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Motivated by recent experimental realizations of topological edge states in Su-Schrieffer-Heeger
(SSH) chains, we theoretically study a ladder system whose legs are comprised of two such chains.

‘We show that the ladder hosts a rich phase diagram and related edge mode structure dictated by
choice of inter-chain and intra-chain couplings. Namely, we exhibit three distinct physical regimes:
a topological hosting localized zero energy edge modes, a topologically trivial phase having no edge
mode structure, and a regime reminiscent of a weak topological insulator having unprotected edge
modes resembling a “twin-SSH” construction. In the topological phase, the SSH ladder system
acts as an analog of the Kitaev chain, which is known to support localized Majorana fermion end
modes, with the difference that bound states of the SSH ladder having the same spatial wavefunction
profiles correspond to Dirac fermion modes. Further, inhomogeneity in the couplings can have a
drastic effect on the topological phase diagram of the ladder system. In particular for quasiperiodic
variations of the inter-chain coupling, the phase diagram reproduces Hofstadter’s butterfly pattern.
We thus identify the SSH ladder system as a potential candidate for experimental observation of

such fractal structure.

I. INTRODUCTION

The advent of the Su-Schrieffer-Heeger (SSH) model [1,
2] as a description of organic chains was a milestone in the
study of condensed matter systems in that it offered one
of the first realizations of fractionalization. It was shown
that a simple tight-binding chain having two different
alternating bond strengths between lattice sites hosts lo-
calized bound states at its ends, enabling fractionaliza-
tion for charge at these ends. Subsequently, the model
has been studied as a prototype for fractionalization and
associated topological properties characterized by band-
structure based invariants and localized edge modes. Re-
cent, cutting edge experimental developments in diverse
disciplines have revealed aspects of the SSH model and
related systems in fascinating ways. In cold atomic set-
ting, measurements of topological invariants, such as the
Zak phase have been performed [3]. Topologically ro-
bust charge pumping has been observed [4-6] where the
transported charge is quantized and solely determined by
the topology of the pump cycle. Equally striking, topo-
logical systems carrying dispersionless edge modes have
been realized in magneto-optical photonic crystals [7],
classical acoustic meta-materials [8, 9] and even tunable
mechanical systems of granular particles [10]. Further,
the solitonic state distinguishing the topological phase of
the SSH model in particular, has been observed in cold
atomic systems [11, 12] through time-of-flight imaging
and in photonic quantum walks [13].

Here, we show that the simplest of next steps in
these studies—coupling two SSH chains [14-19]— gives
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rise to rich behavior. We investigate salient features of
such “SSH ladder systems”, theoretically studying sev-
eral physical properties with an eye towards realizing
them in the experimental settings mentioned above. We
chart out the phases exhibited by the the SSH ladder and
the phase boundaries separating them as characterized by
a gap in the energy spectrum. We determine the topolog-
ical nature of these phases. We identify the nature and
behavior of bound states localized at the ends of the lad-
der which ought to be realizable in cold atomic, photonic
and mechanical settings. We focus on three noteworthy
aspects of the SSH ladder. i) The most general phase
diagram for the SSH ladder hosts phases that go beyond
that of a single chain. These phases show the distinction
between completely trivial phases characterized by the
absence of edge modes, robust topological phases having
topologically protected edge modes, and an intermediate
coupling regime having unprotected edge modes. ii) The
SSH ladder can act as a model of the Kitaev wire by
mimicking its traits in the sense of the Kitaev wire host-
ing Majorana bound states, which are of much current
interest. iii) The SSH ladder system has enough degrees
of freedom to exhibit marked effects of inhomogeneous
couplings; we focus on the case of (quasi)periodicity.

Parallels between the SSH ladder and the Kitaev chain
are of particular significance. To elaborate, the Kitaev
chain [20] has come to the forefront as a key model for
capturing essential features of topological superconduc-
tors. A distinctive feature of the model is a clean phase
diagram separating trivial phases from topological ones
in which the chain harbors end bound states that are
the right combination of particle-like and hole-like exci-
tations for forming charge neutral Majorana fermionic
states. The phase diagram for the Kitaev chain, the
nature of edge modes and their experimental realiza-
tion have been thoroughly studied and the Majorana
edge states themselves are known to have unique proper-



ties [20-24]. For the Kitaev chain, a basis can be chosen
so that the system admits a ladder description [25]. Re-
markably, we find that the SSH ladder is capable of mim-
icking this Kitaev chain ladder when subject to restricted
couplings. We demonstrate how these parallels become
manifest. A significant distinction is that the bound
states of the SSH ladder are not Majorana fermions but
number-conserving states, either fermionic or bosonic in
nature. Nevertheless, the SSH ladder provides a concrete
experimentally realizable system that can map the phase
diagram for the Kitaev chain and the spatial structure of
its localized bound edge states.

Extensive work on the Kitaev chain has revealed the
manner in which inhomogeneities can greatly alter topo-
logical phase diagrams, for instance, periodic variations
or disorder [25]. Borrowing from these insights, we show
that indeed spatially varying coupling in the SSH lad-
der system can produce dramatically different phase dia-
grams. We employ a transfer matrix technique to directly
target the fate of localized end modes in the presence of
such spatial variations. Further, we find that quasiperi-
odic variations across the ladder reflect the mathematical
structure of Harper’s equation and its physical manifes-
tation in Hofstadter’s butterfly pattern [26] — one of the
most well-known examples of fractals in condensed mat-
ter physics. While cold atomic systems are well suited for
clean achievement of such self-similar patterns (otherwise
experimentally rather challenging in electronic systems),
experiments concerning the Hofstadter Hamiltonian so
far [27-30] have not included any direct measurements
of its fractal nature. As the topological phases of the
SSH ladder can be identified through direct observation
of edge wavefunction spatial profiles, our proposal pro-
vides a novel possibility of probing this fractal diagram
through time-of-flight imaging.

In what follows, in Sec. II we introduce the SSH lad-
der Hamiltonian and outline the use of the momentum
space dispersion relation, the chiral index topological in-
variant and the tranfer matrix formalism in obtaining
its phase diagram. In Sec. III we briefly review the
properties of a single, uncoupled, SSH chain and pro-
ceed to discuss the more complex phase diagram of the
coupled system in Sec. IV. In this section, we identify
three distinct regimes (topological, topologically trivial
and weakly topological) as determined by differing edge
mode structures. In Sec. V we focus on the phase of
the ladder hosting edge modes with wavefunctions hav-
ing spatial profiles matching those of the localized Majo-
rana modes of the Kitaev chain. Further, in Sec VI we
employ transfer matrix methods to discuss the response
of this Kitaev chain analog phase to inhomogenous cou-
plings and disorder. Finally, in Sec. VII we bring our
discussion closer to experimental studies of SSH models
by considering finite size effects and offer an outlook on
possible future experimental work in Sec. VIII.

II. MODEL AND METHODS

The system of interest, shown in Fig. (1), is a fermionic
ladder composed of two coupled SSH chains. It exhibits
a particle-hole symmetry which arises from the bipar-
tite nature of the Hamiltonian. Consequently, its en-
ergy spectrum is symmetric about zero energy. As de-
tailed in Sec. V, when the couplings respect certain con-
straints, the system is a close analog to the celebrated
superconducting Kitaev chain; particle-hole symmetry
in this case is a natural consequence of superconduc-
tivity, as captured by the Bogoliubov-de Gennes form
of its Hamiltonian. The close relationship between the
two systems gives rise to a clear correspondence between
their respective topological phases. As will be shown,
however, rather than hosting Majorana fermions, the
topological phases of the SSH ladder are characterized
by Dirac fermions localized at the system edge. As de-
tailed in Sec. IV, the more generalized ladder system
shows a rich phase diagram. We note here that several of
single-particle properties studied in what follows apply
to bosonic systems as well. Additionally, similar models
have been explored in Ref. [14-16].
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FIG. 1. Pictorial representation of the fermion couplings in
the SSH ladder model, as represented by the Hamiltonian
(1) for (a) generic couplings, (b) for the decoupled case with
the special values of couplings t3 = t3 = 0 characterized by
Ngs = 1 exhibiting a single fermion end mode, (c¢) coupled
SSH ladder for t; = ¢4 = 0 and t2 = t3 = ¢t. For |u| < 2|t|,
the system exhibits a Kitaev-like topologically protected zero
mode. (e) For t1 = t3 = 0 and |u| < t2,ts, the system
exhibits mid-gap states that are not topologically protected.

Model— The unit cell for the SSH ladder is a pla-
quette composed of four fermions: for the ;' plaquette,
the operators a;, b; are fermion annihilation operators
for sites on the top leg, while the operators B; and A,



reside on the bottom leg. The Hamiltonian is given by

H = Z(tlbja]‘ —+ t2a2+1bj + tgA;Bj + t4B;+1Aj
J

+h.c.) + uZ(a;Bj + b;Aj +h.c). (1)
J

The Hamiltonian H is characterized by five real cou-
plings: four hopping amplitudes t1, to, t3, and t4 and an
inter-chain coupling p. The system is bi-partite in that
it decouples into two interpenetrating sub-lattices, a/A
and b/ B coupled to each other but not within themselves.
This bi-partite nature of the model guarantees that the
spectrum respects particle-hole symmetry. Fourier trans-
forming Eq. (1) yields

1
Hk = iTz [29] [((tl — tg) —+ (tQ — t4) COSs k)Uz

1
+(ta +tq)sink oy] + 511 ® [((t1 +t3) + (t2 + t4) cosk)oy
+(tg — ta)sink o] + pry ® o, (2)

where the Pauli matrices 7; and o; act in the ladder leg
and sublattice spaces, respectively.

Our analyses of the phases and their properties pri-
marily employ three methods. i) For systems respecting
translational invariance, energy dispersions obtained in
momentum space identify gapless energy contours which
delineate phase boundaries. ii) A topological invariant
enables us to identify topological aspects of the phases.
iii) A transfer matrix technique charts out the existence
and nature of possible localized end bound states in some
phases. We proceed to elaborate on each of these meth-
ods.

Dispersion— First, to establish phase boundaries, we
consider the dispersion relation corresponding to Eq. (2).
Contours in parameter space along which the bulk energy
gap closes delimit different phases of the system. In the
most general case, the SSH ladder has a four-band energy
dispersion

1
B = i + 5l + [paf?)

1
ig\/@uz +1p1? + [p2]?)? + 4(p1p2 — p2) (1> — p1p5)
(3)

where

p1 = pi(k) =t; +tae™*
p2 = pa(k) = t3 + tse ™. (4)
Here, the gap in the energy spectrum closes at £k = 0
for u? = (t; + t2)(t3 + t4) while the same happens
for p? = (t; — t2)(ts3 — t4) and k = m. Addition-
ally, the energy spectrum is gapless for t1t4 = tot3 and
k= (1/2) cos™ (u? — tits — tots)/(t1ts + tat3)).
Following Ref. [31], we parameterize the couplings in
Eq. (1)
tr=(t+A)(1=mn), ta=(t—-A)(1+n),
ts=(C—-A)1-n), ta=@C+A)1+n). (5

with |n| < 1, |A] < ¢. In the next section, we offer a phys-
ical interpretation for these two parameters in terms of
competing energy gaps. Various topological and topolog-
ically trivial phases of the ladder are separated by regions
in the (p, A, n,t) parameter space satisfying

p? =4t - A%pP),
p? = A(t*n" — A?), for tln| > |A|
A=0. (6)

Topological invariant— Phases of the SSH ladder
can be characterized by a topological invariant. The
over-arching Hamiltonian of Eq. (1) belongs to the BDI
symmetry class and has phases described by a Z—valued
topological invariant. Following Refs. [31, 32] we consider
the chiral index associated with a generic symmetry op-
erator S with the properties SHpS™' = —Hy,, S? = L.
The topological invariant is given by

N, —Tr/ﬂ I 5419 (7)
s = 4 g Okg
where g(k) = H~'(k) is the Green’s function at zero
energy.

Transfer matrix— The transfer matrix formalism
extensively used in studies of localized states in 1D sys-
tems, especially in the presence of potential landscapes, is
applicable to this ladder model. We employ this formal-
ism to study the effects of spatial modulation of the inter-
chain coupling g in Sec. VI. This method has been fur-
ther developed as a tool in studies of Majorana modes in
the Kitaev wire by two of the authors in Refs. [22, 25, 33].

Within this formalism, the presence of localized zero
energy edge modes is determined by the growth or de-
cay of the eigenfunctions of the transfer matrix. To con-
struct the matrix, we start with the zero-energy Heisen-
berg equations of motion, [a;, H] = 0, [b;, H| = 0, for

H=- Z[tl(b;+1aj + B}+1Aj) + t2(a;+1bj + A}+1B2:j)]

J
+ Z Mja;Bj +h.c.
J

where the inter-chain coupling u; now varies throughout
the ladder. The zero energy equations of motion couple
the a; and A; fermions and the b; and B; fermions, but
these two sets of equations have no mutual couplings.
The equations of motion for operators a; are second-order
difference equations of the form

t(l + 5)aj71 + t(]. — 5)aj+1 + ,U/jAj =0. (8)

Here we have taken ¢; = ¢(1 — ) and to = ¢(1 + ¢) This
can be cast into the form of transfer matrices:

e I e e
(Aj ) AJ<%‘+1)’AJ ( 1 (o ))
9)

Thus, the transfer matrix relates wavefunction ampli-
tudes between one slice of the ladder and its adjacent one.



Its multiplicative nature allows us to study the manner
in which the wavefunction varies along the ladder. For
localized states, such variation is an exponential decay
and can be ascertained based on the eigenvalue struc-
ture of the transfer matrix. Such an analysis will be pre-
sented in more detail and used extensively in following
sections involving inhomogenous variations in the SSH

ladder (Sec. VI).

III. SINGLE SSH CHAIN

Before discussing the intricacies of the full model, we
briefly recapitulate the properties of a single SSH chain
having coupling t; and t5. The chain possesses two topo-
logically distinct phases where the topological and trivial
phases are characterized by the presence and absence of
end zero modes, respectively. For instance, in the case
in which 5 = 0, and ¢; # 0, the system is described by
pairs of coupled fermions. In contrast, for ¢t; = 0 and
ty # 0, the system forms pairs of dimers with the excep-
tion of the modes a1 and by, which are left uncoupled to
the rest of the chain. Particle-hole symmetry guarantees
that they are zero energy modes.

The existence of these end bound state fermions is pro-
tected by the existence of the bulk energy gap. Tuning
away from the special case in which ¢; = 0, the end zero
mode is a linear combination of modes near the edge of
the system. These modes persist as long as the bulk gap
does not close. The spectrum of the single SSH chain is
given by E = £/t + {3 + 2t,t5 cos k, and thus the bulk
gap closes at k = £ for ¢t; = t5. This condition sepa-
rates the trivial phase from the topological phases. For
t1 > to > 0, the system is trivial. For to > t; > 0, the
system is topological and possesses a single Dirac fermion
at each of its ends.

We note that our assignment of phases as topological
and topologically trivial depends on where, within the
unit cell, we propose a measurement to detect the zero
edge state should occur (where a “cut” occurs). In other
words, determining the wavefunction spatial profile at a
site off-set by half of the unit cell width would result
in a different characterization of the phases of the SSH
ladder. However, the two previously discussed phases,
remain topologically distinct regardless. Below, we use a
convention consistent with studying the zero mode wave-
functions at the left-most and right-most sites of the SSH
ladder.

IV. PHASES OF THE SSH LADDER

As suggested by the phases of the SSH chain, the topol-
ogy of the ladder system depends sensitively on the rel-
ative strengths of the couplings t1,t2,t3, and t4. As dis-
cussed below, we find three distinct physical regimes: a
topological phase analogous to the Kitaev chain hosting
localized zero energy edge modes, a topologically triv-
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FIG. 2. (a) Phase diagram of the general SSH ladder for
|A] < |n|t. This parameter regime corresponds to a ladder
configuration composed of two identical SSH chains, as in
Fig. 1 (b). Here, phase I hosts a single pair of zero energy
edge modes while phase II is topologically trivial having no
zero edge mode structure. (b) Phase diagram of the gen-
eral SSH ladder for |A| > |n|t. Here, the SSH ladder is in a
regime illustrated by Fig. 1 (¢) where the two SSH chains that
comprise it are offset with respect to the relative strength of
couplings: if the bottom chain starts with a weaker coupling
then the top starts with the stronger one. As in (a), phase
I hosts a single pair of zero energy edge modes and phase 11
supports no zero edge modes. (c¢), (d) and (e) Energy spec-
tra and spatial wavefunction profiles obtained by numerical
diagonalization of the Hamiltonian Eq. (2), corresponding to
the phases in (a) and (b). In either parameter regime A = 0
describes a gapless line in the phase diagram, having the same
dispersion relation as the topologically trivial phase II, as il-
lustrated in (d). The sign of A determines whether a;, A; or
bi, B; modes are localized to a particular side of the ladder.
(e) shows an example of a topologically nontrivial phase with
localized zero energy modes at the edge.
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FIG. 3. Energy spectra obtained by numerical diagonalization
of the Hamiltonian Eq. (2), for (a) a fully decoupled SSH
ladder ¢ = 0 and (b) a weakly coupled p < 1 SSH ladder. A
non-zero value of the inter-chain coupling u causes the four
zero energy states to hybridize, resulting in non-zero energy
mid-gap edge modes.

ial phase and a regime analogous to a weak topological
insulator having unprotected edge modes resembling a
“twin-SSH” construction. To provide an intuitive pic-
ture for these phases, in considering Fig. 1, it is clear
that in addition to a topologically trivial phase having
no localized edge modes (Fig. 1 (b)) the SSH ladder can
host a single localized mode at each edge (Fig. 1 (c¢)) or
two pairs of localized modes at each edge as in Fig. 1 (e).

The parameters A and 7 introduced in Eq. (5) quantify
the relative strengths of the various dimerization pat-
terns that the SSH can exhibit. The quantity 7 is in-
dicative of the relative strength of inter-plaquette and
intra-plaquette couplings, while A is a measure of how
strongly the upper and lower legs of the ladder have op-
posite dimerization patterns. In particular, increasing A,
for t, A > 0 tends to give rise to a single end mode on
each end of the chain. This mode has weight on the a;, A;
modes on the left-hand side of the chain and the b;, B;
modes on the right-hand side. Similarly, decreasing A for
A < 0 tends to localize a single fermion with the roles

of a;, A; and b;, B; interchanged. The parameter 7 treats
the upper and lower legs symmetrically. For n > 0, there
is a tendency to localize two fermionic modes to each end
of the ladder.

The topological nature of the phases can be charac-
terized by tailoring the topological invariant introduced
in Eq. 7 to the SSH ladder. In particular, identifying
S =1® o,, we obtain

T dk .
Ng = — / 2—8k log(t1t3 + toty + t2t3€72k
. 2mi

+titge® — p?). (10)

The topological index Ng is thus the winding number of
an ellipse in the complex plane. If the ellipse does not
enclose the origin, the system is trivial and Ng = 0. This
occurs for

p? > (t +to)(ts + tg) = 4(t% — A%?). (11)
For

(b —to)(ts — ta) = 4(%0° — A?) < p®  (12)
< (ty +t2)(ts + ta) = 4(t* — A%, (13)

the ellipse encloses the origin and Ng = sgn(tA). The
sign of Ng thus determines whether a;, A; or b;, B; modes
are localized to a particular side of the ladder. The two
possible cases are therefore topologically distinct and sep-
arated by a gapless line A = 0 in the topological phase
diagram as in, for instance, Fig. (2).

Given that the ladder is essentially two coupled SSH
chains, a priori the system seems capable of hosting zero,
one or two localized modes at its ends. Our analysis of
the topological invariant Ng shows that this expectation
is not quite accurate. We find that there are two dis-
tinct topological phases which exhibit single fermionic
zero modes at each end of the ladder. At the same time,
the ladder system cannot host more than one fermionic
mode at each end. In particular, the form of Ng in
Eq. (10) makes it clear that only if the ladder has longer
range hopping can |Ng| > 1.

We can also address the fate of the zero modes for two
topological SSH chains which are coupled. The two end
modes can hybridize, thus forming the analog of a weak
topological insulator, as shown in 1 (e). A single fermion
mode is however protected given that for a spectrum with
particle hole symmetry and an odd number of states there
must be at least one zero energy state. This argument is
readily generalized: for a system of N chains coupled by
weak inter-channel couplings, we anticipate that a topo-
logical phase (with a single topological edge mode) will
result if and only if the number of chains that are topo-
logical is odd, a natural consequence of fermion parity
and particle-hole symmetry.

We remark that while the hybridization of edge states
in the case of two coupled chains does not allow for a
topological phase hosting zero energy edge states, the re-
sulting regime is distinct from the trivial regime in that
there is a persistent, non-zero energy, bound state at each
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FIG. 4. (a) Phase diagram for an infinitely long SSH ladder
with t1 = t3 and t2 = t4, (b) phase diagram for an SSH ladder
with hopping parameters as in (a) and a finite size L. The
slope of the phase boundaries is linear in L. (c) and (d) Spatial
wavefunction profiles corresponding to the two topologically
non-trivial phases (I and I in (a)) of the reduced SSH ladder.

ladder end. As shown in Fig. 3, hybridization causes the
bound edge states to move away from zero energy but
they still form low-energy mid-gap states. Transitioning
into the trivial state having no boundary modes whatso-
ever requires the closing of the bulk energy gap.

V. KITAEV CHAIN ANALOG

We now specialize to the case in which n = 0. We take
th =1ty = t(l — 5)7 to = t3 = t(l + (5), where § = A/t

As discussed in the previous section, 6 measures the ten-
dency of the SSH ladder to have the opposite dimeriza-
tion patterns on the upper and lower legs, respectively.
Thus, larger |J] tends to stabilize topologically non-trivial
phases.

This special, restricted set of couplings offers a means
of probing the phase diagram of the Kitaev chain, a
prototype for studying Majorana wires and the exciting
physics of Majorana fermionic bound states [20, 34]. The
Kitaev chain consists of a single chain of electrons pos-
sessing on-site local chemical potential p that can tunnel
between sites (for instance, with strength ) and experi-
ence nearest neighbour p-wave pairing (for instance, of
strength A). When represented in terms of pairs of Ma-
jorana fermions on each site, the physical construction
exactly maps on to the SSH ladder with the identification
t1)2 =t £ A [25]. Electronic bound states at the ends of
the SSH ladder map to Majorana fermionic bound states
at the end of the Majorana wire. Most importantly, the
dispersions for both systems are identical and the phase
boundaries serve to demarcate topological phases from
trivial ones.

Specifically, in the Kitaev chain analog limit, the en-
ergy dispersion of the SSH ladder takes the form

Ei(k) = +t\/(2cos(k) + /)% + (26 sin(k))2.  (14)

As in Sec. IV, the loci of energy gap closing points
form the phase boundaries between different topologi-
cal phases of the system and are given by : u = +2t at
k= 0,mand § = 0 at k = cos™!(—p/2t). The phase
diagram determined by these curves is shown in Fig. 4
(a). The topology of the various parts of the phase dia-
gram are readily established by considering simple cases.
The § = —1 corresponds to the case shown in Fig. 1
(d) which can be viewed as a single SSH chain weaving
between the upper and lower legs of the ladder. In accor-
dance with findings for a single, disconnected, chain the
system is topologically non-trivial in this case provided
that |u| < 2[t].

To re-emphasize the connections and differences be-
tween the SSH ladder and the Kitaev chain, the Dirac
fermionic end modes in the SSH ladder correspond to
phases with end Majorana modes in the Kitaev chain.
Though sometimes attributed to the Zs character of the
Kitaev chain (a system in class D), we see that this
property is actually due to particle-hole symmetry and
fermionic parity. Indeed, when the superconducting or-
der parameter is taken to be real in the Kitaev chain, the
Hamiltonian is also in the BDI class.

VI. INHOMOGENEOUS COUPLINGS AND
THE HOFSTADTER BUTTERFLY

We now consider the effect of including spatial inho-
mogeneity in a specific coupling terms in the SSH lad-
der system. In particular, we remain within the Kitaev



chain analog limit of ¢; = t4, to = t3 and consider peri-
odicity, quasi-periodicity, and disorder in the inter-chain
coupling p. Our reason for this is three-fold. First, we
wish to preserve particle-hole symmetry and the bipartite
nature of the lattice and thus do not include an actual
on-site chemical potential. Second, variation in p for the
ladder system exactly maps on to such a variation in a
potential landscape in the Kitaev chain, thus enabling us
to parallel Majorana fermion physics in the presence of
potential landscapes and disorder [25, 35-38]. Third, of
the vast parameter space for inhomogeneities, we narrow
our study to the most natural choice and show the rich
phase diagram structure stemming from even varying a
single parameter.

Explicitly, the inter-chain coupling in our model
Hamiltonian of Eq. (1) takes the form
j=1

The topology of the disordered chain is most conve-
niently found by employing the transfer matrix method,
discussed in Sec. II. We define the Lyapunov exponent of
the transfer matrix is y({u;},0, L) = limy, oo 1/L1n|A|,
where A is its highest eigenvalue. The exponent is the
inverse of the localization length of the edge-mode wave-
function in the topological phase. The phase boundaries
separating the topologically trivial and non-trivial phases
are thus determined by v = 0, corresponding to a diverg-
ing localization length at the transition point.

To probe the fate of the topological phase diagram
when inhomogeneities are present, we make use of a sim-
ilarity transformation as given in Ref. [22]. Explicitly,
the similarity transformation on the full chain transfer
matrix is given by

N2
A(jin, 8) = (Lﬁ) SA(n/V/I— 5.6 =0)S" (16)

where S = diag(f;M, 1/6(15/4) and {5 = % and we have
set t = 1. The matrix A, is the transfer matrix for a
normal tight-binding model — in the context of quasi-
periodicity, a Harper model — in the absence of a dimer-
ization 6. The model’s on-site chemical potential terms
are re-scaled by the transformation p, — p,/v1 — 2.
This map allows the Lyapunov exponent to be written as
a sum of two components, v(u,d) = s + o, one that de-
pends purely on the dimerization v5 and ~vo(u/v1 — 62),
which is the Lyapunov exponent for a system having no
dimerization and a rescaled locally varying chemical po-
tential. Thus, knowing wavefunction properties for non-
dimerized system enables identifying localized wavefunc-
tions in an SSH ladder having the same spatial variation.

One-dimensional fermionic systems are especially sen-
sitive to non-uniform potentials and disorder. The sim-
ilarity transformation quantifies the fact that the ten-
dency to localize fermions directly competes with the
topological phases. The transfer matrix formalism is par-
ticularly well-suited to the study of spatially varying po-
tentials. The topological phases can be determined by

(a) 1F

o 172

(b)

o 172

4 2 0 2 4
V/t

FIG. 5. The phase diagram for a quasiperiodically vary-
ing inter-chain coupling un,/t = V/t + 2cos (2rwn), where
2t = t1 + to, reflects the Hofstadter butterfly pattern. The
lighter regions indicate the places where the bulk gap closes
and the Lyapunov exponent vanishes i.e. the topologically
trivial regions. The Hofstadter butterfly pattern shows loci
in parameter space where available energy states exist in the
limit § = ¢; — t2 = 0. These loci seed topological phases,
which occupy larger regions of the phase diagram as § grows
larger between panels (a) § = 0.1 and (b) § = 0.2.

considering the eigenvalues of [], A;, where the product
runs over a full unit cell of the system in question.
More precisely, if both eigenvalues of A have a magni-
tude less than 1, this indicates that the a;/A; zero mode
decays as it goes into the bulk from the right. Since
the transfer matrix governing the b;/B; mode is given
by AL, in this case the b;/B; mode would be localized
to the right-hand side of the system. If however A has
one eigenvalue that is larger than 1 in magnitude and



another that is smaller than 1, then the zero modes are
not normalizable and thus this case corresponds to the
trivial phase.

Physically, the topology of the Kitaev-like ladder is
dictated by the competition between the coupling pa-
rameters p/t and 6 = A/t. The parameter ¢ breaks the
symmetry between the a; and B; modes at the left end of
the chain. In the limit § = 0, the Hamiltonian treats the
a;/A; and b;/ B; modes symmetrically, and thus must be
trivial since the topologically non-trivial modes are char-
acterized by a single end mode. For 0 < 6 < 1, the
coupling of the a; mode to the rest of the chain is weak-
ened relative to the B; mode, and thus in this case any
topological phase will have Ng = 1.

We begin our investigation of inhomogenously coupled
SSH chains with a particulary simple case which illus-
trates the relevant physics. Consider the case in which
d = —1 (recall that we have set ¢t = 1) and pu,, is some
arbitrary configuration (either periodic, quasiperiodic, or
disordered). As discussed above, this case can be consid-
ered as a single connected chain as in Fig. 1 (d). In this
case, the product of transfer matrices can be carried out
explicity

N

R 1 0
A= L (i 0) - 07

The eigenvalues of the
N

W IL,—; #n and zero.

provided that the nonzero eigenvalue has magnitude less

than 1. The condition that the system is topological can

be expressed as

n=1

resultant matrix are

The phase is topological

(In (lpal/)) <2, (18)

a condition that is applicable to periodic, quasiperiodic,
and disordered potentials. We point out that this special
case (0 = —1) can be mapped to the disordered quan-
tum Ising model. In this correspondence, the topological
phase in the fermionic system corresponds to the ferro-
magnetic phase in the spin model.

In discussing modulations of the inter-chain coupling
Lin, of particular note is the case in which

tn/t =V /t+ 2cos (2nwn) . (19)

This variation is of particular interest in the context of
localization physics and arises in the problem of an elec-
tron on a two-dimensional lattice in a magnetic field. The
spectrum of the latter is fractal and is known as Hofs-
tadter’s butterfly. The fractal pattern arises due to w
continuously tuning through quasi-periodic and periodic
modulations with respect to the underlying lattice. In
the present notation, Hofstadter’s butterfly corresponds
to the regions in which the Lyapunov exponent for Eq.
(19) and § are zero. Given the similarity transforma-
tion discussed above, knowing Lyapunov exponents in
the Hofstadter case enables us to derive Lyapunov expo-
nents for non-zero §. This in turn enables us to determine

the regions of parameter space that support localized end
bound states and are thus topological.

We have plotted the topological phase diagram in the
V —w plane for two values of § in Fig. 5. As § is increased
from zero, the mapping to Hofstadter’s model indicates
that the regions corresponding to the lowest Lyapunov
exponent get filled in first. Thus, as ¢§ is increased from
zero, regions of the phase diagram nearest to available
energy states reflected in the Hofstadter butterfly pat-
tern become topological first. As noted above, increasing
J tends to isolate an a;/A; mode, giving rise to more re-
gions which are topological. The phase diagram shown
in Fig. 5 ultimately arises as a result of the competition
between the localizing potential p,, given by Eq. (19) and
the effects of nonzero 4.

Our treatment above of spatial variations in the inter-
chain coupling p is generic and allows for different forms
of variation. Disorder in g is another natural choice.
The extensive treatments of such a case for the Kitaev
chain [22] immediately translate to the phase diagrams
expected for the SSH ladder system.

VII. FINITE SIZE

In experimental set-ups, for instance cold-atomic op-
tical lattices, the number of lattice sites in the system
is typically quite small due to limitations of experimen-
tal techniques. Consequently, finite size effects are a
significant consideration in experimental observation of
topological phases. We thus derive the structure of edge
mode wavefunctions for a system of size 'L’ and demon-
strate how a phase boundary can be effectively obtained
through finite-size analyses.

For the reduced SSH ladder model — the analogue of
the Kitaev wire discussed in Sec. V — it is sufficient to
consider the Fourier space Hamiltonian

; 0 p(k) )
H = . 20
= (ot 7 (20)
where p(k) = t1e* +tae= % 4y and p(k) = |p(k)|e?™*).
This Hamiltonian, Eq. (20), connects to the larger Hamil-
tonian of Eq. (2) through a unitary transformation U

that renders the latter off-diagonal and defines A and B
sub-lattices that are linear combinations of ¢ and A (b

and B):
: H} 0
TH.U = ko 21
v ( 0 H}% - 2M0m > ( )
and (A}, Bf) = J5(af + Af,b] + B).

The eigenstates of Eq. (20), corresponding to two
eigenvalues +F, are of the form:

gy, £) = % (e_ﬁ(k) ) . (22)

Here, the phase ¢(k) is implicitly given by

_ti+ s jz

tp(k) = t k
cot ¢ (k) ; co +t17t2

csc k. (23)
1=t



We construct the edge mode states as linear combinations
|vg, £) = Cylug, £) + C_|u_g, ). Further, in terms of
lattice wavefunctions [39)]:

- fEE ()

x (™[, A), e UHVj + 1, B)) (24)

where A and B denote the same sublattices as above.

To analyze the effects of the ladder’s finite size we im-
pose open boundary conditions and require that the wave
functions vanish for sites j = 0, L+ 1. More precisely, we
set

(0, Blvg, ) =0
(L +1), Ajog, ) = 0. (25)

Enforcing these conditions leads us to identify phase
boundaries as a function of 4,¢, 4 and the system size
L as

ty—ta 6

= =L+1. 26
ti+to—p  2t—p (26)

As shown in Fig. 4 (b), for the Kitaev wire analogue
SSH ladder having finitely many lattice sites, the slope
of phase boundaries is linear in system size. For large
system sizes (L — 00), the boundaries become vertical
and match the phase boundaries in the thermodynamic
limit. Further, enforcing Eq. (25) enables us to obtain the
form of the wavefunctions of zero energy edge modes:

sinh(A¢a(L + 1+
|V, £) = fZ( iblnfl Ag(]‘i‘l)]))))
x (|7, A), 7 + 1, B)) 27

where )¢ is the inverse of the localization length ¢ for
the edge state. In other words, A¢ is equivalent to the
Lyapunov exponent 7y of Sec. V.

When L >> ¢ i.e. the system size is much larger than
the localization length, the difference in energy of the
modes corresponding to the two states in Eq. (27) de-
creases exponentially fast with increasing L so that for
a large yet finitely-sized system the edge modes are ef-
fectively degenerate states with vanishing energies. The
'bending’ of the phase boundaries compared to the phase
diagram of Fig. 4 (a) for a ladder with a finite size and
the qualitative shape of the edge-mode wavefunction in
Eq. (27) are germane to experimental studies of the SSH
ladder system.

Further, we use the same formalism to compare the
general SSH ladder to its decoupled g — 0 limit. Con-
sidering the case in which the decoupled system consists
of two topological chains i.e. two chains hosting a pair of
zero egde modes, these four modes can be described by

the wavefunctions

sinh(A¢(L +1— 7))

| ZL: —1)it +sinh(j\e)
vk%’ ’ﬂ y — NG sinh(jA¢)

= Esinh(Ae(L —j+ 1))
x(l4,a), 17,0), 14, A), |4, B)) (28)

with A¢ as above. An addition of a small inter-chain cou-
pling i can then be treated perturbatively. Consequently,
we see that regardless of the size of the SSH ladder, the
four zero energy edge states acquire an energy shift lin-
ear in p. In other words, these modes hybridize and the
energy spectrum does not possess any zero modes but
rather two pairs of non-zero energy midgap states, as
shown in Fig. (3). This observation is consistent with
our previous discussion of pairs of zero edge modes not
being topologically protected, as in Sec. I'V.

VIII. OUTLOOK

In summary, we have analyzed the SSH ladder as a
natural extension of the well-studied SSH chain, paying
particular regard to topological and edge state proper-
ties. We have charted the phase diagram exhibited by
such a ladder system and pinpointed the nature of the
topological phases. Under a restricted set of couplings,
the ladder serves as an analog for the Kitaev chain and
associated Majorana physics. In this regime, we have in-
vestigated the effect of inhomogeneity and the possibility
of a ’topological Hofstadter butterfly phase diagram’ for
quasiperiodic variations. With an eye towards realizing
these features in a variety of experimental systems, we
have discussed the role played by finite size effects.

One particularly elegant realization of localized edge
modes in the context of cold atomic experiments has al-
ready been achieved in Ref. [11], where these topologi-
cal features of a single SSH chain have been confirmed
through direct imaging. The procedure of directly detect-
ing edge-localization entails loading condensate atoms on
a particular lattice ‘site’, which in this experimental set-
up corresponds to a discrete momentum state, and sud-
denly turning on, or quenching, the desired coupling be-
tween sites. Observing consequent population decay, or
the lack thereof, to the neighboring ‘sites’ through time-
of-flight absorption imaging then indicates whether or
not a zero energy edge mode is supported for this point
in the space of couplings. Such images comprise a direct
observation of an edge mode and confirm that the sys-
tem is in a topologically nontrivial phase. An extension
of such methods to our SSH ladder would required a set-
up capable of realizing two coupled chains and the ability
to tune through parameter space in order to access our
predicted phase diagrams.

A similar procedure for observing edge modes has been
used in a photonic system [13], where a photon is initial-
ized next to the boundary between two topologically dis-
tinct quantum walks and observed to not spread ballisti-



cally when a bound edge state is present. In metamateri-
als of Ref. [9], the zero modes are found to localize in the
corners of the system and to be robust to mechanical de-
formations corresponding to changes in the space of inter-
and intra-chain couplings. These systems thus offer var-
ious means of manifesting Kitaev chain analogs through
SSH ladder realizations. The Majorana fermion bound
states in these cases would translate to Dirac fermionic,
bosonic, and even classical mechanical localized modes
confined to ends of the ladder.

Turning to inhomogeneity, the appearance of the Hof-
stadter butterfly is one of many exotic features arising
from the rich mathematical structure of the Harper equa-
tion and related quasi-periodicity. Quantities of interest
such as the wavefunctions and the density of states are
known to have multifractality [40]. Recently there have
been works on realising a quasiperiodic system through a
Hofstadter Hamiltonian in cold atomic systems [27, 28].
Even though cold atomic systems are well suited for re-
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alizations of complex structures such as the Hofstadter
butterfly in contrast to electronic systems, recent exper-
imental studies centered on the Hofstadter Hamiltonian
have not included any direct measurements of the fractal
character of the system’s wavefunctions. Our model of
coupled SSH chains provides a novel possibility of realiz-
ing this striking self-similar diagram through observation
of topological phases driven by direct time-of-flight imag-
ing and related experimental techniques described above.
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