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We provide a detailed formulation of the recently proposed variational approach [arXiv:1801.05825] to study
ground-state properties and out-of-equilibrium dynamics for generic quantum spin-impurity systems. Moti-
vated by the original ideas by Tomonaga, Lee, Low, and Pines, we construct a canonical transformation that
completely decouples the impurity from the bath degrees of freedom. By combining this transformation with a
Gaussian ansatz for the fermionic bath, we obtain a family of variational many-body states that can efficiently
encode the strong entanglement between the impurity and fermions of the bath. We give a detailed derivation of
equations of motions in the imaginary- and real-time evolutions on the variational manifold. We benchmark our
approach by applying it to investigate ground-state and dynamical properties of the anisotropic Kondo model
and compare results with those obtained using matrix-product state (MPS) ansatz. We show that our approach
can achieve an accuracy comparable to MPS-based methods with several orders of magnitude fewer variational
parameters than the corresponding MPS ansatz. Comparisons to the Yosida ansatz and the exact solution from
the Bethe ansatz are also discussed. We use our approach to investigate the two-lead Kondo model and ana-
lyze its long-time spatiotemporal behavior and the conductance behavior at finite bias and magnetic fields. The
obtained results are consistent with the previous findings in the Anderson model and the exact solutions at the
Toulouse point.

I. INTRODUCTION

Out-of-equilibrium phenomena in quantum many-body
systems are an active area of research in both ultracold
gases1–5 and traditional solid-state physics6–10. A broad class
of problems that correspond to a quantum impurity coupled
to the many-body environment are particularly important and
have been at the forefront of condesned matter physics start-
ing with the pioneering paper by Kondo11. They have proven
crucial to the understanding of thermodynamic properties in
strongly correlated materials12–16, transport phenomena17–28

and decoherence29–31 in nanodevices, and lie at the heart of
formulating dynamical mean-field theory32 (DMFT).

A variational approach is one of the most successful and
powerful approaches for solving many-body problems. Its
guiding principle is to design a family of variational states
that can efficiently capture essential physics of the quantum
many-body system while avoiding the exponential complex-
ity of the exact wavefunction. In quantum impurity problems,
such variational studies date back to Tomonaga’s treatment33

of the coupling between mesons and a single nucleon. Soon
after that, Lee, Low and Pines34 (LLP) applied similar ap-
proach to the problem of a polaron, a mobile spinless impurity
interacting with phonons. Their key idea is to take advantage
of the total-momentum conservation by transforming to the
comoving frame of the impurity via the unitary transforma-
tion

ÛLLP = e−ix̂·P̂b , (1)

where x̂ is the position operator of the impurity and P̂b is
the total momentum operator of bath phonons. After employ-
ing the transformation, the conserved quantity becomes the
momentum operator p̂ of the impurity as inferred from the

relation:

Û†LLP(p̂ + P̂b)ÛLLP = p̂. (2)

In the transformed frame, p̂ can be taken as a classical vari-
able and thus, the impurity is decoupled from the bath de-
grees of freedom, or said differently, its dynamics is com-
pletely frozen. This observation naturally motivates the fol-
lowing family of variational states:

(a)

(b)

FIG. 1. Schematic illustration of the canonical transformation in-
troduced in our variational approach. (a) In the original frame, the
localized impurity spin can interact with mobile bath particles in an
arbitrary manner, generating strong entanglement between the impu-
rity spin and bath. (b) After employing the canonical transformation,
we can move to the “corotating” frame of the impurity in which the
impurity dynamics can be made frozen at the expense of introducing
an interaction among bath particles.
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|Ψtot(ξ)〉 = ÛLLP|p〉|Ψb(ξ)〉, (3)

where |p〉 is a single-particle state of the impurity having
eigenmomentum p, and |Ψb(ξ)〉 is a bath wavefunction char-
acterized by a set of variational parameters ξ. For example,
when the bath is given by an ensemble of bosonic excita-
tions, |Ψb〉 can be chosen as a factorizable coherent state, as
has been suggested in the original papers by Tomonaga33 and
Lee, Low and Pines34. Variational approach combining the
transformation (1) with a variety of efficiently parametrizable
wavefunctions has been very successful in solving both in-
and out-of-equilibrium problems and thus laid the cornerstone
of successive studies in polaron physics35–54.

Our aim is to generalize this variational approach to yet
another important paradigm in many-body physics: local-
ized spin-impurity models (SIM) (Fig. 1). The most fun-
damental problem in SIM is the Kondo model11, a local-
ized spin-1/2 impurity interacting with a fermionic bath.
Its equilibrium properties are now theoretically well un-
derstood based on the results of the perturbative renor-
malization group (RG)55, Wilson’s numerical renormaliza-
tion group (NRG)56–62 and the exact solution via the Bethe
ansatz63–68. Yet, its out-of-equilibrium dynamics is still an
area of active experimental5–10 and theoretical research69–110

with many open questions. Earlier works include real-time
Monte Carlo69–73, perturbative RG74–79 and Hamiltonian RG
method80–82, coherent-state expansion83–85, density-matrix
renormalization group (DMRG)86–93, time-dependent NRG
(TD-NRG)94–100, time evolving decimation (TEBD)101,102,
and analytical solutions103–110.

In spite of the rich theoretical toolbox for studying the
quantum impurity systems, analysis of the long-time dynam-
ics remains very challenging. Most theoretical approaches
suffer from the same fundamental limitation: they become in-
creasingly costly in terms of computational resources at long
times. For example, it has been pointed out in TD-NRG
that the logarithmic discretization may cause artifacts in pre-
dicting long-time dynamics111, and calculations based on the
matrix-product states (MPS) are known to be extremely chal-
lenging in the long-time regimes because the large amount of
entanglement forces one to use an exponentially large bond
dimension112. Another difficulty intrinsic to some of the
methods is to understand spatiotemporal dynamics of the bath
degrees of freedom since the latter are often integrated out
or represented as a simplified effective bath, in which details
of the microscopic eigenstates are omitted. Furthemore, the
currently available methods have been constructed for a spe-
cific class of the Kondo impurity model, in which electrons
move ballistically and interaction between the impurity spin
and fermions is local. Extending these techniques to the case
of electrons strongly scattered by disorder and nonlocal in-
teractions with the impurity spin is not obvious. These chal-
lenges motivate us to develop a new theoretical approach to
quantum impurity systems. In the accompanying paper113,
we introduce a new canonical transformation that is the core
of the proposed variational approach and provide strong evi-
dence for the validity of our approach to correctly describe in-

and out-of-equilibrium properties of SIM.
In this paper, we present comprehensive details of the pro-

posed variational approach. For the sake of completeness,
we first provide the construction of the new transformation
that generates the entanglement between the impurity and the
bath. In contrast to the LLP transformation (1) of going into
the comoving frame of the mobile spinless impurity, such a
construction of the canonical transformation in SIM is not ob-
vious due to the SU(2)-commutation relation of the impurity
spin operators. We discuss a general approach to construct-
ing such transformations in this paper. We then combine the
transformation with Gaussian states to obtain a family of vari-
ational states that can efficiently capture the impurity-bath
entanglement. We provide a set of nonlinear equations of
motions for the covariance matrix to study ground-state and
out-of-equilibrium properties of generic SIM. We benchmark
our approach by applying it to the anisotropic Kondo model
and compare results with those obtained using MPS ansatz.
We also compare our results to the ones obtained from the
Yosida ansatz and the exact solution via the Bethe ansatz. We
analyze out-of-equilibrium dynamics and transport properties
in the two-lead Kondo model and demonstrate that our ap-
proach can be used to compute the long-time spatiotempo-
ral dynamics and the conductance at finite bias and magnetic
field. The obtained results are consistent with the previous
studies in the Anderson model88,99,114 and the exact solutions
at the Toulouse point110.

This paper is organized as follows. In Sec. II, we present
a general concept of our variational approach to SIM. In par-
ticular, we discuss the canonical transformation introduced in
Ref.113 that decouples the impurity from the bath degrees of
freedom. We then derive the equations of motions for the co-
variance matrix of fermionic Gaussian states that describe the
ground-state properties and real-time evolutions of SIM. In
Sec. III, we apply our theory to the anisotropic Kondo model
and benchmark it with MPS-based calculations and the exact
solution via the Bethe ansatz. In Sec. IV, we analyze trans-
port dynamics in the two-lead Kondo model in further detail
and reveal long-time spatiotemporal dynamics and the con-
ductance behavior at finite bias and magnetic fields. Finally,
we summarize the results in Sec. V.

II. GENERAL FORMALISM

A. Canonical transformation

We first formulate our variational approach to SIM in a gen-
eral way. The key idea is to introduce a new canonical trans-
formation that completely decouples the impurity and the bath
degrees of freedom for a generic spin-1/2 impurity Hamilto-
nian Ĥ by employing its parity symmetry P̂, i.e., [Ĥ, P̂] = 0

with P̂2 = 1. Specifically, we aim to find a unitary trans-
formation Û that maps this parity operator P̂ to an impurity
operator as (c.f. Eq. (2))

Û†P̂Û = n · σ̂imp, (4)
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where σ̂imp = (σ̂ximp, σ̂
y
imp, σ̂

z
imp)T is a vector of the impu-

rity spin-1/2 operator and n is some specific direction defined
by a three dimensional real vector. It then follows that in the
transformed frame the Hamiltonian commutes with the impu-
rity operator [Û†ĤÛ ,n · σ̂imp] = 0 such that the impurity
dynamics is frozen, i.e., the transformed Hamiltonian condi-
tioned on a classical variable n · σ̂imp = ±1 only contains
the bath degrees of freedom. The price that one pays for de-
coupling the impurity spin is the appearance of nonlocal mul-
tiparticle interactions between the bath degrees of freedom.
In spite of the seeming complexity of the fermionic interac-
tions in the decoupled frame, we show that their dynamics
can be efficiently described using Gaussian variational wave-
functions, which require the number of parameters that grows
at most polynomially with the system size.

In this paper, we apply this approach to a spin-1/2 impurity
interacting with a fermionic bath:

Ĥ =
∑
lmα

hlmΨ̂†lαΨ̂mα − hz ŝzimp + ŝimp · Σ̂, (5)

where Ψ̂†lα (Ψ̂lα) is a fermionic creation (annihiliation) opera-
tor corresponding to a bath mode l = 1, 2, . . . , Nf and spin-z
component α =↑, ↓, hlm is an arbitrary Nf × Nf Hermitian
matrix describing a single-particle Hamiltonian of a bath, and
hz is a magnetic field acting on the impurity. We define the
impurity spin operator ŝimp = σ̂imp/2 and introduce the bath-
spin density operator including couplings as

Σ̂γ =
1

2

∑
lmαβ

gγlmΨ̂†lασ
γ
αβΨ̂mβ , (6)

where γ = x, y, z. The first term in Eq. (5) describes a non-
interacting bath, the second term describes a local magnetic
effect acting on the impurity, and the third term character-
izes the interaction between the impurity and the bath. The
impurity-bath couplings in Eq. (6) are determined byNf×Nf
Hermitian matrices gγlm labeled by γ = x, y, z and can in gen-
eral be anisotropic and long-range. While the interaction leads
to strong impurity-bath entanglement, we note that it can also
generate entanglement between bath modes since the ones that
interact with the impurity are not diagonal with respect to the
eigenbasis of bath Hamiltonian hlm in general. The magnetic-
field term acting on the bath can be also included; we omit that
for simplicity.

Our canonical transformation relies on the parity symme-
try hidden in the Hamiltonian (5). To unveil this symmetry,
we introduce the operator P̂ = σ̂zimpP̂bath with a bath parity
operator

P̂bath = e(iπ/2)(
∑

l σ̂
z
l +N̂) = eiπN̂↑ , (7)

where N̂ is the total particle number in the bath, σ̂γl =∑
αβ Ψ̂†lασ

γ
αβΨ̂lβ (γ = x, y, z) is a spin-density operator with

a bath mode l, and N̂↑ is the number of spin-up fermions.
These operators satisfy P̂2

bath = P̂2 = 1. We observe that
the Hamiltonian (5) conserves P̂, i.e., [Ĥ, P̂] = 0. This corre-
sponds to the symmetry under the rotation of the entire system

around z axis by π, which maps both impurity and bath spins
as P̂−1σ̂x,yP̂ = −σ̂x,y while it keeps P̂−1σ̂zP̂ = σ̂z .

We employ this parity conservation to construct the disen-
tangling transformation Û satisfying

Û†P̂Û = σ̂ximp (8)

such that the impurity spin turns out to be a conserved quantity
in the transformed frame. Here we choose n = (1, 0, 0)T in
Eq. (4); other choices will lead to the same class of variational
states. We define a unitary transformation Û as

Û = exp

[
iπ

4
σ̂yimpP̂bath

]
=

1√
2

(
1 + iσ̂yimpP̂bath

)
. (9)

Employing this transformation, we arrive at the following
transformed Hamiltonian ˆ̃H= Û†ĤÛ :

ˆ̃H=
∑
lmα

hlmΨ̂†lαΨ̂mα − hz ŝximpP̂bath

+ŝximpΣ̂x + P̂bath

(
− iΣ̂

y

2
+ ŝximpΣ̂z

)
. (10)

As expected from the construction, the impurity spin com-
mutes with the Hamiltonian [ ˆ̃H, ŝximp] = 0, and thus we can
take the impurity operator as a conserved number σximp =
2sximp = ±1 in the transformed frame. Decoupling of the im-
purity spin came at the cost of introducing interactions among
the bath particles. Note that these interactions are multipar-
ticle and nonlocal, as can be seen from the form of the op-
erator P̂bath. The appearance of the bath interaction can be
interpreted as spin exchange between fermions via the impu-
rity spin. This is analogous to the case of the mobile spin-
less impurity34, where a nonlocal phonon-phonon interaction
is introduced after transforming to the comoving frame of the
impurity via the LLP transformation. We emphasize that the
elimination of the impurity relies only on the elemental parity
symmetry in the original Hamiltonian and thus should have a
wide applicability. The construction of Û holds true for arbi-
trary conserved parity, and can be also applied to two-impurity
systems115.

It follows from Eq. (10) that for the even bath-particle
number N and the zero magnetic field hz = 0, the Hamil-
tonian has two degenerate equivalent energy sectors corre-
sponding to the conserved quantity σximp = ±1 in the trans-
formed frame. This is because the two sectors in Eq. (10)
can be exactly related via the additional unitary transforma-
tion Ûybath = e(iπ/2)

∑
l σ̂

y
l , which maps the bath spins as

σ̂x,zl → −σ̂x,zl . To our knowledge, such an exact spectrum
degeneracy hidden in generic SIM has not been pointed out
except for some specific cases that are exactly solvable via the
Bethe ansatz63–68 or at the Toulouse point116.

The explicit form of variational states is (c.f. Eq. (3))

|Ψ〉 = Û |±x〉imp|Ψb〉
= |↑ 〉impP̂±|Ψb〉 ± |↓ 〉impP̂∓|Ψb〉, (11)
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where |±x〉imp represents the eigenstate of σ̂ximp with eigen-
value ±1, |Ψb〉 represents a bath wavefunction, and P̂± =

(1 ± P̂bath)/2 is the projection onto the subspace with even
or odd number of spin-up fermions. As we will see later,
this form of variational wavefunction can naturally capture the
strong impurity-bath entanglement, which is an essential fea-
ture of, for example, the formation of the Kondo singlet.

We stress that our variational approach is unbiased in the
sense that the variational states (11) are constructed without
any particular a priori knowledge about the underlying impu-
rity physics such as the Kondo physics. The canonical trans-
formation Û includes neither parameters in the Hamiltonian
(e.g., Kondo coupling) nor any variational parameters. While
we will choose |Ψb〉 as the Gaussian states in the next subsec-
tion, the variational states (11) are still unbiased because the
Gaussian states take into account all the two-particle excita-
tions in an unbiased manner.

B. Variational time-evolution equations

1. Fermionic Gaussian states

To solve SIM efficiently, we have to introduce a family
of variational bath wavefunctions that can approximate the
ground state and real-time evolutions governed by the Hamil-
tonian (10) while they are simple enough so that calcula-
tions can be done in a tractable manner. In the decoupled
frame, we choose variational many-body states for the bath
as fermionic Gaussian states117–119. It is convenient to in-
troduce the Majorana operators ψ̂1,lα = Ψ̂†lα + Ψ̂lα and
ψ̂2,lα = i(Ψ̂†lα−Ψ̂lα) satisfying the anticommutation relation
{ψ̂ξ,lα, ψ̂η,mβ} = 2δξηδlmδαβ with ξ, η = 1, 2. We describe
the bath by a pure fermionic Gaussian state |ΨG〉 that is fully
characterized by its 4Nf×4Nf covariance matrix Γ117–119:

Γ =
i

2

〈
[ψ̂, ψ̂

T
]
〉

G
, (12)

where (Γ)ij = −(Γ)ji ∈ R is real antisymmetric and Γ2 =
−I4Nf

for pure states with Id being the d × d unit matrix.
Here, 〈· · · 〉G denotes an expectation value with respect to the
Gaussian state |ΨG〉, and we introduced the Majorana opera-
tors ψ̂ = (ψ̂1, ψ̂2)T, where we choose the ordering of a row
vector ψ̂ξ with ξ = 1, 2 as

ψ̂ξ = (ψ̂ξ,1↑, . . . , ψ̂ξ,Nf↑, ψ̂ξ,1↓, . . . , ψ̂ξ,Nf↓). (13)

We can explicitly write the bath state as

|ΨG〉 = e
1
4 ψ̂

T
Xψ̂|0〉 ≡ ÛG|0〉, (14)

where we define the Gaussian unitary operator by ÛG and in-
troduce a real-antisymmetric matrix (X)ij = −(X)ji ∈ R.
The latter can be related to Γ via

Γ = −Ξσ (Ξ)
T
, (15)

where Ξ = eX and σ = iσy ⊗ I2Nf
. It will be also useful to

define the 2Nf×2Nf correlation matrix:

Γf = 〈Ψ̂
†
Ψ̂〉G (16)

in terms of Dirac fermions

Ψ̂ = (Ψ̂1↑, . . . , Ψ̂Nf↑, Ψ̂1↓, . . . , Ψ̂Nf↓). (17)

2. Imaginary- and real-time evolutions

We approximate the exact time evolution of a bath wave-
function |Ψb〉 by projecting it onto the manifold spanned by
the family of variational states. This can be done by employ-
ing the time-dependent variational principle119–122, which al-
lows us to study ground-state properties via the imaginary-
time evolution and also out-of-equilibrium dynamics via the
real-time evolution. Let us first formulate the former one.

The imaginary-time evolution

|Ψb(τ)〉 =
e−

ˆ̃Hτ |Ψb(0)〉∥∥∥e− ˆ̃Hτ |Ψb(0)〉
∥∥∥ (18)

gives the ground state in the asymptotic limit τ → ∞ if
the initial seed state |Ψb(0)〉 has a non-zero overlap with the
ground state. Differentiating Eq. (18), we obtain the equation
of motion

d

dτ
|Ψb(τ)〉 = −( ˆ̃H − E)|Ψb(τ)〉, (19)

where E = 〈Ψb(τ)| ˆ̃H|Ψb(τ)〉 represents the mean energy.
If we consider the covariance matrix Γ of the Gaussian state
|ΨG〉 to be the time-dependent variational parameters, their
imaginary-time evolution equation can be obtained by mini-
mizing its deviation ε from the exact imaginary-time evolu-
tion:

ε =

∥∥∥∥ ddτ |ΨG(τ)〉+ ( ˆ̃H − Evar)|ΨG(τ)〉
∥∥∥∥2

,

(20)

where Evar = 〈ΨG(τ)| ˆ̃H|ΨG(τ)〉 is the variational energy.
This is formally equivalent to solving the projected differen-
tial equation:

d

dτ
|ΨG(τ)〉 = −P̂∂Γ( ˆ̃H − Evar)|ΨG(τ)〉, (21)

where P̂∂Γ is the projector onto the subspace spanned by tan-
gent vectors of the variational manifold. On one hand, the
left-hand side of Eq. (21) gives

d

dτ
|ΨG(τ)〉= ÛG

(
1

4
: ψ̂

T
ΞT dΞ

dτ
ψ̂ :+

i

4
Tr

[
ΞT dΞ

dτ
Γ

])
|0〉,

(22)
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where : : represents taking the normal order of the Dirac op-
erators Ψ̂ and Ψ̂†. On the other hand, we can write the right-
hand side of Eq. (21) as:

−( ˆ̃H − Evar)|ΨG(τ)〉 = −
(
i

4
: ψ̂

T
ΞTHΞψ̂ : +δÔ

)
|0〉,

(23)

whereH = 4δEvar/δΓ is the functional derivative of the vari-
ational energy122 and δÔ denotes the cubic and higher order
contributions of ψ̂ that are orthogonal to the tangential space
and thus will be projected out by P̂∂Γ in Eq. (21). Comparing
Eqs. (22) and (23), and using Eq. (15), we can uniquely deter-
mine the imaginary time-evolution equation of the covariance
matrix Γ as119,122

dΓ

dτ
= −H− ΓHΓ, (24)

which guarantees that the variational energy Evar monotoni-
cally decreases and the variational ground state is achieved in
the limit τ →∞. In this limit, the error ε in Eq. (20) is equiv-
alent to the variance of the energy in the reached ground state
and can be used as an indicator to check the accuracy of the
variational state.

In the similar way, we can derive the equation of motion for
Γ in the real-time evolution

|Ψb(t)〉 = e−i
ˆ̃Ht|Ψb(0)〉. (25)

The projection

d

dt
|ΨG(t)〉 = −iP̂∂Γ

ˆ̃H|ΨG(t)〉 (26)

of the Schrödinger equation on the variational manifold leads
to the following real-time evolution equation of the covariance
matrix Γ119,122:

dΓ

dt
= HΓ− ΓH. (27)

C. Functional derivative of variational energy

To analytically establish the variational time-evolution
equations (24) and (27) of the covariance matrix Γ, we have to
obtain the functional derivative H = 4δEvar/δΓ of the vari-
ational energy. In this subsection, we give its explicit analyt-
ical expression. First of all, we write the expectation value
Evar = 〈 ˆ̃H〉G of the Hamiltonian (10) with respect to the
fermionic Gaussian state as

Evar =
∑
lmα

hlm(Γf )lα,mα −
hz
2
σximp〈P̂bath〉G

+
1

4

∑
lmαβ

gxlmσ
x
impσ

x
αβ(Γf )lα,mβ

+
1

4

∑
lmαβ

(
−igylmσ

y+ gzlmσ
x
impσ

z
)
αβ

(ΓP
f )lα,mβ ,(28)

where we condition the impurity operator on a classical num-
ber σximp = ±1 and introduce the 2Nf×2Nf matrix contain-

ing the parity operator as ΓP
f = 〈P̂bathΨ̂

†
Ψ̂〉G. The values of

〈P̂bath〉G and ΓP
f can be obtained as

〈P̂bath〉G = (−1)Nf Pf

[
ΓF
2

]
, (29)

and

ΓP
f=

1

4
〈P̂bath〉G

×Σz(I2Nf
,−iI2Nf

)Υ−1
(
Γσ − I4Nf

)( I2Nf

iI2Nf

)
, (30)

where Pf denotes the Pfaffian and the matrices

ΓF =
√

I4Nf
+ Λ Γ

√
I4Nf

+ Λ− (I4Nf
− Λ)σ, (31)

Υ = I4Nf
+

1

2

(
Γσ − I4Nf

) (
I4Nf

+ Λ
)
, (32)

are defined by Λ = I2 ⊗ Σz and Σz = σz ⊗ INf
. We recall

that the matrix σ is defined below Eq. (15).
Since the first and third terms in the Hamiltonian (10) are

quadratic, we can write them exactly in the Majorana basis as
iψ̂

T
H0ψ̂/4 with

H0 = iσy ⊗ [I2 ⊗ hlm + (σximp/4)σx ⊗ gxlm], (33)

where hlm and gxlm are understood to beNf×Nf real matrices.
Thus, the functional derivative H = 4δEvar/δΓ of the mean
energy (28) is given by

H=H0 +
δ

δΓ

[
−2hzσ

x
imp〈P̂bath〉G + Tr(STΓP

f )
]
, (34)

where we introduce the matrix

S = −iσy ⊗ gylm + σximpσ
z ⊗ gzlm. (35)

Taking the derivatives of 〈P̂bath〉G and ΓP
f with respect to the

covariance matrix Γ in Eq. (34), we finally obtain the analyti-
cal expression of the functional derivativeH:

H=H0+

[
hzσ

x
imp〈P̂bath〉G−

1

2
Tr(STΓP

f )

]
P

− i
4
〈P̂bath〉G A

[
VSTΣzV†

]
, (36)

where A[M ] = (M −MT)/2 denotes the matrix antisym-
metrization and we introduce the matrices

P =
√

I4Nf
+ ΛΓ−1

F

√
I4Nf

+ Λ, (37)

V = (ΥT)−1

(
I2Nf

iI2Nf

)
. (38)

Integrating Eqs. (24) and (27) with the general form (36) of the
functional derivative, one can study ground-state properties
and out-of-equilibrium dynamics of SIM on demand.
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III. APPLICATION TO THE ANISOTROPIC KONDO
MODEL

A. Model

We benchmark our general variational approach by apply-
ing it to the anisotropic Kondo model and comparing the re-
sults with those obtained using matrix-product state (MPS)123.
We also compare our results to the Yosida ansatz124 and the
exact solution via the Bethe ansatz63–68. The one-dimensional
Kondo Hamiltonian is given by

ĤK =−th
L∑

l=−L

(
ĉ†lαĉl+1α+h.c.

)
+

1

4

∑
γ

Jγ σ̂
γ
impĉ

†
0ασ

γ
αβ ĉ0β ,

(39)

where ĉ†lα (ĉlα) creates (annhilates) a fermion with position l
and spin α. The spin-1/2 impurity σ̂γimp locally interacts with
particles at the impurity site l = 0 via the anisotropic cou-
plings Jx,y = J⊥ and Jz = J‖. We choose the unit th = 1
and the summations over α, β are understood to be contracted
hereafter. This model shows a quantum phase transition29 be-
tween an antiferromagnetic (AFM) phase and a ferromagnetic
(FM) phase. The former leads to the formation of the singlet
state between the impurity and bath spins, leading to the van-
ishing impurity magnetization 〈σ̂zimp〉 = 0. The latter exhibits
the triplet formation and the impurity magnetization takes a
non-zero, finite value in general.

We remark that, employing the infinite-bandwidth approxi-
mation and the bosonization, the Kondo model can be mapped
to the spin-boson model29. Within this treatment, the im-
purity magnetization and the spatiotemporal dynamics have
been previously studied by TD-NRG method95,100 and also
by the bosonic Gaussian states combined with a unitary
transformation122. In the latter, the unitary transformation was
specifically designed to the spin-boson model and one had to
choose a specific symmetry sector to obtain meaningful re-
sults. In contrast, we here construct a completely different,
general family of variational states by introducing the new de-
coupling transformation Û . The transformation Û specifies
no specific conditions on a physical system as far as it con-
tains (arbitrary) parity symmetry P̂ and a spin-1/2 operator.
In view of this strong versatility, our approach can be applied
to a much wider class of problems than the previous work122.
Moreover, we apply this general approach to analyze in and
out of equilibrium problems of the fermonic Kondo models
on the lattice, which are more challenging problems than the
bosonized version due to their intrinsically finite bandwidth.

To apply our general formalism in Sec. II, we note that in
the Hamiltonian (39) only the symmetric bath modes couple to
the impurity spin. We thus identify the fermionic bath modes
Ψ̂ as

Ψ̂0α = ĉ0α, Ψ̂lα =
1√
2

(ĉlα + ĉ−lα) (40)

with l = 1, 2, . . . , L. The corresponding bath Hamiltonian
hlm is given by the following (L+1)×(L+1) hopping matrix

h1 of the single lead:

h1 = (−th)



0
√

2 0 · · · 0
√

2 0 1 0
...

0 1 0 1
...

... 0 1
. . . 1

0 · · · · · · 1 0


. (41)

The couplings gγlm are identified as the local Kondo interac-
tion Jγδl0δm0. In this section, we set the magnetic field to be
zero hz = 0 for simplicity.

Solving Eqs. (24) and (27) with the functional deriva-
tive (36), we obtain the covariance matrix Γ corresponding
to the ground state and the real-time dynamics. The associ-
ated observables can be efficiently calculated in terms of the
covariance matrix. For example, the impurity-bath spin corre-
lations for each direction are obtained from

χxl =
1

4
〈σ̂ximpσ̂

x
l 〉 =

1

4
σximpσ

x
αβ(Γf )lα,lβ , (42)

χyl =
1

4
〈σ̂yimpσ̂

y
l 〉 =

1

4
(−iσyαβ)(ΓP

f )lα,lβ , (43)

and

χzl =
1

4
〈σ̂zimpσ̂

z
l 〉 =

1

4
σximpσ

z
αβ(ΓP

f )lα,lβ , (44)

where 〈· · · 〉 denotes an expectation value with respect to
wavefuntion in the original frame. The impurity magnetiza-
tion can be obtained from

〈σ̂zimp〉 = σximp〈P̂bath〉G = σximp(−1)Nf Pf

[
ΓF
2

]
, (45)

where we use Eq. (29) in the second equality.

B. Structure of variational ground state

In this subsection, we discuss how the entanglement in the
Kondo-singlet state is naturally encoded in our variational
ground state. It is useful to choose a correct sector of varia-
tional manifold by specifying an appropriate conserved quan-
tum number. In particular, if the initial seed state is an eigen-
state of the total spin-z component σ̂ztot = σ̂zimp + σ̂zbath with
σ̂zbath =

∑L
l=0 σ̂

z
l , its value σztot is conserved through the

imaginary-time evolution due to [σ̂ztot, H] = 0.
To show the singlet behavior explicitly, we investigate the

variational ground state by choosing the initial seed state in
the sector σztot = 0. As inferred from the definition of the
bath parity (7) and the variational ansatz (11) conditioned on
the sector σximp = 1, in the original frame the spin-up im-
purity | ↑〉 is coupled to the bath with even number of spin-
up fermions N↑ (correspondingly, odd number of spin-down
fermions N↓ = N↑ + 1), while the spin-down impurity |↓〉
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is coupled to the bath having odd (even) number of spin-up
(-down) fermions N↑ (N↓ = N↑ − 1). It then follows that the
projected states |Ψ±〉 = P̂±|Ψb〉, which couple with the im-
purity spin-up and -down states, respectively (c.f. Eq. (11)),
are eigenstates of σ̂zbath as follows:

σ̂zbath|Ψ±〉 = ∓|Ψ±〉. (46)

In the deep AFM phase with σztot = 0, one can numerically
verify that the projected states |Ψ±〉 satisfy the following re-
lations:

|||Ψ±〉|| = 1/2, 〈Ψ−| σ̂+
bath |Ψ+〉 = −1/2. (47)

This automatically results in the vanishing of the impurity
magnetization 〈σ̂zimp〉 = 0 and underscores that the variational
ground state is indeed the singlet state between the impurity
and the bath spins:

|ΨAFM〉 =
1√
2

(|↑〉imp|Ψ↓〉 − |↓〉imp|Ψ↑〉) , (48)

where we use Eq. (11) and denote the normalized spin-1/2
bath states as |Ψ↓〉 =

√
2|Ψ+〉 and |Ψ↑〉 = −

√
2|Ψ−〉.

It is worthwhile to mention that, if we choose |Ψb〉 in
Eq. (11) as a single-particle excitation on top of the Fermi
sea, Eq. (48) reproduces the variational ansatz that has been
originally suggested by Yosida124 and then later generalized to
the Anderson model125 and resonant-state approach126. This
variational state has been recently revisited127 and shown to
contain the majority of the entanglement in the ground state
of the Kondo model, indicating the ability of our variational
states to encode the most significant part of the impurity-bath
entanglement. Yet, we emphasize that our variational ansatz
goes beyond such a simple ansatz since we consider the gen-
eral Gaussian state that takes into account all the correlations
between two fermionic operators. Such a flexibility beyond
single-particle excitations becomes crucially important when
we do quantitative analyses on the Kondo physics as we will
demonstrate later.

In practice, we also monitor the formation of the Kondo-
singlet formation by testing the sum rule58 of the impurity-
bath spin correlation χl = 〈σ̂imp · σ̂l〉/4:

L∑
l=0

χl =
1

8
〈σ̂2

tot − σ̂
2
imp − σ̂

2
bath〉 = −3

4
. (49)

In the discussions below, we checked that this sum rule has
been satisfied with an error below 0.5% in AFM regime with
J‖ > 0. These observations clearly show that our varia-
tional states successfully capture the most important feature
of Kondo physics in an efficient manner, i.e., with a number
of variational parameters growing only quadratically with the
system size L.

C. Comparisons with matrix-product states and Yosida ansatz

1. Matrix-product states

To further test the accuracy of our approach, we compare
our variational results with those obtained using a MPS ansatz.

For the sake of completeness, here we describe the MPS-
based method applied to the Kondo model. The MPS ansatz
for a generic N -body quantum system takes the form

|ΨD〉=
∑
{ik}

Tr
(
A[0]i0A[1]i1 · · ·A[N − 1]iN−1

)
|i0i1 · · · iN−1〉,

(50)

where for each site k, {|ik〉} represents a finite basis of the
corresponding Hilbert space, andA[k]ik is aD×D matrix la-
belled by an index ik. We note that, with open boundary con-
ditions, the first and last matrices reduce to D-dimensional
vectors. The parameter D is known as bond dimension,
and determines the number of variational parameters in the
ansatz. The MPS ansatz can be used to approximate ground
states and low lying excitations of strongly correlated quan-
tum many-body systems. It can also be employed to simu-
late real-time dynamics and lies at the basis of the DMRG
method112,123,128–132.

In order to find a MPS approximation to the ground state
of Hamiltonian (39), we express the Hamiltonian as a ma-
trix product operator (MPO)133. For the sake of conve-
nience, we actually work in terms of the bath modes in
Eq. (40) and map them to spins using a Jordan-Wigner trans-
formation such that Ψ̂l↑ = Πk<l(σ̂

z
2kσ̂

z
2k+1)σ̂−2l and Ψ̂l↓ =

Πk<l(σ̂
z
2kσ̂

z
2k+1)σ̂z2lσ̂

−
2l+1. A MPS approximation to the

ground state is found by variational minimization of the en-
ergy over the family of MPS with fixed bond dimension D,

|Ψ0〉 = argmin
〈ΨD|H|ΨD〉
〈ΨD|ΨD〉

. (51)

To solve the minimization, an alternating least squares strat-
egy is applied, where all tensors but one are fixed, and the
problem is transformed in the optimization for a single local
tensor. Once the local problem is solved, the optimization
is repeated with respect to the next site in the chain and so
on until the end of the chain is reached. The sweeping is it-
erated back and forth over the chain until the energy of the
ground state is converged to the desired precision level (see
e.g., Refs.112,123 for details of technical details). The algorithm
produces a MPS candidate for the ground state, and local ex-
pectation values and correlations can be efficiently evaluated.
To improve the precision, the procedure can be repeated with
increasing bond dimension using the previously found state
as the initial guess. Also the convergence criterion can be re-
fined for more accurate results. For our comparisons we set a
convergence cutoff of 10−8-10−6.

We can also use the MPS ansatz for a time-evolved state
after the quench protocol considered in this paper (see expla-
nations in the next subsection). Although the initial state, i.e.,
the Fermi sea of the bath (c.f. Eq. (56) below), is not an exact
MPS, we can find a good approximation to it by running the
ground state algorithm described above in the absence of the
impurity. Then, the full initial state obtained by a tensor prod-
uct with the polarized impurity is evolved with the full Hamil-
tonian. To this end, the evolution operator is approximated by
a Suzuki-Trotter decomposition134,135 as a product of small
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FIG. 2. Comparisons of ground-state impurity-bath spin correlations χz
l = 〈σ̂z

impσ̂
z
l 〉/4 calculated from our non-Gaussian variational state

(NGS, blue circles) and (a-d) the matrix-product state (MPS, red crosses), and (e,f) the Yosida ansatz (green triangulars). The inset panels
show the absolute values of the difference between the correlations calculated from each method. The dimensionless Kondo couplings (j‖, j⊥)
are set to be (a) (−0.1, 0.4), (b) (0.1,0.4), (c,e) (-0.4,0.1) and (d,f) (0.4,0.1) as indicated in the left inset panel of (a). System size is L = 100
and the bond dimension of MPS is D = 260.

discrete time steps, each of which can be written as a prod-
uct of MPO131,133,136. The action of the latter on the state is
then approximated by a new MPS that represents the evolved
state. This is achieved again by an alternating least squares
algorithm and minimizing the distance between the MPS and
the result of each evolution step (c.f. Refs.112,123). In general,
real-time evolutions may quickly increase the entanglement
in the state, and to maintain an accurate MPS approximation
the bond dimension of the ansatz will need to grow with time.
In order to keep track of the accuracy of the simulations, we
check convergence of the results at different times when we
repeat the simulations with increasing bond dimension.

2. Yosida ansatz

To highlight the importance of taking into account contri-
butions beyond a single-particle excitation, we also compare
our results to the much simpler ansatz originally suggested by
Kei Yosida124. This ansatz assumes a single-particle excita-
tion on top of the half-filled Fermi sea |FS〉. To deal with the
anisotropic Kondo model, we consider the following ansatz:

|ΨYosida〉 =

{
1√
2

∑
n>nF

dn

(
|↑〉impĉ

†
n↓ − |↓〉impĉ

†
n↑

)
|FS〉 (−J‖ ≤ J⊥),∑

n>nF
dn|↑〉impĉ

†
n↑|FS〉 (−J‖ > J⊥),

(52)

where n denotes the bath mode in the energy basis and the
summation over n > nF indicates the contributions from
the bath modes above the Fermi surface. The former (latter)
ansatz in Eq. (52) approximates the singlet (triplet) state in the
AFM (FM) regime. We minimize the mean energy 〈Ĥ〉Yosida

with respect to amplitudes {dn} and obtain the following vari-
ational equation:

εndn −
1

4
Jeffψ

∗
0n

∑
m>nF

ψ0mdm = EGSdn, (53)

where εn denotes a bath energy, ψln’s are expansion coeffi-
cients in terms of the lattice basis, ĉl =

∑
n ψlnĉn, and EGS

is the variational ground-state energy. We define Jeff as the
effective Kondo coupling as follows:

Jeff =

{
2J⊥ + J‖ (−J‖ ≤ J⊥),

−J‖ (−J‖ > J⊥).
(54)

We solve the eigenvalue equation (53) and determineEGS and
the wavefunction dn from which the impurity-bath correlation
can be calculated. It is worthwhile to mention that the Yosida
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FIG. 3. Comparison of (a) the ground-state energy and (b) im-
purity magnetization across the phase boundary of the anisotropic
Kondo model calculated from the Yosida ansatz (green dotted line),
the matrix-product state (MPS, red dashed line with crosses) and our
non-Gaussian variational state (NGS, blue solid line with circles). In
(a), we plot the variational energies Evar −Ef relative to a constant
ground-state energy Ef of free fermions on the lattice. The left and
right insets magnify the ground-state energies in the FM phase and
close to the phase boundary, respectively. We choose the dimension-
less Kondo coupling j⊥ = 0.5 and vary j‖ from−1 to 1 as schemat-
ically illustrated in the inset of (b). The calculations are done in the
sector σz

tot = 0. System size is L = 200 and the bond dimension of
MPS is D = 280.

ansatz is naturally included in our family of variational states.
For instance, in the AFM regime the singlet entanglement can
be decoupled in the transformed frame as

Û−1|ΨYosida〉 = |+x〉
∑
n>nF

dn√
2

(
ĉ†n↓ − ĉ

†
n↑

)
|FS〉. (55)

Here, the bath wavefunction in the transformed frame just cor-
responds to a single-particle excitation on top of the Fermi
sea, which is a very special subclass of the whole fermionic
Gaussian states.

3. Benchmark results

We plot in Fig. 2 the ground-state impurity-bath spin cor-
relations χzl = 〈σ̂zimpσ̂

z
l 〉/4 of the anisotropic Kondo model

in four different regimes of the phase diagram (see the left in-
set of Fig. 2(a)). We use the dimensionless Kondo couplings
j‖,⊥ = ρFJ‖,⊥ with ρF = 1/(2πth) being the density of
states at the Fermi energy. Our variational results not only
correctly reproduce the formations of the singlet (triplet) pair
between the impurity and bath spins in the AFM (FM) phase,
but they also show quantitative agreement with MPS results
with a deviation which is at most a few percent of the value
at the impurity site. We find that the agreement is particularly
good in the deep FM and AFM regimes (see Figs. 2(c) and
(d)), where the difference is below 1%. We note that while the
Yosida ansatz qualitatively captures the correct AFM and FM
correlations in each regime, it fails to agree with our varia-
tional results and MPS ones quantitatively (Figs. 2(e) and (f)).

We also compare the ground-state energy Evar (Fig. 3(a))
and the corresponding magnetization 〈σ̂zimp〉 (Fig. 3(b)) across
the phase transition line (see the inset of Fig. 3(b)). In the
FM phase, we observe that our variational results agree very
well with the MPS results, with an error below 0.5%. Re-
markably, our ansatz achieves slightly lower energies deep
in the phase (the left inset of Fig. 3(a)). Close to the phase
boundary, we observe the largest deviation with respect to the
MPS ansatz both in energy (the right inset of Fig. 3(a)) and
magnetization (Fig. 3(b)), with our ansatz showing a resid-
ual magnetization close to the transition. Finally, in the deep
AFM phase (j‖ > 0), the ground-state energies calculated
from both methods again agree well with an error typically
below 0.5%. In this regime, the corresponding residual mag-
netization is 〈σ̂zimp〉 ' O(10−4) in MPS and O(10−5) in our
variational method. We note that the Yosida ansatz gives sig-
nificantly higher ground-state energies than our results and
MPS ones over the whole phase diagram. We attribute the
small discrepancies between our results and the MPS ones to
the finite values of the system size L and the bond dimension
D. A relatively large difference in the AFM phase close to the
phase boundary should be attributed to the large entanglement
present in this regime. This fact can be inferred from the non-
monotonic RG flows, which show that the Kondo couplings
can take very small values corresponding to the generation of
the large Kondo cloud during the flows. As our calculations
are carried out in the real-space basis, this fact implies that
our variational states must encode such a large entanglement,
which can be beyond the amount that is generated by the uni-
tary transformation Û .

The comparisons to the MPS results show the great effi-
ciency of our variational approach. The number of variational
parameters in MPS is approximately 4LD2 with D being the
bond dimension, while that of our variational ansatz is 4L2.
Since the bond dimension D in the calculations is typically
taken to be 200-300, our variational approach can achieve the
accuracy comparable to MPS with two or three orders of mag-
nitude fewer variational parameters, and shorter CPU time ac-
cordingly, than the corresponding MPS ansatz. This indicates
that our variational ansatz successfully represents the ground-
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FIG. 4. Comparisons of dynamics of the impurity magnetization
calculated from the matrix-product state (MPS, red chain curve) and
our non-Gaussian variational state (NGS, blue solid curve) at (a)
SU(2)-symmetric points and (b) strongly anisotropic regimes. The
dimensionless Kondo couplings are (a) j‖ = j⊥ = ±0.35 in the
SU(2)-symmetric antiferromagnetic (AFM) and ferromagnetic (FM)
phases, respectively, and (b) (j‖, j⊥) = (0.1, 0.4) and (−0.4, 0.1)
in the anisotropic AFM and FM phases, respectively. The inset in
(b) magnifies the dynamics in FM phase. System size is L = 100
and the bond dimension of the MPS for the different cases varies in
D ∈ [220, 260], for which we checked that the results are converged
within the time window shown in the plots.

state wavefunction of SIM in a very compact way. Mean-
while, the comparison to the Yosida ansatz clearly demon-
strates the importance of considering contributions beyond the
single-particle excitations. Equivalently, it indicates that one
can dramatically improve the variational calculations by just
taking into account up to two-fermionic excitations. This sig-
nificant simplification of the original many-body problems is
made possible through the decoupling transformation that can
efficiently encode the impurity-bath entanglement.

Finally, to complete the benchmark test in the anisotropic
Kondo model, we compare the real-time dynamics of the im-
purity magnetization calculated with a MPS algorithm and our
variational method. We consider the initial state

|Ψ(0)〉 = |↑〉imp|FS〉, (56)

where |FS〉 is the half-filled Fermi sea of the lead. At time
t = 0, we then drive the system by suddenly coupling the
impurity to the lead.

First, we show the results at the SU(2)-symmetric points of
AFM and FM phases (Fig. 4(a)), which are usually of interest
in condensed matter systems. The magnetization eventually
relaxes to zero in the AFM phase as a result of the Kondo-
singlet formation, while it remains nonvanishing and exhibits
oscillations in the FM phase. The long-lasting fast oscillation
found in the FM phase comes from a high-energy excitation of
a fermion from the bottom of the band and its period 2π~/D is
characterized by the bandwidthD = 4th (note that we choose
the unit ~ = 1 and th = 1 in the plots). Since the impurity spin
will be decoupled from the bath degrees of freedom in the low-
energy limit in the FM phase (see RG flows in Fig. 3(b) inset),
the oscillation can survive even in the long-time limit. The
MPS and our variational results show quantitative agreement
with an error that is at most O(10−2). Second, we compare
the results in the strongly anisotropic AFM and FM regimes
(Fig. 4(b)). In the short and intermediate time regimes, the
results obtained using MPS and our variational states exhibit
a good agreement. In the long-time regime (t & 10), the two
methods show a small discrepancy that is about O(6× 10−2)
in the AFM phase andO(1×10−2) in the FM phase. Yet, they
still share the qualitatively same features such as the exponen-
tial relaxation in the AFM regime and long-lasting oscillations
characterized by the bandwidth in the FM regime.

D. Comparison with the Bethe ansatz solution

As a further test of the validity of the present approach,
we compare our approach to the exact solution obtained via
the Bethe ansatz with the infinite-bandwidth assumption63–68.
When all the physical parameters are smaller than the band-
width D = 4th, our approach should reproduce the universal
prediction from the Bethe ansatz. To be specific, we calcu-
late the zero-temperature magnetization m = 〈σ̂zimp〉/2 under
a finite magnetic field hz and compare the results to the one
predicted from the Bethe ansatz (BA) solution65:

mBA =


1

4
√
π3

∑∞
k=0

(−1)k

k!

(
π
2

)2k+1
(
k+1/2

2π

)k− 1
2
(
hz

TK

)2k+1

(hz/TK ≤
√

8/(πe)),

1
2

{
1− 1

π3/2

∫∞
0
dt sin(πt)

t

[
8
πe

(
TK

hz

)2
]
e−t(ln t−1)Γ

(
t+ 1

2

)}
(hz/TK >

√
8/(πe)).

(57)

Here, we note that the Kondo temperature TK is determined
from the magnetic susceptibility χ ≡ ∂m/∂hz = 1/(4TK)
at the zero field hz = 0. Figure 5 shows the comparison be-
tween the magnetization obtained from our variational method
for different Kondo couplings j and the Bethe ansatz solution
mBA (dashed black line). The numerical results agree with
mBA with at most a few percent deviation at small magnetic
field hz/TK . 1. As we increase the magnetic field hz/TK,

the deviation from mBA becomes more significant. In partic-
ular, the deviation starts at smaller hz/TK for a larger Kondo
coupling j. These features should be attributed to a finite-
bandwidth effect intrinsic to the lattice model. Indeed, at the
largest value of hz/TK ' 3 the value of magnetic field hz
itself can be an order of the bandwidth D = 4th. The larger
Kondo coupling j corresponds to the larger Kondo tempera-
ture TK, thus leading to the smaller threshold value of hz/TK
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FIG. 5. Comparison of the zero-temperature magnetization m =
〈σ̂z

imp〉/2 calculated from our approach for different Kondo cou-
plings j with the Bethe ansatz solution (dashed black line), which
is exact under the infinite-bandwidth assumption. The deviation at a
large hz/TK from the Bethe ansatz solution originates from a finite
bandwidth. The deviations begin at smaller hz/TK for a larger cou-
pling j since the latter leads to a larger Kondo temperature TK. The
Kondo temperature is extracted from the magnetic susceptibility at
the zero field χ = 1/(4TK).

at which the finite-bandwidth effect begins to take place.

IV. APPLICATION TO THE TWO-LEAD KONDO MODEL

A. Model

We next apply our approach to investigate out-of-
equilibrium dynamics and transport properties in the two-lead
Kondo model75 (Fig. 6), where the localized spin impurity
is coupled to the centers of the left and right leads via the
isotropic Kondo coupling. The Hamiltonian is

FIG. 6. Schematic figure of the two-lead Kondo model. The local-
ized spin-1/2 impurity is coupled with the centers of the left (L) and
right (R) leads via an isotropic Kondo coupling J . The bath fermions
can move within each lead with a hopping th. The bias potentials
VL,R are applied to the left and right leads. The time evolutions of
the current I(t) between the two leads, the impurity magnetization
〈σ̂z

imp(t)〉, and spatially resolved bath properties can be efficiently
calculated by our variational method.

Ĥtwo =
∑
lη

[
−th

(
ĉ†lηαĉl+1ηα+h.c.

)
+ eVη ĉ

†
lηαĉlηα

]
+
J

4

∑
ηη′

σ̂imp · ĉ†0ηασαβ ĉ0η′β −
hz
2
σ̂zimp, (58)

where ĉ†lηα (ĉlηα) creates (annihilates) a fermion with position
l and spin α on the left (η = L) or right (η = R) lead, the
hopping th = 1 sets the energy unit, J is an isotropic Kondo
coupling strength, and eVη are chemical potentials for each
lead. The spin indices α, β are understood to be contracted as
usual.

In the same manner as in the single-lead case in the previous
section, only the following symmetric modes are coupled to
the impurity:

Ψ̂0η,α = ĉ0ηα, Ψ̂lη,α =
1√
2

(ĉlαη + ĉ−lηα) (59)

with l = 1, 2, . . . , L. Our formalism in Sec. II can be applied
by identifying the bath Hamiltonian hlm as the following two-
lead matrix h2:

h2 =

(
h1 + eVLIL+1 0

0 h1 + eVRIL+1

)
, (60)

where we recall that h1 is the single-lead hopping matrix
given in Eq. (41). The coupling matrix gγlm is given by the
local two-lead Kondo coupling:

gγ = J

(
1 1
1 1

)
⊗ diagL+1(1, 0, ..., 0), (61)

where diagd(v) denotes a d×d diagonal matrix with elements
v. Using Eqs. (60) and (61), together with the general expres-
sion of the functional derivative (36), we solve the variational
real-time evolution (27) to study the out-of-equilibrium dy-
namics and transport properties.

B. Quench dynamics

To analyze transport phenomena, we prepare the initial
state

|Ψ(0)〉 = | ↑〉imp|FS〉L|FS〉R, (62)

where |FS〉L,R are the half-filled Fermi sea of each lead and,
at time t = 0, we drive the system to out of equilibrium by
suddenly coupling the impurity and applying bias potentials
VL = V/2 and VR = −V/2. We then calculate the real-time
evolution by integrating Eq. (27). Without loss of generality,
we choose a bias V > 0 so that the current initially takes a
positive value (particles flow from the the left to right lead).
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FIG. 7. Out-of-equilibrium dynamics in the two-lead Kondo model. (a) The time evolutions of the current I(t) (black solid curve) and the
impurity magnetization 〈σ̂z

imp(t)〉 (blue chain curve). The current is plotted in unit of eth/h. After the quench of the chemical potentials and
the Kondo coupling at t = 0, the current quickly reaches a steady value and exhibits the plateau, while the impurity magnetization quickly
decays to zero, indicating the Kondo-singlet formation. The current suddenly flips its sign in the middle of the time evolution at which the
density wave returns to the impurity site after reflecting at the end of each lead. In this regime, the magnetization passingly takes a large
non-zero value. (b) and (c) Spatiotemporal dynamics of (b) the impurity-bath spin correlation function χz

l (t) and (c) the relative changes of
density in the left and right lead. At t ' 50/th, the density waves reach the ends of each lead. They return to the impurity site l = 0 at
t ' 100/th, where the spin correlations passingly become ferromagnetic. When the density waves return to the impurity site at t ' 200/th
after the second reflection at the lead ends at t ' 150/th, the density reproduces the initial homogeneous profile. The parameters are j = 0.4,
VL = −VR = 0.25th. System size if L = 100 for each lead.

The black solid curve in Fig. 7(a) shows the time evolution
of the current I(t) flowing between the two leads:

I(t)= i
eJ

4~

[
〈σ̂imp · ĉ†0Lασαβ ĉ0Rβ〉 − h.c.

]
= −eJ

2~
Im

[
σximpσ

x
αβ(Γf )0Lα,0Rβ

+(−iσy + σximpσ
z)αβ(ΓP

f )0Lα,0Rβ

]
,(63)

where we recall that 〈· · · 〉 is an expectation value with respect
to wavefunction in the original frame, and we put back ~ when
the current and conductance are under consideration. After a
short transient dynamics, the current quickly reaches a steady

tTK
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 I
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t  

/h
]

h

FIG. 8. Time evolutions of the current I(t) after the quench for
various bias potentials V . After transient dynamics, all the currents
reach their steady values that are shown as the black dashed lines.
The current is plotted in unit of eth/h. The dimensionless Kondo
coupling is j = 0.4 and we set a bias potential V = V0+∆V/2 with
∆V = 0.01th and vary V0 = 0, 0.1, · · · , 1.1th from the bottom to
top. System size is L = 100 for each lead.

value and forms a plateau in the time evolution. The relaxation
time here is characterized by the time scale of the Kondo-
singlet formation, which is roughly equal to the decaying time
of the magnetization (blue chain curve in Fig. 7(a)). Figures 8
and 9(b) demonstrate that these time scales are characterized
by the inverse of the Kondo temperature 1/TK with TK being
extracted from the magnetic susceptibility at the zero field as
we discussed before. The stability of the reached steady state
can be checked by adding a small perturbation on the dynam-
ics and observing the response of physical observables; if they
return back to the original steady values, we can conclude that
the reached state is actually stable.

Figure 7(b) shows the spatiotemporal development of the
impurity-bath spin correlation χzl (t), which clearly indicates
the formation of the Kondo cloud. Figure 7(c) shows the cor-
responding spatiotemporal dynamics of the changes in density
relative to the initial value. After the quench, density waves
propagate ballistically and eventually reach the ends of leads.
Then, the reflected waves come back to the impurity site at
the middle of the time evolution. This associates with the
sudden flip of the current and recurrence of the magnetiza-
tion (Fig. 7(a)). Also, the spin correlation passingly becomes
ferromagnetic at this moment (Fig. 7(b)). After the second
reflections at the ends of leads, the density in both leads turn
back to the initial value as shown in Fig. 7(c). These results
demonstrate the ability of our variational method to accurately
calculate long-time spatiotemporal dynamics, which is chal-
lenging to obtain in the previous approaches. As we consider
the global quench protocol, the system acquires an extensive
amount of energy relative to the ground state and thus the
amount of entanglement can grow significantly in time. This
severely limits the applicability of, e.g., DMRG calculations
in the long-time regime91. The predicted spatiotemporal dy-
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namics can be readily tested with site-resolved measurements
by quantum gas microscopy1–4,137–139.

We remark that all the results are converged against a sys-
tem size L up to the time L/th at which the density waves
come back to the impurity site and the finite-size effects take
place. To avoid a finite-size effect, we also recall that the
Kondo coupling J should be large enough such that the Kondo
length satisfies ξK � L (see also discussions in Ref.113).

C. Conductance at finite bias and magnetic field

It has been known that the conductance can exhibit the uni-
versal scaling behavior against external parameters such as the
magnetic field, bias potential and temperature27,140–147. In the
accompanying paper113, we have checked that our approach
reproduced the correct low- and high-magnetic-field depen-
dence at the zero bias. To further check that our approach
captures the essential feature of the transport phenomena in
the two-lead Kondo model, we study the conductance behav-
ior at finite bias and magnetic field. For a given bias V0, we
calculate the current I(t) and its time-averaged steady value
Ī . We then determine the differential conductance G by cal-
culating I for slightly modulated biases V = V0 ± ∆V as
follows:

G(V0) ' Ī(V0 + ∆V )− Ī(V0 −∆V )

2∆V
. (64)

We plot the typical time-evolutions of the currents relaxing
to their steady values for various bias potentials V in Fig. 8.
Figure 9(a) shows the conductance behavior against magnetic
field hz for zero and finite bias potentials. In the absence
of bias, applying a magnetic field hz larger than the Kondo
temperature TK eventually destroys the Kondo singlet and
monotonically diminishes the conductance (black circles). In
contrast, with a finite bias potential V , it has a peak around
hz = V at which the level matching between the fermi sur-
faces in the two leads occurs. Importantly, peak values of the
conductance are less than the unitarity limit 2e2/h since the
magnetic field partially destroys the Kondo singlet as inferred
from nonzero impurity magnetizations shown in Fig. 9(b).
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FIG. 9. (a) The differential conductance G (in unit of e2/h) is
plotted against a magnetic field hz for different bias potentials V .
(b) Time evolution of the impurity magnetization 〈σ̂z

imp(t)〉 after the
quench at finite bias V and magnetic field hz . System size is L =
100 for each lead and we use j = 0.35, V = 0.8th in (b).
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FIG. 10. (Top panel) The current-bias characteristics with differ-
ent strengths of magnetic field hz . The dashed black line indicates
the perfect conductance with I/V = 2e2/h. The current is plot-
ted in unit of eth/h. (Bottom panel) The corresponding plot of the
nonlinear differential conductance G = dI/dV against the bias po-
tential V for different magnetic fields hz . System size is L = 100
for each lead and we use j = 0.35 for which the Kondo tempera-
ture is obtained as TK = 0.4414th from the magnetic susceptibility
χ = 1/(4TK).

We also plot the current-bias characteristics for different
strengths of applied magnetic field in the top panel in Fig. 10.
As we increase the magnetic field, the current-bias curve devi-
ates from the perfect linear characteristics (black dashed line)
due to the partial breaking of the Kondo singlet. At finite bias
and fixed hz , the slope of the current-bias curve becomes in-
creasingly sharper as we increase the bias V as long as the
magnetic field remains below the resonance hz < V . Equiv-
alently, this behavior manifests itself as the peak in the differ-
ential conductance around hz ∼ V (c.f. the red curve in the
bottom panel of Fig. 10). These characteristic features of the
conductance under finite bias and magnetic field are consis-
tent with previous findings in the Anderson model88,99,114 and
analytical results at the Toulouse point110.

Several remarks are in order. Firstly, in real-space
calculations88,99 as performed in the present implementation,
it is known that the bias potential V should be kept small be-
cause of the finite bandwidth intrinsic to the lattice model.
If one chooses V to be a very large value comparable to the
bandwidth, the bias becomes an order of the Fermi energy
and the calculations of the current and the conductance can
no longer be faithful. For the parameters used in Fig. 10, we
find that the results faithfully converge to steady-state values
as long as the bias is small enough to satisfy V . th. Beyond
that value, the current often does not reach to a steady value in
the available time scale. Secondly, we remark that, in the per-
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turbative regime V . 0.1th in Fig. 10, very small deviations
of the conductance from the perfect value G0 = 2 can be eas-
ily masked by numerical errors caused by time-dependent cur-
rent fluctuations in the steady-state regime (see e.g., Fig. 8).
This made it somewhat difficult to test the perturbative scal-
ing ofG in the limit of V → 027,140–147. Thirdly, as mentioned
above, we found that several important features in our results
are consistent with the analytical results at the Toulouse point.
These include the appearance of the peak in the differential
conductance around hz ∼ V and the asymmetry between the
conductance behavior at V = 0 with varying hz and the one
at hz = 0 with varying V . In particular, it has been argued
that this asymmetry is an important feature which is absent in
the “conventional” bosonization treatment110. Yet, there seem
to be differences between the asymmetric behavior found in
our results and that found in the above reference. For instance,
while our results (c.f. the hz = 0 curve in Fig. 10) indicate the
negative curvature d2G/dV 2 < 0 in the intermediate regime
V ∼ TK ' 0.44th, Ref.110 has predicted the opposite sign
of the curvature with a strong linear V dependence in a rather
broad regime of small V (c.f. the blue dashed curve in Fig. 6
in the reference). We leave the observed discrepancy between
the lattice Kondo results presented here and the analytical re-
sults at the Toulouse point as an interesting open question.

V. CONCLUSIONS AND OUTLOOK

Motivated by the original ideas by Tomonaga33 and Lee,
Low and Pines34, we have developed an efficient and versatile
theoretical approach for analyzing the ground-state properties
and out-of-equilibrium dynamics of quantum spin-impurity
systems. A key idea of this approach is to introduce a canon-
ical transformation that decouples the impurity from the bath
degrees of freedom such that the impurity dynamics is com-
pletely frozen in the transformed frame. We obtain this trans-
formation using the conserved parity operator corresponding
to the discrete symmetry of the spin-impurity Hamiltonians.
By combining the canonical transformation with Gaussian
wavefunctions for the fermionic bath, we obtain a family of
variational states that can represent nontrivial correlations be-
tween the impurity spin and the bath. In the accompany-
ing paper113, we have presented the unitary transformation
decoupling the spin-1/2 operator and the bath, and provided
strong evidence that our approach correctly captures the non-
trivial ground-state and out-of-equilibrium properties in spin-
impurity problems. In this paper, we presented the complete
details of our variational method and benchmarked its accu-
racy by comparing to the results obtained with the MPS ap-
proach and the exact solution via the Bethe ansatz. Further-
more, we have analyzed out-of-equilibrium dynamics of the
two-lead Kondo model in further detail by calculating its long-
time spatiotemporal dynamics and studying the conductance
behavior at finite bias and magnetic fields.

Let us summarize the key advantages of the proposed the-
oretical approach. Firstly, this approach is versatile and can
be applied to generic spin-impurity models, including sys-
tems with long-range spin-bath interactions and disorder. The

canonical transformation that we used relies only on the ex-
istence of the elemental parity symmetry, and Gaussian states
can be used to describe both the fermionic and bosonic baths.
The simplicity of our variational approach can provide new
physical insight into fundamental properties of challenging
impurity problems. Secondly, our method can be used to
predict spatiotemporal dynamics of the total system includ-
ing both impurity and bath in long-time regimes, which were
challenging (if not impossible) to explore in the previous
approaches111,112. This capability allows us to reveal new
types of out-of-equilibrium phenomena in SIM, e.g., non-
trivial crossovers in the long-time dynamics which originate
from the nonmonotonic RG flows of equilibrium systems as
found in the accompanying paper113. Thirdly, we note re-
markable efficiency of our approach, as we achieve accuracy
comparable to the MPS-based method using several orders of
magnitude fewer variational parameters. This suggests that
our variational states can represent nontrivial impurity-bath
correlations in a very compact way. Finally, in contrast to
several previous methods, our approach can be used with-
out relying on the bosonization, which requires introducing
a cut-off energy and using a strictly linear dispersion. This
advantage is particularly important in view of recent devel-
opments of simulating quantum dynamics such as in ultra-
cold atoms1–5,137–139,148–156 and quantum dots6–10, which allow
quantitative comparisons between theory and experiments on
both short and long time scales.

Our variational approach can be generalized in sev-
eral ways. Owing to its versatility, the proposed ap-
proach can be straightforwardly generalized to multi-channel
systems9,26,157–160, disordered systems161, interacting bath
such as the Kondo-Hubbard models162, and long-range inter-
acting systems163,164 as typified by the central spin problem31

that is relevant to nano-electronic devices such as quantum
dots30. Another promising directions are generalizations to
bosonic systems165–168, the Anderson model and two-impurity
systems115, which will be published elsewhere. Extending the
present approach, it is also possible to calculate the frequency-
domain quantities such as the spectral function76,90. Our ap-
proach can be also extended to study driven systems and quan-
tum pumping. Most of the previous works in this direction
were restricted to noninteracting electrons169–172. Our ap-
proach will allow for studying full distribution function in
charge transport; previous studies have been mainly limited
to either noninteracting models173,174 or one dimensional sys-
tems that allow bosonization175,176. In this paper, we focused
on the pure Gaussian state to represent coherent dynamics of
an isolated system at the zero temperature. Generalizing our
method to Gaussian density matrices will make it possible to
explore finite temperature systems177–179 and, together with
the variational principle for master equations180,181, to study
Markovian open quantum systems subject to dissipation182–185

or continuous measurements186–190. Extending our approach
to multiple impurities115,191–194 would allow for studying the
most challenging problems in many-body physics like com-
peting orders in strongly correlated fermions195 and confine-
ment in lattice gauge theories196,197. We hope that our work
stimulates further studies in these directions.
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22 D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman,

D. Mahalu, and U. Meirav, Phys. Rev. Lett. 81, 5225 (1998).
23 S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven,

Science 281, 540 (1998).
24 F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheider, and

M. Bichler, Phys. Rev. Lett. 83, 804 (1999).
25 W. G. van der Wiel, S. D. Franceschi, T. Fujisawa, J. M. Elz-

erman, S. Tarucha, and L. P. Kouwenhoven, Science 289, 2105
(2000).

26 R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and
D. Goldhaber-Gordon, Nature 446, 167 (2007).

27 A. V. Kretinin, H. Shtrikman, D. Goldhaber-Gordon, M. Hanl,
A. Weichselbaum, J. von Delft, T. Costi, and D. Mahalu, Phys.
Rev. B 84, 245316 (2011).

28 A. V. Kretinin, H. Shtrikman, and D. Mahalu, Phys. Rev. B 85,
201301 (2012).

29 A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,
A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

30 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
31 W. Zhang, N. Konstantinidis, K. A. Al-Hassanieh, and V. V. Do-

brovitski, J. Phys. Cond. Matt. 19, 083202 (2007).
32 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
33 S. Tomonaga, Prog. Theor. Phys. 2, 6 (1947).
34 T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297 (1953).
35 J. T. Devreese and A. S. Alexandrov, Rep. Prog. Phys. 72, 066501

(2009).
36 J. T. Devreese, arXiv:1012.4576 (2010).
37 A. S. Alexandrov, Polarons in advanced materials (Canopus

Pub., 2007).
38 R. P. Feynman, Phys. Rev. 97, 660 (1955).
39 J. Bardeen, G. Baym, and D. Pines, Phys. Rev. 156, 207 (1967).
40 P. Nagy, J. Phys. Cond. Matt. 2, 10573 (1990).
41 W.-M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62,

867 (1990).
42 T. Altanhan and B. S. Kandemir, J. Phys. Cond. Matt. 5, 6729

(1993).
43 J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E. Tim-

mermans, and J. T. Devreese, Phys. Rev. B 80, 184504 (2009).
44 A. Novikov and M. Ovchinnikov, J. Phys. B 43, 105301 (2010).
45 W. Casteels, T. Van Cauteren, J. Tempere, and J. T. Devreese,

Laser Phys. 21, 1480 (2011).
46 W. Casteels, J. Tempere, and J. T. Devreese, Phys. Rev. A 84,

063612 (2011).
47 S. P. Rath and R. Schmidt, Phys. Rev. A 88, 053632 (2013).
48 J. Vlietinck, J. Ryckebusch, and K. Van Houcke, Phys. Rev. B

87, 1 (2013).
49 J. Vlietinck, W. Casteels, K. Van Houcke, J. Tempere, J. Rycke-

busch, and J. T. Devreese, New J. Phys. , 9 (2014).
50 W. Li and S. Das Sarma, Phys. Rev. A 90, 013618 (2014).
51 F. Grusdt, Y. E. Shchadilova, a. N. Rubtsov, and E. Demler, Sci.

Rep. 5, 12124 (2015).
52 Y. E. Shchadilova, F. Grusdt, A. N. Rubtsov, and E. Demler,

Phys. Rev. A 93, 043606 (2016).
53 Y. E. Shchadilova, R. Schmidt, F. Grusdt, and E. Demler, Phys.

Rev. Lett. 117, 113002 (2016).
54 Y. Ashida, R. Schmidt, L. Tarruell, and E. Demler,

arXiv:1701.01454 (2017).

mailto:ashida@cat.phys.s.u-tokyo.ac.jp
mailto:tshi@itp.ac.cn
http://science.sciencemag.org/content/334/6053/200.full
http://www.nature.com/nature/journal/v481/n7382/abs/nature10748.html
http://www.nature.com/nature/journal/v481/n7382/abs/nature10748.html
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.035302
http://dx.doi.org/ 10.1126/science.aaf6725
http://dx.doi.org/10.1103/PhysRevLett.120.143601
http://dx.doi.org/ 10.1103/PhysRevLett.89.156801
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.107402
https://www.nature.com/articles/nature10204
https://www.nature.com/articles/nature15384
https://www.nature.com/articles/nature21704
http://dx.doi.org/10.1143/PTP.32.37
http://dx.doi.org/10.1103/PhysRevLett.35.1779
http://dx.doi.org/10.1103/PhysRevLett.35.1779
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.79.1015
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.79.1015
https://www.nature.com/articles/nphys892
http://dx.doi.org/10.1126/science.1191195
http://www.jetpletters.ac.ru/ps/1095/article_16538.shtml
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.61.1768
http://dx.doi.org/10.1103/PhysRevLett.70.2601
http://dx.doi.org/10.1103/PhysRevLett.70.2601
https://www.nature.com/articles/nature00790
http://dx.doi.org/10.1021/nl034893f
http://dx.doi.org/ 10.1103/PhysRevLett.81.5225
http://dx.doi.org/10.1126/science.281.5376.540
http://dx.doi.org/ 10.1103/PhysRevLett.83.804
http://dx.doi.org/10.1126/science.289.5487.2105
http://dx.doi.org/10.1126/science.289.5487.2105
https://www.nature.com/articles/nature05556
http://dx.doi.org/ 10.1103/PhysRevB.84.245316
http://dx.doi.org/ 10.1103/PhysRevB.84.245316
http://dx.doi.org/10.1103/PhysRevB.85.201301
http://dx.doi.org/10.1103/PhysRevB.85.201301
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/PhysRevA.57.120
http://stacks.iop.org/0953-8984/19/i=8/a=083202
http://dx.doi.org/ 10.1103/RevModPhys.68.13
http://dx.doi.org/ 10.1103/RevModPhys.68.13
http://dx.doi.org/10.1143/PTP.2.6
http://dx.doi.org/10.1103/PhysRev.90.297
http://dx.doi.org/10.1088/0034-4885/72/6/066501
http://dx.doi.org/10.1088/0034-4885/72/6/066501
http://arxiv.org/abs/1012.4576
http://dx.doi.org/10.1103/PhysRev.97.660
http://journals.aps.org/pr/abstract/10.1103/PhysRev.156.207
http://stacks.iop.org/0953-8984/2/i=51/a=027
http://dx.doi.org/10.1103/RevModPhys.62.867
http://dx.doi.org/10.1103/RevModPhys.62.867
http://stacks.iop.org/0953-8984/5/i=36/a=027
http://stacks.iop.org/0953-8984/5/i=36/a=027
http://dx.doi.org/ 10.1103/PhysRevB.80.184504
http://iopscience.iop.org/article/10.1088/0953-4075/43/10/105301/meta
http://dx.doi.org/10.1134/S1054660X11150035
http://dx.doi.org/10.1103/PhysRevA.84.063612
http://dx.doi.org/10.1103/PhysRevA.84.063612
http://dx.doi.org/10.1103/PhysRevA.88.053632
http://dx.doi.org/10.1103/PhysRevB.87.115133
http://dx.doi.org/10.1103/PhysRevB.87.115133
http://dx.doi.org/ 10.1088/1367-2630/17/3/033023
http://dx.doi.org/10.1103/PhysRevA.90.013618
http://dx.doi.org/10.1038/srep12124
http://dx.doi.org/10.1038/srep12124
http://dx.doi.org/10.1103/PhysRevA.93.043606
http://dx.doi.org/10.1103/PhysRevLett.117.113002
http://dx.doi.org/10.1103/PhysRevLett.117.113002
https://arxiv.org/abs/1701.01454


16

55 P. Anderson, J. Phys. C 3, 2436 (1970).
56 K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
57 R. Bulla, N.-H. Tong, and M. Vojta, Phys. Rev. Lett. 91, 170601

(2003).
58 L. Borda, Phys. Rev. B 75, 041307 (2007).
59 R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

(2008).
60 H. Saberi, A. Weichselbaum, and J. von Delft, Phys. Rev. B 78,

035124 (2008).
61 L. Borda, M. Garst, and J. Kroha, Phys. Rev. B 79, 100408

(2009).
62 C. A. Büsser, G. B. Martins, L. Costa Ribeiro, E. Vernek, E. V.

Anda, and E. Dagotto, Phys. Rev. B 81, 045111 (2010).
63 P. B. Weigmann, JETP Lett. 31, 364 (1980).
64 N. Andrei, Phys. Rev. Lett. 45, 379 (1980).
65 N. Andrei and J. H. Lowenstein, Phys. Rev. Lett. 46, 356 (1981).
66 N. Kawakami and A. Okiji, Phys. Lett. A 86, 483 (1981).
67 N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys.

55, 331 (1983).
68 P. Schlottmann, Phys. Rep. 181, 1 (1989).
69 T. L. Schmidt, P. Werner, L. Mühlbacher, and A. Komnik, Phys.
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J. von Delft, Phys. Rev. B 80, 165117 (2009).

91 F. Heidrich-Meisner, A. E. Feiguin, and E. Dagotto, Phys. Rev.
B 79, 235336 (2009).

92 F. Heidrich-Meisner, I. González, K. A. Al-Hassanieh, A. E.
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T. N. Ikeda, S. Fölling, J. I. Cirac, G. Zaránd, and E. A. Demler,
Phys. Rev. B 97, 155156 (2018).

157 Z.-q. Bao and F. Zhang, Phys. Rev. Lett. 119, 187701 (2017).
158 A. K. Mitchell and E. Sela, Phys. Rev. B 85, 235127 (2012).
159 A. K. Mitchell, L. A. Landau, L. Fritz, and E. Sela, Phys. Rev.

Lett. 116, 157202 (2016).
160 A. K. Mitchell, K. G. L. Pedersen, P. Hedegard, and J. Paaske,

Nat. Commun. 8, 15210 (2017).
161 E. Miranda, V. Dobrosavljevic, and G. Kotliar, J. Phys. Cond.

Matt. 8, 9871 (1996).
162 H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys. 69,

809 (1997).
163 K. S. Kleinbach, F. Meinert, F. Engel, W. J. Kwon, R. Löw,
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