pDOS curves compared at 298 and
786 K. (b) s-TDEP Fe pDOS curves compared at 300 and
800 K. Phonon difference spectra are shown for both NRIXS
and s-TDEP.

Figure 7 shows thermal trends from experiment (panel
a) and computation (panel b). The difference spectra
shown in both panels are in reasonable agreement with
each other, indicating that the NRIXS measurements and
s-TDEP calculations capture similar thermal trends in
Pd3Fe.

C. Nonharmonic Behavior

The experimental nonharmonic behavior was analyzed
by comparing the measured 57Fe pDOS with Fe pDOS
curves predicted by quasiharmonic (QH) approximations.

The experimental QH phonon frequencies ωQH
i (T ) were

calculated with the Grüneisen parameter model (referred
to as the “QH γT Model”), a QH model using a thermal
Grüneisen parameter γ̄T, averaged for all phonon modes:

ωQH
i (T ) = ω298K

i

(
1− γ̄th

VT − V298K
V298K

)
, (14)

with the 298 K 57Fe phonons used for scaling the
Grüneisen parameter in the QH γT model. The volumes
at elevated temperatures VT were calculated from the lat-
tice parameters determined from our synchrotron XRD
measurements, together with lattice parameters reported
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FIG. 8. (a) The Fe partial vibrational entropy from the
NRIXS measurements compared with the entropy from the
Grüneisen parameter model (QH γT) and the QH DFT model.
(b) The s-TDEP Fe partial vibrational entropy calculated for
Pd3Fe with changing magnetic order (blue), ferromagnetic or-
der (green), and the absence of phonon-phonon interactions
(orange). The red line is the entropy from the QH DFT
model. The insets in (a) and (b) show the nonharmonic con-
tributions to the vibrational entropy.

by Jääskeläinen [28]. The thermal Grüneisen parameter
was calculated from bulk properties of Pd3Fe:

γ̄th(T ) =
α(T )KT(T )ν(T )

CV(T )
, (15)

where KT(T ) is the bulk modulus, α(T ) is the linear ther-
mal expansion, ν(T ) is the crystalline volume per atom,
and CV(T ) is the heat capacity at constant volume. The
quantities α(T ) and ν(T ) were calculated from volumes
obtained from synchrotron XRD and from Jääskeläinen.
The heat capacity was calculated by integrating the to-
tal phonon DOS calculated by s-TDEP. The bulk mod-
ulus was previously determined by Winterrose through
energy-dispersive x-ray diffraction [20].

The average Fe phonon energies from the QH γT and
QH DFT models are plotted in Fig. 5. The Fe phonons
calculated with the two QH models soften more strongly
with temperature than the NRIXS 57Fe pDOS, indicating
that there is a nonharmonic stiffening in Pd3Fe opposing
the softening from thermal expansion.

Thermodynamic consequences of nonharmonic

phonons were assessed by calculating the Fe partial
vibrational entropy SFe

vib, which contributes to the total
thermodynamic entropy. This SFe

vib is obtained from the
Fe pDOS as:

SFe
vib(T ) = 3kB

∫
gFeT (ε){(n+ 1) ln(n+ 1)− n ln(n)}dε,

(16)
where kB is the Boltzmann constant, gFeT (E) is the Fe
pDOS at temperature T , and n is a Planck distribution
evaluated at T for a given energy E. This expression
provides accurate entropy values that include both quasi-
harmonic effects and nonharmonic effects [59].

The SFe
vib(T ) are plotted in Fig. 8(a). The quasihar-

monic vibrational entropy SFe
qh, also shown in the figure,

was calculated by substituting the Fe pDOS from the
QH γT and QH DFT models into Eq. 16. The agree-
ment is surprisingly good, considering that the QH model
neglects so many nonharmonic effects, including those
shown in Fig. 8(b).

Fig. 8(b) shows the Fe partial vibrational entropy cal-
culated with the phonons calculated with s-TDEP, to-
gether with the Fe partial vibrational entropy without
effects from PPI. This quantity, labeled “No PPI,” was
calculated by substituting the Fe pDOS calculated with
Eq. 6 into Eq. 16. Also shown in the figure is the
Fe partial vibrational entropy for ferromagnetic Pd3Fe.
These quantities were compared with the quasiharmonic
entropy calculated from the QH DFT model.

The SFe
vib of Pd3Fe calculated with s-TDEP is lower

than what is expected from the QH DFT model by
0.08 kB/atom at 800 K. The inclusion of PPI increases
SFe
vib of Pd3Fe by 0.2 kB/atom at 800 K. The change in
SFe
vib from ferromagnetic Pd3Fe to Pd3Fe with magnetic

disorder increases from roughly −0.03 kB/atom around
the Curie temperature to roughly 0.1 kB/atom at 800 K.
This happens as the deviation from quasiharmonicity
sharply increases for ferromagnetic Pd3Fe past the Curie
temperature.

IV. DISCUSSION

A. Magnon-Phonon Interaction

The increase in Fe partial vibrational entropy with de-
creasing magnetization at 800 K arises from the softening
of Fe vibrational energies with the magnetic transition.
A more in-depth analysis of this softening with decreas-
ing magnetization is performed by comparing the 800 K
phonon dispersions for both ferromagnetic and paramag-
netic Pd3Fe, as shown in Fig. 9.

A number of vibrational modes in Pd3Fe undergo en-
ergy shifts with the randomization of the Fe magnetic
moment orientations, particularly the two optical modes
at the X symmetry point highlighted in Fig. 9. The
softening of these modes contributes to the softening
of the high-energy peak in the Fe partial phonon DOS
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FIG. 9. Calculated phonon dispersions for the ferromagnetic and paramagnetic states at 800 K. The dispersions displayed do
not include effects from phonon-phonon interactions. Displacement patterns are shown for two high-energy optical phonon
modes that soften with decreasing magnetization. The orange and green spheres represent Fe and Pd atoms, respectively. The
Fe partial phonon DOS curves of Pd3Fe calculated with the s-TDEP method for the ferromagnetic and paramagnetic states at
800 K are shown in the lower left.

with decreasing magnetization. By testing the sensi-
tivity of the phonon dispersions to changes in each of
the quadratic force constants obtained from the fit of
Eq. 1 to the Born-Oppenheimer surface, we found that
these two modes soften with the weakening of the Fe−Fe
second-nearest-neighbor (2NN) longitudinal force con-
stants, which weaken by about 50% from the ferromag-
netic state to the paramagnetic state at 800 K. This be-
havior is consistent with the atomic displacement pat-
terns for the optical modes, which involve the motions of
adjacent (100) planes of Fe atoms in opposite [100] di-
rections. The softening of these modes coincides with a
change in the interactions between the closest-neighbor
magnetic atoms due to the loss of short-range magnetic
order past the Curie temperature.

The average 57Fe phonon energies from the NRIXS
measurements change slowly below the Curie temper-
ature. The s-TDEP calculations for Pd3Fe and ferro-
magnetic Pd3Fe show that the thermal evolution of the
optical phonons depends on whether the magnetization
changes with thermal fluctuations. A thermal optical
phonon stiffening in ferromagnetic Pd3Fe counteracts the
phonon softening from thermal expansion. This behav-
ior is observed in the NRIXS measurements from 298 to
485 K, where Pd3Fe still maintains short-range magnetic
order. In this case, the short-wavelength optical modes
do not soften strongly with temperature, consistent with
their behavior in a material with full magnetic order.
Beyond the Curie temperature, where there is both long-
and short-range magnetic disorder, the change in Fe−Fe
interactions cancels this ferromagnetic stiffening of the
short-wavelength optical phonons.

B. Phonon-Phonon Interaction

The s-TDEP calculations of the phonon DOS of Pd3Fe
show that anharmonicity has significant effects on the
thermodynamics of the material, as indicated by the in-
crease in the Fe partial vibrational entropy by up to
0.2 kB/atom at 800 K. The anharmonic phonon shifts
and broadenings can be studied in more detail with the
phonon spectral functions S(q, E), the spectra of lat-
tice excitations that can be interpreted as phonon modes
broadened and shifted by phonon-phonon interactions.
The spectral function is calculated with ωqs, the phonon
dispersion from quadratic force constants, and the real
and imaginary components of the phonon self energy
from Eq. 7 and 8:

S(q, E) ∝
∑
s

2ωqsΓqs(Ω)[
Ω2 − ω2

qs − 2ωqs∆qs(Ω)
]2

+ 4ω2
qsΓ

2
qs(Ω)

.

(17)
The spectral functions shown in Fig. 10 were calcu-

lated at multiple temperatures. The 0 K spectral function
is in good agreement with the phonon dispersion mea-
sured with inelastic neutron scattering at 80 K by Stir-
ling [61]. The significant phonon broadening and shifts
in the spectral functions at higher temperatures come
from many decay channels available to the phonons in
the twelve branches.

We examined the lineshapes of phonon modes at spe-
cific q points in the Brillouin zone, including the 800 K
lineshapes of the phonon modes affected by the magnetic
transition at the X symmetry point, shown in Fig. 11.
What was unusual was a double-peak structure of one
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FIG. 10. Pd3Fe spectral functions (logarithmic intensity scale) calculated with s-TDEP along the high-symmetry directions at
0, 300, and 800 K. Measurements of the 80 K phonon dispersion by inelastic neutron scattering [61] are shown on top of the 0 K
spectral function.
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FIG. 11. Pd3Fe phonon lineshapes at the X high symmetry
point at 800 K. The orange and green peaks are the optical
modes that shift with changing magnetic order. The black
dashed peak is the lineshape of the optical mode after the
Pd−Pd 1NN cubic force constant is set to zero.

of these high-energy optical modes. Phonon modes with
lineshapes that are characterized by a single peak broad-
ened by a Lorentzian are mildly anharmonic, whereas
phonon modes that have unusual lineshapes are more
strongly anharmonic [62, 63].

To study the nature of the double peak of the high-
energy phonon mode at X, we analyzed the cubic irre-
ducible force constants responsible for three-phonon in-
teractions. The lineshapes at the X point were calculated
when an irreducible force constant was set to zero. It
was found that zeroing the cubic force constants for the
Fe−Pd first nearest neighbors (1NN) along the 〈110〉 di-
rections partially removes the double-peak structure, but
zeroing the cubic force constants for the Pd−Pd 1NN
along the 〈110〉 directions fully transforms the double-
peak lineshape to a single Lorentzian peak, shown in Fig.
11.

These force constants are related to the movement of
Fe and Pd atoms in the [100] direction against the adja-
cent stationary (200) planes of Pd atoms. As shown in
the displacement pattern of the vibrational mode in Fig.
9, (100) planes of Fe atoms and (100) of Pd atoms al-
ternate in oscillating against the stationary (200) planes
of Pd atoms. The cubic interactions from the oscillation

of the (100) planes of Pd atoms against the (200) Pd
planes more strongly contributes to the unusual phonon
lineshape. We suggest that the palladium atoms domi-
nate the anharmonic phonon-phonon interactions in L12-
ordered Pd3Fe. This is consistent with how fcc Pd shows
strong PPI at high temperatures [64].

V. CONCLUSIONS

Nuclear resonant inelastic x-ray scattering was used
to measure the 57Fe partial phonon DOS of L12-ordered
Pd3Fe from room temperature through the Curie tran-
sition. The iron partial vibrational entropy at temper-
atures far from the Curie transition was observed to be
approximately what was predicted by the quasiharmonic
approximation owing to a cancellation of effects. A non-
harmonic phonon stiffening opposed the expected soften-
ing from thermal expansion below the Curie temperature.
Similar trends were observed from first-principles cal-
culations that couple the stochastically-initialized tem-
perature dependent effective potential (s-TDEP) method
with magnetic special quasirandom structures (SQSs) of
noncollinear magnetic moments.

The s-TDEP calculations showed that phonon-phonon
interactions (PPI) contribute to the softening and broad-
ening of the phonon spectra at elevated temperatures. A
high-energy optical mode at the X symmetry point was
calculated to have a double-peak lineshape. The first-
nearest-neighbor Pd−Pd cubic interactions strongly con-
tribute to this unusual lineshape, highlighting the strong
contribution of the majority Pd atoms to the phonon an-
harmonicity in Pd3Fe.

The calculations also showed that high-energy optical
modes soften with decreasing magnetization, so a ferro-
magnetic optical phonon stiffening is lost. This soften-
ing of optical modes originates with how the randomiza-
tion of orientations of the Fe magnetic moments alters
the short-range Fe−Fe interactions, softening the Fe−Fe
second-nearest-neighbor force constants. The depen-
dence of these optical vibrational modes on the magnetic
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transition can be understood as how magnon-phonon in-
teractions alter lattice vibrations at elevated tempera-
tures.
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comparison of the scattering data to past measurements.

23 A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N.
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