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Abstract

An atomistic effective Hamiltonian technique is employed to investigate the polarization switch-

ing mechanism of the (metastable but long-living) ferroelectric state of PbMg1/3Nb2/3O3 relaxor

ferroelectric, resulting from the application of a dc electric field along the [1̄1̄1̄] direction – that is,

opposite to the initial polarization. It is predicted that such switching is of inhomogeneous type. It

involves the creation of intermediate short-range-ordered, relaxor-like phases in-between long-range

ordered states inside which an infinite cluster exists and have dipoles being near either the initial

polarization direction (for shorter times) or the field’s direction (for longer times). In contrast,

dipoles belonging to finite clusters or being isolated can deviate away from [111] and [1̄1̄1̄], and, in

fact, rotate in average from [111] to [1̄1̄1̄] when time increases. Such rotations govern the reversal

of the polarization from [111] to [1̄1̄1̄] occurring within the intermediate relaxor-like states’ region,

while always resulting in the overall cancellation of any Cartesian component of the polarization

that is perpendicular to [111]. These rotations occurring at the atomic scale also naturally imply

that some fundamental assumptions of the original nucleation-limited-switching (NLS) model are

not valid, despite the fact that we numerically further find that the whole temporal behavior of the

macroscopic polarization can be well fitted by the general formula associated with NLS. In other

words, we have stumbled into a novel switching or at least to a switching that should be denoted

as a generalized NLS model. Finally, three different electric field regimes are predicted, with each

of them having its own dependency of the switching time on the magnitude of the applied electric

field and only one of them obeying the Merz’s law. The existence of these three regimes is explained

in terms of specific microscopic features.
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I. INTRODUCTION

Switching of the electrical polarization under an external electric field has been investi-

gated in ferroelectric compounds for many years, because of its fundamental interest but also

for technological applications1–17. In particular, a recent study showed that a specific type

of polarization switching can lead to solid-state synapses and is thus promising for designing

future-brain-inspired computers18. Such particular type is inhomogeneous in nature and is

termed the nucleation-limited-switching (NLS) model. It assumes that different areas of

the film adopt different switching dynamics, with a limited propagation of the domain walls

separating these areas from the host matrix4–7,15. Another type of inhomogeneous switching

of the polarization has been proposed and documented in the literature19–21, that is the so-

called Kolmogorov-Avrami-Ishibashi (KAI) model. It consists of inhomogeneous nucleation

of reversed domains too but with significant (i.e., “unlimited”) domain-wall motions. In

addition to the inhomogeneous NLS and KAI models, homogeneous-types of polarization

switching (that is without nucleation of domains) have also been reported in some ferro-

electric systems8–11. One can envision two different types of homogeneous switching when

applying an external electric field that is opposed to the initial polarization, namely (1) the

polarization of a monodomain is first continuously reduced in magnitude with no change

of direction, until fully vanishing and then reverting its direction to become parallel to the

field22; or (2) the polarization of a monodomain rather progressively rotates away from its

initial direction towards the direction of the electric field23.

It may be provocative to wonder if novel types of polarization switching have been over-

looked in the past, considering the aforementioned activities. However, to the best of our

knowledge, polarization switching has been poorly investigated to date in a specific subclass

of ferroelectrics, and surprises may thus be in store for them. This subclass is formed by ferro-

electric relaxors, that are known to exhibit unusual properties. For instance, their dielectric

response-versus-temperature function exhibits a peak, that is not only unusually broad but

is also strongly dependent on the frequency of the applied ac electric field, while they remain

macroscopically non-polar down to 0K24,25. Such unusual behaviors are often ascribed to

the existence of so-called polar nanoregions (PNRs) inside which dipoles are parallel to each

other26–30, with the direction of such dipoles differing between various PNRs such that to

provide a zero macroscopic polarization. Interestingly, the application of dc electric fields to
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relaxor ferroelectrics can have dramatic consequences on their local structure and polariza-

tion. For example, applying, at low temperature, a large enough dc electric field along the

pseudo-cubic [111] direction in the lead magnesium niobate PbMg1/3Nb2/3O3 (PMN) proto-

type relaxor ferroelectric results in a first-order transition from a relaxor state to a regular

ferroelectric state having a now-finite macroscopic polarization lying along the pseudo-cubic

[111] direction31–33. Such latter ferroelectric state even persists, rather than transforms back

to the relaxor phase, when removing the applied electric field at low temperature34. One may

ask what will happen to the spontaneous polarization of this (metastable) ferroelectric state

when applying a dc electric field that is opposed to such polarization. Will the switching be

homogeneous or inhomogeneous? If it is the latter, many questions arise. For instance, will

it pass through a relaxor-kind of state consisting of PNRs having different direction of the

polarization? Will it be of NLS or KAI type or can it even be a novel kind of inhomogeneous

switching? Does the switching type depend on the magnitude of the applied electric field,

as recently found in the so-called T-phase of BiFeO3
17 when identifying three different fields

regimes – each adopting its own Merz’s law35?

The goal of this manuscript is to address such questions by performing atomistic simu-

lations. As we are going to see below, the polarization-versus-time function obeys rather

accurately the behavior predicted by the NLS model. However, local aspects associated with

the switching mechanism differ from some basic assumptions of the NLS model, implying

that either a new name has to be given for the presently discovered switching or the wording

“generalized NLS model” should be adopted. As a matter of fact, the switching mechanism

is found here to (i) involve long-ranged polar states inside which the so-called infinite cluster

(that is inherent to percolation theory) occurs and whose strength dramatically depends on

time, as well as (ii) intermediate relaxor-like state inside which the infinite cluster has been

destroyed. Moreover, the dipoles of the infinite cluster can only lie near [111] (at small times)

or [1̄1̄1̄] (at large times), while the dipoles that do not belong to this infinite cluster adopt

rotations away from [111] that are primordial in the reversal of the polarization (that occurs

within the relaxor-like states). These rotations are not included in the standard NLS model.

Finally, varying the magnitude of the applied electric field still yields a temporal dependency

of the macroscopic polarization that is well described by the NLS model, but for which the

characteristic switching time adopts three different behaviors with such magnitude. These

three regimes are related to specific local features inherent to the infinite cluster, such that
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the time-dependency of its polarization or the time-dependency of its strength. Such de-

pendencies result in only one out of these three regimes obeying the conventional Merz’s

law35.

This article is organized as follows. Section II provides details about the methods used,

while Section III reports predictions and their analyses. Finally, Section IV summarizes the

main findings.

II. METHODS

Here, molecular dynamics (MD) calculations36 are conducted on an 18×18×18 disordered

periodic configuration of PMN, by using the effective Hamiltonian developed in Ref. [37].

This effective Hamiltonian has the following degrees of freedom: (1) the local modes in each

5-atom cell, ui, which are directly proportional to local dipole moments; (2) the homogeneous

strain, ηH ; and (3) dimensionless vectors, vi, that are related to the local inhomogeneous

strain existing inside each 5-atom cell i38. This effective Hamiltonian has been recently shown

to reproduce the existence of several specific temperatures inherent to relaxor systems, such

as the Burns temperature, as well as, the so-called T∗ and depolarizing temperatures37. It

was also put in use to predict that such temperatures are strongly affected by short-range-

order chemical ordering between the Mg and Nb ions in the B-sublattice of PMN39, and

to explain the origin of its relaxor nature from a subtle competition between (i) random

electric fields arising from the alloying of Mg and Nb ions in this B-sublattice; (ii) the

simultaneous condensation of several off-center k points as a result of antiferroelectric-like

interactions between lead-centered dipoles; and (iii) ferroelectric-like interactions37. Such

effective Hamiltonian also revealed the existence of polar nanoregions (PNRs) in the relaxor

state of PMN37.

During our MD computations, the following equations of motion are solved:

∂Etot

∂qi

= −mq
∂2qi

∂t2
(1)

where Etot is the internal energy provided by the effective Hamiltonian, qi represents the

aforementioned degrees of freedom in the unit cell i (note that, for the homogeneous strain,

qi is in fact independent of the i index) and mq is the mass associated with these degrees of

freedom. Technically, the mass of the local modes is selected such as to reproduce experi-
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mental phonon frequencies at some temperatures40–44, and the masses of the homogeneous

and inhomogeneous strains are chosen to be rather large in order to avoid generating addi-

tional frequencies of the order of cm−1. Technically, the MD time step is chosen to be 0.5 fs.

The initial generalized velocities q̇i were selected randomly, but with the requirements that

the average kinetic energies per primitive cell related to the generalized velocities u̇i and v̇i

are each equal to 3

2
kBT , where kB is the Boltzmann constant and T is temperature – which,

in the present study, amounts to 10 K. We also first pole our PMN sample by applying a

dc electric field of magnitude 5 × 108V/m along the [111] direction and equilibrate it by

performing Monte Carlo calculations37. We then remove this field and equilibrate the sys-

tem again, which results in the system retaining its ferroelectric state (rather than coming

back to a relaxor phase), as consistent with experiments34. The corresponding equilibrated

polar structure is then subject to a dc electric field applied along the [1̄1̄1̄] direction (that

is, opposed to the initial polarization) within the MD simulations. In the present study, we

choose different magnitude of such latter dc electric field, in order to reveal and understand

its effect on polarization switching in PMN. Note that we numerically found45 that, quanti-

tatively, the field’s magnitudes employed in our simulations are about 22 times larger than

the measured ones33, which is typical for atomistic simulations16,46,47.

III. RESULTS

Figure 1a shows the temporal dependence of the < u > supercell average of the local mode

vectors (such average is directly proportional to the electrical polarization) for three different

field’s magnitudes, namely 3.5×107V/m, 8.0×107V/m and 2.0×108V/m, respectively (note

that, as we will see towards the end of this article, each of those fields is representative of

a particular regime). Such supercell average is shown in the (x’,y’,z’) basis for which the

x’, y’ and z’-axes are along the pseudo-cubic [11̄0], [112̄] and [111] pseudo-cubic directions,

respectively. Only the z’-component of the polarization is finite, since both the x’- and

y’-components are found to be negligible for any time and for any applied electric field (and

are thus not shown in Fig. 1a for clarity). As a result, the presently studied switching

mechanism does not involve a continuous rotation of the spontaneous polarization from

its initial direction to the field’s direction, which contrasts with the mechanism invoked in

Ref.23. Moreover, the projection of the supercell average of the local mode vectors on the
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pseudo-cubic [111] direction (to be denoted as < uz′ >) is first positive and decreases with

time, until passing through a zero value and becoming negative as time further evolves, which

is representative of a switching of the polarization from [111] to [1̄1̄1̄] under the influence

of the electric field. The time at which < uz′ > vanishes will be denoted here as t0 and

represents the switching time. Figure 1a further indicates that t0 is rather sensitive to the

magnitude of the applied electric field, and decreases when this magnitude increases. Note

that the inset of Fig. 1a also displays the < |u| > average magnitude of the individual

local modes as a function of time and reveals that such magnitude is rather unchanged with

time in the case of these three fields (even for times close to t0). As a result, the switching

mechanism of PMN is not a homogeneous one for which the local dipoles all simply first

shrink in magnitude along [111], then all become annihilated at the same time before all

lying along [1̄1̄1̄] and increasing their magnitude until reaching saturation.

In order to determine the switching mechanism of the polarization of the polar state of

PMN, we employ the theory of percolation48. More precisely, we computed the so-called

strength of the infinite cluster, Pinf , as the relative number of the sites belonging to clusters

spreading from one boundary of the supercell to the opposite boundary and inside which

the dipoles are parallel to each other within 32 degrees (that is, the angle between dipoles

belonging to such clusters have a cosine equal or greater than 0.85). A value of +1 for Pinf

therefore indicates that all sites of the supercell have dipoles being oriented along the same

direction within 32 degrees, while a zero value is indicative that such infinite cluster does not

exist. A value of 0.5 represents the case of 50% of the sites of the whole supercell belonging

to the infinite cluster. We also calculated the percolation cluster size, < s >, as:

< s >=

∑

i s
2
i

N
(2)

where N is the total number of the sites of the supercell, and si is the number of the sites

belonging to cluster i inside which the dipoles are parallel to each other within 32 degrees,

but excluding the dipoles belonging to the infinite cluster. Let us also express words of

caution for general readers, namely that the jargon in use in the percolation theory may be

thought confusing. For instance, the so-called percolation clusters do not percolate within

the entire supercell. They are are limited in volume, and also include isolated dipoles in our

case. The only cluster that is percolating from one side of the supercell to its opposite side

is the so-called infinite cluster.
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Figures 2a and 2b report Pinf and < s > as a function of time, respectively, for the three

fields used in Figs. 1a. It is informative to realize that, at the initial time, Pinf is about

0.7, implying that not all the dipoles of the supercell are pointing along the pseudo-cubic

[111] direction – therefore characterizing some form of disorder in the ferroelectric phase

of PMN, as a result of the distribution of local electric fields originating from the random

arrangement between Mg and Nb ions in the B-sublattice. Such disorder arises from sites

that either belong to percolation clusters or that have isolated dipoles (all deviating from

[111] in direction). Moreover, Figs 1b, 1c and 1d display the averaged local mode that

the infinite cluster adopts for these same three fields of 3.5 × 107V/m, 8.0 × 107V/m and

2.0 × 108V/m, respectively, as a function of time. They indicate, in particular, that the

x′ and y′ components of the polarization of these infinite cluster are basically null at any

time and for any field. In other words, the infinite cluster can only have a polarization lying

along [111] or [1̄1̄1̄]. The contribution of this infinite cluster into the average local mode

of the whole system is therefore equal to the product of Pinf by the z′-component of the

average local mode of the infinite cluster (to be called uinf,z′). Such Pinfuinf,z′ product is

further shown in Fig. 1a. It is smaller in magnitude than that of < uz′ > at any time

and for any field, which implies that the dipoles belonging to percolation clusters or being

isolated (i.e., being outside the infinite cluster) also always participate in the formation of

an overall polarization along the [111] or [1̄1̄1̄] direction. Such latter dipoles have, in fact,

directions that can each differ from the [111] and [1̄1̄1̄] directions, as evidenced in Figs. 2c

by the fact that the cosine of the angle that the averaged local mode vector of each site

belonging to the percolation clusters or being isolated makes with the [111] direction can be

different from +1 or -1 (such cosine will be denoted as cos(θ), in the following, and has a

rather large scattering at the initial time – as representative of the many directions that the

sites being outside the infinite cluster can adopt). However, summing all these latter dipoles

results in a contribution to the total polarization that is finite only along the [111] or [1̄1̄1̄]

direction. In other words, the x′ and y′-components of the dipoles belonging to percolation

clusters or being isolated always mostly cancel each other, unlike their z’-component. Note

that Figs. 2c also shows, by means of a thick red solid curve, the cos(θ) averaged over all

the sites not belonging to the infinite cluster, which is a quantity that will be referred to as

< cos(θ) >not inf and that clearly deviates from +1 and −1 at any time and field – therefore

characterizing the general tendency of these local dipoles to deviate from [111] and [1̄1̄1̄]
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directions.

The information reported in Figs 1 and 2 can now fully explain the switching mechanism

of the ferroelectric state of PMN. For instance, for all fields, the strength of the infinite

cluster first gradually, typically decreases with time until reaching a zero value. During these

times, there are therefore more and more sites that leave the infinite cluster, which leads to

a decrease of the total polarization along [111] via two combined effects: the contribution

of the infinite cluster to the total local mode is reduced (as evidenced by the decrease of

Pinfuinf,z′ with time shown in Fig. 1a), and the dipoles being outside the infinite cluster

rotate away from [111] and towards [1̄1̄1̄] (as indicated by the decrease of < cos(θ) >not inf

seen in Figs. 2c).

Then, the infinite cluster fully disappears at a time to be denoted as tannih,begin, and

which amounts to 4.53ps for a field of 3.5 × 107V/m, 0.91ps when E = 8.0 × 107V/m, and

0.255ps for the larger field of 2.0 × 108V/m. Interestingly, at these precise latter tannih,begin

critical times, the disappearance of the infinite cluster is accompanied by the emergence of

large percolation clusters with size up to < s >≈ 50 for the small field of 3.5 × 107V/m,

< s >≈ 30 for the intermediate field of E = 8.0 × 107V/m, and < s >≈ 18 for the larger

field of 2.0 × 108V/m. The polarization at tannih,begin is slightly positive for any studied

field, as a result of the fact that < cos(θ) >not inf is also positive for this time (see Figs.

2c). In other words, at tannih,begin, PMN undergoes a transition from a ferroelectric state

that is long-ranged ordered (due to the existence of an infinite cluster) to an atypical short-

range-like state that is not long-range-ordered anymore but rather owes its slightly positive

polarization along [111] to dipoles belonging to percolation clusters and isolated dipoles.

When time further increases up to t0, (i) the infinite cluster is still non-existent and (ii) the

large percolation clusters occurring at tannih,begin then break into smaller percolation clusters,

with a minimum size occurring at the t0 switching time (the percolation clusters’ sizes at

this minimum are 44, 20 and 5 for fields of 3.5× 107V/m, 8.0× 107V/m, and 2.0× 108V/m,

respectively, to be compared with < s >≈ 19 found in Ref. [37] for the ground state of

relaxor phase in PMN at 10 K). The resulting intermediate state can, in fact, be considered

as a relaxor phase as evidenced by the existence of polar nanoregions (see inset of the top

panel of Fig. 2a) with a vanishing total polarization. Such latter vanishing is consistent with

the fact that < cos(θ) >not inf is now null. However, Figs. 2c also reveal that, at t = t0,

some sites still have dipoles lying near [111] (their cos(θ) is ≃ +1) while others prefer to have
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their dipoles close to [1̄1̄1̄] (their cos(θ) is rather ≃ -1). Such features indicate that different

regions of the sample have different switching times, which is an essential characteristics of

the NLS model (note also that the fact that < cos(θ) >not inf is close to zero near t = t0

does not mean that all dipoles lie in the (111) plane at these times, since there are local

cos(θ)’s that significantly differ from zero even for these times, and as a result, dipoles

having finite (positive or negative) components along the pseudo-cubic [111] direction still

exist near t = t0).

Further increasing to another critical time that we denote here as tannih,end still leads to

the absence of the infinite cluster but the percolation clusters are now gaining in size (see

Fig. 2b). For instance, these larger clusters have < s >≈ 85, 50 and 48 for 3.5 × 107V/m,

8.0 × 107V/m and 2.0 × 108V/m, respectively. Interestingly, the overall polarization is

now along [1̄1̄1̄] because of the continuing overall rotation of the dipoles towards the field’s

direction (cf Fig. 2c). Note that tannih,end is equal to ≈ 5.75ps, 1.43ps and 0.57ps for E

equal to 3.5× 107V/m, 8.0× 107V/m and 2.0× 108V/m, respectively.

At tannih,end, the percolation clusters and isolated dipoles then merge into one another to

create a new infinite cluster, therefore making a transition from a short-range-like state to a

ferroelectric phase. The polarization of this ferroelectric state is further strengthened along

[1̄1̄1̄] because the dipoles belonging to the now-reformed infinite cluster are along such direc-

tion (see Figs 1b, 1c and 1d) and because the dipoles belonging to the percolation clusters

or being isolated further continue to rotate towards [1̄1̄1̄] (as evidenced by < cos(θ) >not inf

becoming closer to -1 in Fig. 2c). Interestingly, we numerically found that the infinite clus-

ter existing just after tannih,end does not contain all the same dipoles than those belonging

to the infinite cluster just before tannih,begin. In fact, there are only 14% of the dipoles that

both belong (1) to the infinite cluster for which Pinf = 0.2 for a time after tannih,end and (2)

to the infinite cluster for which Pinf = 0.2 too but before tannih,begin, when applying the field

of 3.5× 107V/m. These dipoles, before tannih,begin are along the [111] direction, on average,

and they are along [1̄1̄1̄] direction just after tannih,end.

When increasing the time after tannih,end, the strength of this infinite cluster typically

continuously increases to about +0.80 for long enough times (at which the switching of the

polarization has then been completed), via the further incorporation of dipoles previously

belonging to percolation clusters or being isolated. Such strengthening leads to a further

overall enhancement of the polarization along the field’s direction (since Pinfuinf,z′ becomes
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more and more negative, as revealed by Fig. 1a). Meanwhile, the dipoles being outside

the infinite cluster still slightly rotate towards [1̄1̄1̄], which further enhances the overall

polarization along such direction (these outside dipoles also still cancel in average their x’

and y’ components).

Note also that Figs 2a and 2b further show that Pinf and < s > additionally exhibit

some kind of periodic fluctuations in the entire investigated time interval of the simulations,

implying that both the infinite cluster and the percolation clusters can “breathe” under the

applied dc electric fields. In fact, we numerically found (not shown here) that the Fourier

analysis of < s >, for the three fields depicted in Figs. 1 and 2, possess two strong peaks

whose positions indicate the natural frequencies of these breathings: one peak is located

near zero frequency with a half-width of about 1 THz, while the other peak is located at 1.6

THz.

Moreover and as aforementioned, the scattering of cos(θ) clearly seen in Figs 2c for any

field, especially for times ranging between tannih,begin and tannih,end, is consistent with one

basic ingredient of the NLS model, namely that different regions have different switching

times. Moreover, the fact that we did not see any systematic increase of < s > with time

in Figs. 2b (especially for large fields) is also in-line with another characteristic of the NLS

model, i.e. the domain walls of the switched areas have a limited propagation.

To quantitatively check that the NLS model is indeed technically applicable to the switch-

ing of the polar state of PMN, Fig. 1a further reports, via red thick solid lines, the fit of the

NLS model15 to our numerical data for the variation of the z’-component of the supercell

average of the local mode with time, predicting that:

< uz′(t) >=< us >

[

1−
2 ∗ A

π

(

arctan
log(t)− log(ts)

log(w)
+

π

2

)]

(3)

where < us > is the initial value of the z’-component of the supercell average of the local

mode, and A, ts and w are some parameters, the values of which are given in Table I. Note,

in particular, that A is rather close to 1 for any considered electric field, which implies that

ts is close to t0 (that is the time at which < uz′(t) > vanishes). For instance, for fields of

3.5 × 107, 8 × 107 and 2 × 108 V/m, ts is equal to 5.56, 1.29 and 0.46 ps, respectively, to

be compared with the corresponding values of 5.20, 1.20, and 0.42 for t0. Note that the

physical meaning of the parameters entering Eq. (3) are that A is a normalization constant,

log t0 is the central value of the Lorentzian distribution characterizing the switching time,
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TABLE I: Parameters of the NLS model fitting our numerical MD data for three different electric

fields

E(V/m) 3.5 × 107 8× 107 2× 108

< us > (a.u.) 0.085 0.083 0.076

ts (ps) 5.56 1.29 0.46

w (ps) 1.17 1.28 1.30

A (dimensionless) 1.24 1.16 1.21

and logw is its half-width at half-maximum.

Figure 1a therefore shows that the fit of the MD data by Eq. (3) is in overall very good

for any field, which confirms that the NLS model can be practically applied to describe the

polarization switching of the polar phase of PMN.

One should note, however, that other basic ingredients of the NLS model do not hold

in our discovered switching. For instance, the NLS model assumes that, as soon as one

part of an elementary region acquires dipoles being opposed to the initial polarization, the

whole elementary region instantly switches its polarization along the field direction. Such

instantaneous reversal is not observed in our computations, as, e.g., evidenced by the facts

that cos(θ) of many dipoles belonging to percolation clusters and isolated dipoles rather

slowly evolve with time, but also that < cos(θ) >not inf gradually changes with time, as

representative of rotation, rather than sudden switching, of these dipoles (see Fig. 2c). We

are therefore reporting a new type of polarization switching, which should thus been given

another name or at least denoted as generalized NLS model (taking into account that the

equation of NLS describes well the time evolution of the macroscopic polarization, but fails

in reproducing all the atomistic mechanisms associated with the polarization reversal).

Let us now see if another common law associated with switching, that is the celebrated

Merz’s law35, holds here or not. For that, Fig. 3 displays the logarithm of the switching

time as a function of the inverse of the electric-field magnitude. Three different regimes

are observed. In Regime I, which corresponds to fields smaller than 3.7 × 107V/m, the

logarithm of the switching time practically goes up vertically with the inverse of the field.

On the other hand, in Regime II, that corresponds to fields ranging between 3.7× 107V/m
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and 1.0 × 108V/m, ln(t0) basically linearly increases with the inverse of the fields. Such

nearly linear increase is consistent with Merz’s law35. In Regime III, that is for fields above

1.0×108V/m, the logarithm of the switching time once again deviates from a linear behavior

with 1/E. In other words, it is striking to realize that only one out of these three regimes

obeys the commonly believed Merz’s law35!

In fact, one can understand the existence of these three regimes, and the deviation of

the Merz’s law for two of them, thanks to some data shown in Figs 1 and 2, especially once

realizing that the fields of 3.5 × 107V/m, 8.0 × 107V/m and 2.0 × 108V/m precisely fall

into Regimes I, II and III, respectively. As a matter of fact, the switching time of Regime

I is larger than the one expected from the red straight line of Fig. 3 for two reasons: for

small fields, (1) the infinite cluster has a polarization along [111], whose magnitude is nearly

independent on the time, for times before tannih,begin (see Fig. 1b); and (2) it especially

takes time to break the infinite cluster in favor of rotating dipoles belonging to percolation

clusters or being isolated (cf top of Fig. 2a). Such difficulty in breaking the infinite clusters

also manifests itself into the large oscillation of both the strength of the infinite clusters

and the percolation size (see top of Figs 2a and 2b), as indicative that some pieces of the

infinite cluster are broken and then reattach themselves to the infinite cluster by creating

and then absorbing back, respectively, some percolation clusters, for times before tannih,begin.

Other manifestations of such difficulty in breaking the infinite cluster are the large < s >

occurring at tannih,begin, as well as the large value of tannih,begin and the rather small ratio of

t0/tannih,begin (which is equal to 1.15 for the 3.5 × 107V/m field). Such two latter features

indicate that it takes a rather long time to fully break the infinite cluster, but, then the

reversal of the polarization happens relatively quickly once this infinite cluster is broken.

For intermediate fields, it takes lesser time to destroy this infinite cluster (see interme-

diate Fig. 2a), while the polarization of this infinite cluster remains more-or-less nearly

independent on time before tannih,begin (cf Fig. 1c). In other words, the activation energy

that is typically associated with the existence of a Merz’s law likely concerns the energy

of breaking the infinite clusters (rather than the motion of domain walls, as often assumed

in the Merz’s law35). Note that t0/tannih,begin is now equal to a larger value of 1.32 for the

8.0× 107V/m field.

Finally, the switching time in Region III is much shorter than the one given by the

red straight line because the polarization of the infinite cluster now decreases with time
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before tannih,begin (as shown in Fig. 1d), while the infinite cluster continues to be more

easily breakable under larger fields (see bottom of Fig. 2a). As a result, two mechanisms

having two activation energies are at play here: an activation energy that is associated

with the reduction of the magnitude of the polarization within the infinite clusters, and

another activation energy that is inherent to the breaking of the infinite clusters. Having

two different activation energies is likely the reason why the Merz’s law is not applicable

in Region IIII (since such law assumes a single activation energy). Such double activations

now result in much larger t0/tannih,begin, i.e. of the order of 1.65 for the 2.0× 108V/m field.

As a result, it takes about 65% of the time to break such infinite cluster in order to bring

the macroscopic polarization to zero, once the infinite cluster is broken .

IV. SUMMARY

In summary, we report here the prediction that a specific switching occurs when applying

a dc electric field along [1̄1̄1̄] to the ferroelectric state of PMN having an initial (opposite)

polarization along [111]. This switching is schematized in Fig. 4. It (1) first involves the

progressive reduction of the number of dipoles belonging to the infinite cluster (with these

dipoles lying near [111]), altogether with the rotations towards [1̄1̄1̄] of the dipoles being

outside this infinite cluster (with these rotations resulting in a cancellation of the x’ and y’

components of the polarization that are perpendicular to [111], unlike the z’-component that

is parallel to [111]); is then (2) accompanied by the complete breaking of this infinite cluster

in favor of a short-range, relaxor-like state inside which dipoles continue to rotate towards

the field’s direction (with, once again, the x’ and y’ directions of their dipoles canceling each

other in average, while the average z’ component varies from being slightly positive to slightly

negative via passing through a zero at the switching time); before (3) a new infinite cluster

is re-created (but inside which the dipoles are now along [1̄1̄1̄]) and gains in strength, via

the assimilation of finite clusters and isolated dipoles. Microscopic aspects of this switching,

such as the aforementioned rotation, implies that fundamental assumptions of the standard

NLS are not satisfied. On the other hand, the studied switching mechanism results in a

polarization-versus-time curve that can be well fitted by the NLS model. We thus would

like to propose to give another name to the presently discovered switching or to denote it

as “generalized NLS model”. It will also be interesting to determine, in a near future, if
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the various states encountered during this polarization switching of PMN have each their

own electrical resistance, and thus can form the basis of so-called memristors49,50. If that

is the case, some possible applications towards artificial neural networks and unsupervised

learning in high-density memristive arrays18, taking advantage of the presently discovered

polarization switching of PMN, may be designed (Note that polarization switching has

also some consequences on elastic and related properties of the system. For instance, we

numerically found (not shown here) that, for times ranging between tannih,begin and tannih,end,

the strain along the [111] direction typically takes its smallest values for any applied electric

field). Finally, we also demonstrated that small and large applied fields result in a violation

of the commonly accepted Merz’s law35 because of very specific local features.

We thus hope that our findings increase the current knowledge of ferroelectrics, relaxors

and polarization switching, and can also be of some use for novel technologies.
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CAPTIONS.

Figure 1 (color online). Local modes as a function of time. Panel (a) shows the temporal

dependence of the < u > supercell average of the local mode vectors for three different

external electric fields applied along the [1̄1̄1̄] direction. These three electric fields have a

magnitude of 3.5× 107V/m, 8.0× 107V/m and 2.0× 108V/m, respectively, and correspond

to the use of red, green and blue colors, respectively. Only the z’-component of < u > is

shown (by means of open circles), because its x’ and y’-components are basically null at any

time and field. The thick red solid lines represent fit of the MD data for this z’-component

of < u > by the NLS model. Moreover, the product of Pinf and uinf,z (see text) is also

displayed by means of open rhombus in Panel a, and the < |u| > average magnitude of

the individual local modes is further shown in the inset of Panel (a) (via filled squares).

Panels (b), (c) and (d) represent the x’, y’ and z’ components of the averaged local mode

of the infinite cluster as a function of time, for electric fields of 3.5 × 107, 8.0 × 107, and

2.0 × 108 V/m, respectively. The arrows show the positions of tannih,begin, t0, and tannih,end.

Note that there are no data in Panels (b), (c) and (d) for times ranging between tannih,begin

and tannih,end, simply because there is no infinite cluster during this time interval.

Figure 2 (color online).Temporal dependence of some local quantities for the three differ-

ent dc fields indicated in Fig. 1, namely of 3.5× 107V/m, 8.0× 107V/m and 2.0× 108V/m’s

magnitude, for the top, intermediate and bottom panels, respectively. Panels (a), (b), and

(c) display the strength of the infinite cluster, percolation cluster size, and cos(θ) (see text),

respectively. The inset in the top of Panel (a) represents a snapshot of the dipole pattern

at time t0 for the applied field of 3.5 × 107V/m, with red colors delimiting the percolation

clusters (that coincide with polar nanoregions). The red thick line of Panel (c) display

< cos(θ) >not inf (see text too). The arrows in all panels show the positions of tannih,begin,

t0, and tannih,end.

Figure 3 (color online). Dependence of the logarithm of the t0 switching time on the

inverse magnitude of the applied electric field. The dashed vertical lines delimit the Regions

I, II and III indicated in the text, while the red solid line represents a linear fit of the data

in Region II.

Figure 4 (color online). Schematization of the studied switching mechanism. Panel (a)

emphasizes that, in the initial stage of switching, the infinite cluster has dipoles along [111]

and coexists with finite percolation clusters having dipoles in directions being different from
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[111], but so that their average is also along [111]. Small percolation clusters in this stage

have therefore x’- and y’-components of dipoles being perpendicular to [111], but that vanish

after averaging out over all percolation clusters. Panel (b) indicates that the infinite cluster

is reduced in terms of relative number of dipoles, and that the dipoles belonging to the

percolation clusters are rotating towards [1̄1̄1̄], while still maintaining their overall averaged

x’- and y’- components equal to zero. Panel (c) shows that, at t = t0, there is no more

infinite cluster, while the dipoles in the percolating clusters fully cancel their polarization

on average along any direction (as consistent with the inset of the top of Fig. 2a); Panel

(d) emphasizes the reappearance of the infinite cluster, with dipoles being along [1̄1̄1̄] now,

and the dipoles of the percolating clusters having now directions getting closer to [1̄1̄1̄] but

still canceling each other their x’- and y’-components (unlike their z’-component that is now

negative). Finally, Panel (e) can be thought as the reciprocal situation of Panel (a), in the

sense that there is a large infinite cluster, but with polarization along [1̄1̄1̄] that coexists

with a few percolating clusters whose dipoles deviate from [1̄1̄1̄] but for which their x’- and

y’-components cancel each other while their average z’-component is negative.
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