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When quasiparticles in a BCS superconductor recombine into Cooper pairs, phonons are emit-
ted within a narrow band of energies above the pairing energy at 2∆. We show that a phonon
bandgap restricting the escape of recombination phonons from a superconductor can increase the
quasiparticle recombination lifetime by more than an order of magnitude. A phonon bandgap can be
realized and matched to the recombination energy with a phononic crystal, a periodically-patterned
dielectric membrane. We discuss in detail the non-equilibrium quasiparticle and phonon distribu-
tions that arise in a superconductor due to a phonon bandgap and a pair-breaking photon signal.
Although intrinsically a non-equilibrium effect, the lifetime enhancement in the small-signal regime
is remarkably similar to an estimate from an equilibrium formulation. The equilibrium estimate
closely follows exp(Ωbg/kBTb), where Ωbg is the phonon bandgap energy bandwidth above 2∆, and
Tb is the phonon bath temperature of the coupled electron-phonon system. We discuss the impact
of a phononic bandgap on the performance of a superconducting circuit element, and propose a
microwave resonator to measure the enhancement in the quasiparticle lifetime.

I. INTRODUCTION

Nano-patterned dielectric membranes have enabled de-
vices in which the coupling of phonons, photons, and elec-
trical signals are managed with exquisite sensitivity.1–3

The elastic properties of the patterned dielectric, which
is generally referred to as a phononic crystal (PnC), can
be significantly different from the bulk material. In par-
ticular, a PnC infinite in extent can possess a complete
phonon bandgap, a property that has been studied ex-
tensively to control phonon interactions1,4–7 and reduce
heat transport at room temperature and in cryogenic
devices.8–10 A PnC bandgap has been demonstrated to
reduce the energy loss of a mechanical resonator to a
phonon bath.3

Electron-phonon coupling is intrinsic to superconduc-
tivity. When two quasiparticles recombine to form a
Cooper pair in a superconductor, a phonon is emitted
at the pairing energy, 2∆. A recombination phonon
can either remain in the superconducting film and break
another pair, or escape to the dielectric substrate (see
Fig. 1). The phonon pair-breaking and escape rates, to-
gether with the electron-phonon coupling strength, deter-
mine the quasiparticle lifetime, τqp, in the superconduc-
tor.11,12 A PnC bandgap centered at 2∆ should substan-
tially reduce the escape rate of recombination phonons
from the superconductor, and increase τqp.

The quasiparticle recombination lifetime plays an im-
portant role in noise processes of pair-breaking super-
conducting devices. In a kinetic inductance detector
(KID13,14), the fundamental limiting noise in steady-
state is from generation and recombination (GR) of
quasiparticles.15 The noise-equivalent power (noise power
detected in a 1 Hz bandwidth) due to GR fluctuations is

proportional to
√

1/τqp. In a quantum capacitance de-

tector, an increase in τqp would reduce telegraph noise
associated with quasiparticle tunneling through a Joseph-
son junction.16,17 Independent of the fluctuation mecha-
nism limiting the device noise, a reduction in the recom-
bination phonon escape rate would lead to an increase in
the responsivity of a superconducting thin-film to pair-
breaking photons. By symmetry of the phonon transport
across a PnC (a passive linear system), a superconduct-
ing circuit can potentially be an effective shield against
quasiparticle poisoning induced by pair-breaking phonon
injection into a superconductor.18

A superconducting resonator fabricated on a thin (<1
µm) self-supporting dielectric membrane has been sug-
gested for increasing τqp.

19,20 The membrane dimension
is significantly larger than the phonon mean-free-path
(< 100 µm).8,21–23 Thus, phonons in the membrane are
weakly coupled to the thermal bath, and the phonon life-
time is increased at all energies. Additionally, the quasi-
particle and phonon occupation in the superconduct-
ing film approach a thermal distribution with an effec-
tive temperature corresponding to the signal power, and
τqp approaches the thermal response time τth = C/G,
where C is the total heat capacity from quasiparticles
and phonons, and G is the thermal conductance to the
bath.19 Hence, such a membrane-isolated superconduct-
ing resonator functions as a bolometer.24

In this paper, we examine the electron-phonon system
of a superconducting thin-film surrounded by a PnC, see
Fig. 1. When the phonon bandgap of the PnC is matched
to the pair-breaking frequency of the superconductor at
∼ 2∆, the quasiparticle lifetime becomes a strong func-
tion of the bandgap properties. The PnC only increases
the lifetime of membrane phonons with energies within
the bandgap. Above and below the bandgap energies,
the phonon transmission to the bath often rapidly ap-
proaches unity.4,25 By design, the length of the mem-
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brane and PnC combined is less than the phonon mean-
free-path,8,21–23 and consequently thermal phonons (<10
GHz) in the membrane supporting the superconducting
film remain tightly coupled to the bath. The quasipar-
ticle and phonon distributions in the system will be out
of equilibrium since the thermal phonon escape rate is
comparable to or greater than the pair-breaking rate.

We solve the coupled kinetic equations of the electron-
phonon system in Fig. 1 to estimate the quasiparticle
lifetime enhancement due to a PnC bandgap. The solu-
tion takes into account electron-phonon scattering in the
superconductor, pair-breaking due to phonons and inci-
dent signal photons, and phonon transport as modified
by a PnC bandgap.

II. KINETIC EQUATIONS AND
NON-EQUILIBRIUM DISTRIBUTIONS

The quasiparticle and phonon distributions of the sys-
tem in Fig. 1 will in general be out of equilibrium when
the system is driven by an external source. For exam-
ple, in the presence of a monochromatic pair-breaking
photon signal of energy hνs, the quasiparticle distribu-
tion peaks at hνs −∆ and hνs + ∆, which correspond to
pair-breaking and quasiparticle photon absorption,26–28

respectively. The phonon distributions have at least one
peak at 2∆ due to quasiparticle recombination. The non-
equilibrium particle distributions can be determined by
solving the Boltzmann kinetic equations that describe the
rate of change of the distributions under phonon emission
and absorption by a quasiparticle, pair-breaking by pho-
tons and phonons.26

A. Rate Equations

The rate equations for the quasiparticle and phonon
energy distributions in Fig. 1 are

ḟ(E) = Iqp(E,Ωs)−
1

τ0(kBTc)3
(I1 + I2 + I3), (1)

ṅ(Ω) = − 2

πτφ0 ∆(0)
(J1 + J2/2)− n(Ω)−m(Ω)

τK
, (2)

ṁ(Ω) = −m(Ω)− n(Ω)

τK
− m(Ω)− g(Ω, Tb)

τ̃φ(Ω)
, (3)

where Ik and Jk describe electron-phonon scattering and
pair-breaking events (see Appendix for details). τ0 and

τφ0 are intrinsic energy-independent quasiparticle and
phonon lifetimes in the superconductor.29 Iqp in Eq. 1
describes the quasiparticle injection rate from photon ab-
sorption. The absorbed photon power, Ps, terminates in
a phonon thermal bath. Power flow through the sys-
tem defines the energy conservation equations in steady-
state, which are solved simultaneously with Eq. 1 to 3 to
find a self-consistent solution for f(E), n(Ω), and m(Ω).
We utilize the iterative technique described in Ref. 27

to solve the kinetic and power flow equations for small
and large-signal pair-breaking photon loading conditions.
Only pair-breaking photons are considered here, though
adding a term for microwave photon injection is straight-
forward.28 It is well known that microwave readout pho-
tons in a superconducting thin-film resonator can lead
to pair-breaking, which arises from repeated photon ab-
sorption by quasiparticles.27 We neglect this effect here
to purely assess the physics of recombination in the pres-
ence of a phonon bandgap.

B. PnC bandgap model

The effect of a phonon bandgap is introduced in Eq. 3

through the membrane phonon lifetime, τ̃φ(Ω) = τφ0 r(Ω),
where

r(Ω) =

{
rbg Ω = [Ωbg -Bbg/2, Ωbg +Bbg/2],

1 otherwise.
(4)

τφ0 is an intrinsic phonon lifetime in the superconduc-
tor related to the electron-phonon coupling strength.29

Ωbg = hνbg, Bbg, and rbg are the center energy, band-
width, and rejection level of the PnC bandgap. As a rule
of thumb for the design of a PnC, Ωbg is approximately
linearly dependent on the lattice constant, a, of the PnC
(see Fig. 1). The details of the PnC unit cell can be
parameterized by a dimensionless constant, νbga/vs = q,
where vs ∼ 5000 ms−1 is the bulk shear mode sound
velocity of the parent material (e.g. single-crystal sili-
con). For circular holes etched in a square tiling, q ∼ 0.6
when the hole radius r is 0.45a.30 The minimum feature
size, d = a − 2r, sets the highest phonon bandgap cen-
ter frequency that can be achieved in practice. Tens of
nanometer features can be realized with electron-beam
lithography, suggesting a reasonable practical bandgap
upper limit is νbg ∼ 20 GHz.31 Bandgaps at higher fre-
quencies, ∼ 30 GHz, can be generated with more complex
geometries.32

In using the relation τ̃φ(Ω) = τφ0 r(Ω), we assume the
phonon escape time to the bath at energies above and
below the bandgap of the PnC is on the order of the
escape time from the superconductor to the bath (τK '
τφ0 ).27 This model is sufficient to describe the effect of
a phonon bandgap on the quasiparticle recombination
time, which is captured as a normalized parameter that

is independent of the values of τ0, τφ0 , τK , and τ̃φ(Ω).

C. Superconductor model and material parameters

We use the well known materials properties and
low-temperature superconducting parameters of Al29 to
model the effect of a phonon bandgap on the quasipar-
ticle lifetime, τqp (see Appendix and Table I therein).
There are two inherent assumptions in using Al: (1)



3

FIG. 1. Schematic of a phononic-isolated superconducting film and the corresponding electro-thermal model. The phononic
crystal pattern of circular holes etched in a square tiling is shown for reference. The phononic crystal unit cell geometry and
tiling can be modified to suit the application. Typical dimensions are shown for a superconducting thin-film realized as the
inductor element of a superconducting microwave resonator. Ps is a pair-breaking photon signal power. In the simulations
presented here, the bath temperature, Tb, is set to 0.1Tc, where Tc is the critical temperature of the superconducting film.
Other parameters are described in the text.

The superconductor quasiparticle density of states is
described by Bardeen-Cooper-Schrieffer (BCS33) theory,

ρqp(E) = <[E/
√
E2 −∆2], which ensures the particle

dynamics are dominated by phonons with energies near
2∆, and (2) the electron-phonon interaction function
α2(Ω)ρφ(Ω) is approximated by bΩ2, where ρφ(Ω) is the
phonon density of states and b is a material-dependent
constant.29

Matching the PnC bandgap to the energy gap of the
superconductor, Ωbg ∼ 2∆, and using the BCS relation
2∆ = 3.53kBTc, suggests materials with Tc < 0.3 K are
suitable for demonstrations of a PnC-isolated supercon-
ducting device. In the model described here, Tc merely
scales the energy gap of the superconductor.

It is instructive to consider the validity of the Debye
approximation α2(Ω)ρφ(Ω) as a function of Tc. Figure 2
shows the phonon density of states of a 200 nm elastic
membrane. For simplicity, we treat the superconduct-
ing metal and dielectric membrane as one elastic struc-
ture, and calculate the density of states due to Lamb
modes and the shear horizontal modes of a thin elastic
plate. At low frequencies, only three acoustic phonon
modes exist, and ρφ(Ω) is approximately linear with fre-
quency.8 Above a critical frequency that is character-
istic of the bulk shear sound speed-to-membrane thick-
ness, ρφ(Ω) approaches the Debye model for a bulk elas-
tic medium. Thus, the approximation bΩ2 is reasonable
for superconducting metals with Tc > 0.3 K (or pair-
breaking energy > 20 GHz), assuming a typical shear
sound speed (∼5000 m/s) and membrane thickness (∼100
nm). For Tc < 0.3 K, the number and dispersive nature
of the phonon modes in the superconducting film may be
needed to accurately evaluate α2(Ω)ρφ(Ω).

D. Steady-State Solutions

The non-equilibrium quasiparticle distribution and
power spectrum of the phonon flux are shown in Fig. 3.
In this model, Ωbg = 2∆, Bbg = 0.3 Ωbg, and rbg = 104,
properties that can be achieved readily with a PnC.9,34

As expected, the phonon power is reduced within the
bandgap bandwidth.

The signal power, injected at 5∆, is redistributed
through electron-phonon interaction, predominantly pro-
ducing quasiparticles with energies close to ∆. For pairs
of quasiparticles with a total energy less than 2∆+Bbg/2,
recombination is not effective since a phonon at these en-
ergies is more likely to remain in the superconductor than
to propagate to the bath. Recombination therefore only
takes place effectively for pairs of quasiparticles with a to-
tal energy larger than 2∆+Bbg/2. Consequently the peak
phonon flow is shifted to the upper edge of the phononic
bandgap. As a secondary effect, the preference for re-
combination of higher energy quasiparticles enhances the
chance for quasiparticles very close to ∆ to absorb low
energy phonons, which have a high occupation. The net
phonon flow to the bath at energies Ω ' [0, Bbg/2] is
reduced, and can even be negative (see inset to Fig. 3),
meaning a net phonon in-flow occurs from the bath to the
superconductor at these low energies. Additionally, the
increasing number of 2∆ phonons in the superconducting
film up-scatter quasiparticles to higher energies. This ef-
fect is most noticeable where the quasiparticle density of
states peaks, as 1 and 6 ∆ quasiparticles are up-scattered
to 3 and 8 ∆, respectively. The spectral width of the fea-
ture centered at 3 and 8 ∆ is equal to Bbg. For the highest
signal power loading explored here, the quasiparticle dis-
tribution leads to a maximum of 4% change in the energy
gap from the zero-temperature value. This perturbative
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FIG. 2. Phonon density of states of a uniform elastic mem-
brane (solid line). The phonon modes are the symmet-
ric and antisymmetric Lamb modes, and a shear horizontal
mode. D represents an approximate dimensionality for the
phonon modes of a uniform plate. ρ2.5Dφ = ρ2Dφ /h, where

h is the membrane thickness. ρ2.5Dφ approaches the De-

bye approximation in the 3D limit (ρ3Dφ = 12πν2/v3a, where

va = 3
√

3/[2/v3s + 1/v3l ] is an average sound velocity, and vs
and vl are the bulk shear and longitudinal mode velocities;
dot-dashed line). ρ2.5Dφ is approximately linear with frequency

at the long-wavelength limit (ρ1.5Dφ = ρ1Dφ /h = 6πν/v2a/h,

where va =
√

3/[2/v2s + 1/v2l ] in this case; dashed line).

change in ∆ as a function of signal power is neglected.
For photon energies significantly above 2∆, the re-

sponse of a superconducting film is expected to be a
stronger function of signal power than signal energy. The
effect of the latter is largely captured in the optical pair-
breaking efficiency factor, ηpb.

28 In the models presented
here, the signal photon energy is kept constant and equal
to 5∆. On the other hand, the signal power, Ps, directly
affects the number of quasiparticles in the superconduc-
tor, and the number of 2∆ phonons in the system. Thus,
we vary the signal power, Ps, and parameters associated
with the PnC bandgap, which include the bandgap center
energy, Ωbg = hνbg, bandwidth Bbg, and rejection level,
rbg (see Eq. 4).

III. QUASIPARTICLE LIFETIME
ENHANCEMENT

A. Non-equilibrium

Once the distribution functions are known, the en-
hancement of the phonon lifetime in the membrane due to
the phonon bandgap can be calculated from a set of mod-
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FIG. 3. (Top) Power spectrum of the phonon power in the
electron-phonon system of Fig. 1 (integrand of Eq. 14 to 16).
The phonon bandgap rejection, rbg, is 104. The bandgap cen-
ter is at 2∆. The signal frequency is 5∆, and signal power is
1 fW/µm3. The inset shows the spectrum at low frequencies,
where the power spectrum can be negative as described in the
text. (Bottom) The corresponding quasiparticle distribution.
Since the bandgap is centered at 2∆, f is only significantly
enhanced up to Bbg/2. The inset shows the increase in the
occupation at 3 and 8 ∆, which is due to up-scattering from
recombination phonons.

ified Rothwarf-Taylor (RT) equations.35 This formulation
essentially captures an energy-dependent phonon lifetime
function given by Eq. 4 as a single effective parameter of
the electron-phonon system in Fig. 1. The enhancement
in the quasiparticle lifetime due to the bandgap can be
consistently calculated within this framework. For the
system in Fig. 1, The RT equations are

˙Nqp = Γs − Γr(Nqp)Nqp + 2ΓpbNω (5)

Ṅω = Γr(Nqp)Nqp/2− ΓpbNω − ΓK(Nω −Nm
ω ) (6)

˙Nm
ω = ΓK(Nω −Nm

ω )− Γφ(Nm
ω −NB

ω ) (7)

where Nqp = 4N(0)
∫∞

∆
ρqp(E,∆) f(E)dE is the num-

ber of quasiparticles in the superconductor, and N(0)
is the single-spin density of states at the Fermi energy.
Nω =

∫∞
2∆
ρφ(Ω)n(Ω)dΩ is the number of ≥2∆ phonons

in the superconducting film. Similarly, Nm
ω and NB

ω are
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≥2∆ phonons in the membrane and thermal bath, re-
spectively. Γs = ηpbPs/∆, is the quasiparticle injection
rate due to pair-breaking signal photons, where Ps is the
signal photon power, and ηpb is the photon pair-breaking
efficiency.28

Γr(Nqp) = 1/τr = 2RNqp is the quasiparticle recombi-
nation rate, where R is a distribution-averaged recom-
bination rate as derived in Ref. 26. Similarly, Γpb is
a distribution-averaged pair-breaking rate.26 ΓK is the
phonon escape rate from the superconducting film to the
membrane. Γr, Γpb, and ΓK represent processes that oc-
cur, on average, near the energy scale of ∆ for recombi-
nation and 2∆ for phonons due to the BCS quasiparticle
density of states.33 Γφ = 1/τφ is an energy-independent
phonon escape rate from the membrane to the bath, and
quantifies the effect of a phonon bandgap.

In steady state, Ṅi = 0, and assuming Nm
ω �NB

ω ,
Eq. 5 to 7 can be solved for Nqp to give

Nqp = Γs τr

(
1 +

τK
τpb

+
τφ
τpb

)
, (8)

= Γs τr Fφ.

The second and third terms in the brackets arise due to
phonon trapping in the superconductor and the mem-
brane, respectively. Thus, the recombination lifetime
is enhanced when one or both of the phonon lifetimes
in the system significantly exceed the pair-breaking life-
time. When the membrane phonons are strongly cou-
pled to the bath, τφ � τpb, and the recombination time
enhancement due to boundary resistance is recovered,
Fφ = (1 + τK/τpb) .11,12

To characterize the effects of a phonon bandgap on the
recombination lifetime, we define Fφ = 1+(τK +τφ)/τpb,
and an enhancement χ ≡ F ∗φ/Fφ, where F ∗φ is Fφ eval-
uated with a phonon bandgap present in the system. χ
defines the enhancement for a constant quasiparticle in-
jection rate, and describes in a general sense (under equi-
librium and non-equilibrium conditions) the effects of an
energy-dependent phonon lifetime in the electron-phonon
system of a superconductor on the quasiparticle lifetime.
Substituting τr = 1/2RNqp into Eq. 7 and solving for
Fφ gives an equivalent expression for the enhancement
parameter, χ = R∗N∗2qp /RN

2
qp.

We note that the measurable small-signal quasiparticle
lifetime is τ0

qp = τr(N
0
qp)Fφ/2, where the factor of 1/2

appears due to the linearization of the quadratic term in
Nqp in Eq. 5. N0

qp is the equilibrium quasiparticle number
density in the absence of the small pair-breaking signal.

Equation 8 can be solved to give ηpb = 2R∆N2
qp/FφPs,

which is intrinsically a distribution-averaged parameter.
The change in ηpb, R and Γpb as a function of bandgap
and pair-breaking signal photon power is small (<20%)
relative to the enhancement in the quasiparticle lifetime,
which is at least an order of magnitude for reasonable
phonon bandgap properties (see Sec. III C and Fig. 4).

B. Equilibrium approximation

It is instructive to first highlight an approximation that
is based on equilibrium distributions. The recombination
time for a single quasiparticle at energy E was derived
by Kaplan et al.,29 averaging over all possible phonon
energies. In this formulation, it is possible to implement
the effect of a phonon bandgap by restricting the energies
over which recombination phonons can be released. The
equation for the recombination time is then given by:

1

τr(E)
=

1

τ0(kBTc)3

∫ ∞
x

Ω2ρqp(Ω− E)

[1− f(E, Tb)]

(
1 +

∆2

E(Ω− E)

)
× [n(Ω, Tb) + 1]f(Ω− E, Tb)dΩ, (9)

where in particular the lower limit x of the integral is
changed from E+ ∆ to max(E+ ∆, 2∆ +Bbg), which ef-
fectively forbids recombination of quasiparticles by emis-
sion of a phonon that has its energy within the phononic
bandgap. The thermal quasiparticle and phonon distri-
butions are evaluated at the bath temperature, Tb. Equa-
tion 9 is often evaluated using E = ∆, which is only a
good approximation for thermal distributions. To ac-
count for a phonon bandgap, which changes the recom-
bination time over a broad energy range, we calculate
a recombination time for an ensemble of quasiparticles
averaged over all energies,

〈τr〉 =

∫∞
0
τr(E)f(E, Tb)ρqp(E)dE∫∞
0
f(E, Tb)ρqp(E)dE

, (10)

In this equilibrium approximation, the quasiparticle life-
time enhancement factor is χr = 〈τ∗r 〉 / 〈τr〉, where the
asterisk again defines the recombination lifetime in the
presence of a phonon bandgap in the electron-phonon sys-
tem. We note that as a distribution-averaged quantity,
〈τr〉 has a similar definition to τqp calculated above using
Eq. 8, however, 〈τ∗r 〉 / 〈τr〉 is not expected to equal F ∗φ/Fφ
since in Eq. 9 there is no signal power, only quasiparticles
and phonons in the superconductor are considered, and
the system is in equilibrium.

C. Results

Figure 4 shows that more than an order of magnitude
increase in the quasiparticle lifetime is possible with a
phonon bandgap that can be practically achieved with
a PnC. The non-equilibrium calculation of the electron-
phonon model in Fig. 1 shows a decrease in χ with in-
creasing photon pair-breaking power, an effect that is
largely attributed to an increase in the phonon flow to
the bath at all energies, and a redistribution of the quasi-
particle energies through electron-phonon scattering.

When Γs � Γpb (small-signal limit), the equilib-
rium approximation to the quasiparticle recombination
time agrees remarkably well with a calculation using the
full non-equilibrium solutions of the kinetic equations.
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FIG. 4. Enhancement of the average quasiparticle recombina-
tion time as a function of signal power and phonon bandgap
width, Bbg. For the non-equilibrium results (symbols with
dot-dashed lines), the bandgap extends from 2∆ to Bbg, which
numerically approximates the equilibrium calculation (solid
line) given by Eq. 9. A bandgap rejection level rbg = 104 is
adopted for this calculation.

The enhancement in τqp calculated from Eq. 10 closely
follows an exponential function with Bbg, i.e. χr '
exp(Bbg/kBTb), an effect that arises from the Fermi-
Dirac and Bose-Einstein distributions for the quasipar-
ticle and phonon occupations, respectively. For the same
reason, the effect of a phonon bandgap depends strongly
on bath temperature and the density of thermally gen-
erated quasiparticles. It is important to note that the
estimate of the quasiparticle enhancement from Eq. 10
will not reach an asymptote as a function of bandgap
bandwidth, because the phonon bandgap as introduced
in Eq. 9 prevents electron-phonon scattering from taking
place inside the superconductor at the bandgap energies.

In Fig. 5, the enhancement in the quasiparticle lifetime
is calculated as a function of the bandgap center Ωbg,
with the bandgap bandwidth Bbg fixed to 0.3∆. The
sharp increase in the recombination time at 2∆ reflects
the peak in the quasiparticle density of states near ∆,
and peak phonon power flow near 2∆ due to recombina-
tion. Figure 5 also shows that capturing the peak of the
phonon distribution due recombination (including the ex-
ponential decrease thereafter) is essential as χ reaches a
maximum when Ωbg is at ∼2.1∆.

It is important to consider how χ scales with rbg. An
ideal PnC infinite in extent can be designed to form a
complete phonon bandgap, in which case rbg is infinite.
Practical constraints in a superconducting circuit will
pose a limitation on the PnC size. A truncation in the
size of the PnC leads to a bandgap, the rejection level
of which depends on the crystal dimensions. The rejec-
tion level is typically 103 with 3 units cells, and greater
than 106 with 6 or more unit cells.4,9,34 Figure 5 shows
that χ reaches an asymptote with rbg, reflecting the finite
number of ∼ 2∆ phonons in the superconductor that are

1 2 3
10-6

10-4
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100

102

101 103 105

101

102

FIG. 5. (Left) Quasiparticle recombination time enhance-
ment in the small-signal limit and as function of the bandgap
position. The sharp increase in χ is due to the peak in the
phonon density of states at ∼2∆ due to quasiparticle recom-
bination. The signal energy is 5∆, and power is 1 aW/µm3.
The bandgap width is 0.3∆, and rejection level is 104. (Right)
Recombination time enhancement as a function of bandgap
rejection level.

prevented from flowing to the thermal bath due to the
PnC bandgap.

IV. DISCUSSION

To experimentally address the quasiparticle lifetime
enhancement due a PnC bandgap, we envision a super-
conducting microwave resonator realized as a lumped-
element or a distributed transmission line circuit. We
consider the resonator realized from a lumped capacitor
and inductor, which is compact and desirable for nano-
scale fabrication.

The PnC is patterned around the inductor, which is
the only element sensitive to the quasiparticle dynamics.
The inductor line width is typically 1-2 µm with a total
required membrane size of 10 µm, which is smaller than
the thermal phonon mean-free-path. The quasiparticle
recombination time can be probed by either measuring
the generation-recombination noise or illuminating the
inductor with pair-breaking light.36 The capacitive el-
ement of the resonator can be realized with a high-Tc
(> 9 K) superconductor (e.g. Nb or NbTiN), which con-
fines the quasiparticles to the inductor metal with a much
lower Tc.

The PnC can be realized in a thin dielectric mem-
brane (∼ 100 nm). Current fabrication technologies, such
electron-beam lithography and focused ion-beam milling
can be used to pattern the membrane into a PnC. The
minimum unit cell is limited to ∼ 70 nm. Only a few unit
cells are needed to realize a greater than 104 suppression
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of the phonon flux to the bath at the bandgap energies
of the PnC. Figure 1 illustrates a typical configuration.
The minimum unit cell limits the center of the bandgap
to frequencies < 30 GHz,31,32 which requires a supercon-
ducting metal with a Tc < 400 mK (e.g. Ti, Hf, AlMn),
that is operated at around 50 mK to suppress thermally
generated quasiparticles.

The sensitivity of the quasiparticle recombination time
to a phonon bandgap presents an interesting phenomenon
for measuring the spectral response of PnCs using a su-
perconducting microwave resonator. Although there are
well established methods for measuring the elastic prop-
erties of PnCs, such as Brillouin scattering, coupling a
superconducting resonator to a PnC could provide ad-
ditional insight into the phonon coupling between a su-
perconducting film and an elastic dielectric membrane
at sub-Kelvin temperatures. The electro-mechanical sys-
tem described here would be particularly sensitive to
phonon dimensionality, and phonon density of states
in each film through the electron-phonon interaction
function α2(Ω)ρφ(Ω). Conversely, understanding the
electron-phonon coupling in superconducting microwave
resonators could be valuable for understanding and push-
ing the performance limit of current ultra-sensitive mi-
crowave kinetic-inductance detectors.15

V. CONCLUSIONS

We have shown that a phonon bandgap restricting the
escape rate of recombination phonons from a supercon-
ducting film has a strong effect on the quasiparticle dy-
namics. The quasiparticle lifetime, τqp, is increased by
more than an order of magnitude for realistic bandgap
properties that can be achieved with phononic crystals.
When the pair-breaking photon rate is low, the enhance-
ment in the quasiparticle lifetime calculated using non-
equilibrium particle distributions is in good quantita-
tive agreement with an equilibrium formulation. The
enhancement in τqp should have a significant impact in
superconducting devices where quasiparticle fluctuation
plays an important role in limiting the sensitivity and
responsivity to pair-breaking photons. In addition, τqp is
sensitive to the position of the phonon bandgap. This
response may provide a useful probe for phonon cou-
pling in low-dimensional thin-films. By symmetry of the
phonon transport across a PnC, an isolated supercon-
ductor will be less susceptible to pair-breaking phonon-
mediated quasiparticle poisoning.
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APPENDIX

The kinetic equations describing the rate of change of
quasiparticle and phonon distributions in the supercon-
ductor are

ḟ(E) = Iqp −
1

τ0(kBTc)3

∫ ∞
0

dΩ Ω2ρ(E + Ω) (11)

× L−,+(E,Ω)[f(E)(1− f(E + Ω))n(Ω)

− (1− f(E))f(E + Ω)(n(Ω) + 1)]

− 1

τ0(kBTc)3

∫ E−∆

0

dΩ Ω2ρ(E − Ω)L−,−(E,Ω)

× [f(E)(1− f(E − Ω))(n(Ω) + 1)

− (1− f(E))f(E − Ω)n(Ω)]

− 1

τ0(kBTc)3

∫ ∞
E+∆

dΩ Ω2ρ(Ω− E)L+,−(E,Ω)

× [f(E)f(Ω− E)(n(Ω) + 1)

− (1− f(E))(1− f(Ω− E))n(Ω)]

and

ṅ(Ω) =− 2

πτφ0 ∆(0)

∫ ∞
∆

dEρ(E)ρ(E + Ω) (12)

× L−,+(E,Ω)[f(E)(1− f(E + Ω))n(Ω)

− (1− f(E))f(E + Ω)(n(Ω) + 1)]

− 1

πτφ0 ∆(0)

∫ Ω−∆

∆

dEρ(E) ρ(Ω− E)L+,−(E,Ω)

× [(1− f(E))(1− f(Ω− E))n(Ω)

− f(E)f(Ω− E)(n(Ω) + 1)]− n(Ω)−m(Ω)

τK

respectively.27 L±,∓(E,Ω) = (1±∆2/[E(Ω∓ E))]. The
quasiparticle density of states is ρqp(E) = <[(E +

iξ)/
√

(E + iξ)2 −∆2], which accounts for gap smearing
through ξ. We set ξ to 10−5∆ to ensure numerical con-
vergence of the iterative solver.27 The rate equation for
the phonons in the membrane is given by

ṁ(Ω) = −m(Ω)− n(Ω)

τK
− m(Ω)− g(Ω, Tb)

τφ(Ω)
. (13)

In Eq. 11, Iqp is the rate of quasiparticle generation
from pair-breaking signal photons,27

Iqp(E, νs) = 2B{L+,−(E, h̄ω)ρ(E − h̄ω)

× [f(E − h̄ω)− f(E)]

− L+,+(E, h̄ω)ρ(E + h̄ω)[f(E)− F (E − h̄ω)]

+ L−,−(h̄ω, E)ρ(h̄ω − E)

× [1− f(E)− f(h̄ω − E)]},

where B is a constant that is determined by satisfying
the energy conservation equation in steady-state,

Ps = 4N(0)B
∫ ∞

∆

KqpE ρqp(E) dE, (14)

where Ps is the pair-breaking photon power (see Fig. 1).
Similarly, the phonon power that flows from the super-
conductor to the membrane is given by

Pqp−n = H
∫ ∞

0

ΩρK(Ω)
n(Ω)−m(Ω)

τK
dΩ, (15)

and the phonon power that flows from the membrane to
the bath is given by

Pm−b = G
∫ ∞

0

Ωρφ(Ω)
m(Ω)− g(Ω, Tb)

τ̃φ(Ω)
dΩ. (16)

ρK(Ω) and ρφ(Ω) are the density of states for the phonon
transport across the Kapitza boundary between the su-
perconductor and the membrane, and the membrane and
thermal bath, respectively. For simplicity, we assume
ρK = ρφ = ρD, where ρD = 9NionΩ2/Ω3

D and ΩD is a
Debye phonon frequency. The assumption that ρK = ρD
has been used to predict the response of a superconduct-
ing film to optical pair-breaking photons.27 In theory,
ρφ can be determined for any given infinitely periodic
crystal, however, it is significantly more challenging to
compute the phonon relaxation time as a function of fre-
quency, which is beyond the scope of this work. We em-
phasize that χ is a normalized parameter, which measures
an increase in τqp relative to a superconducting system
without a phononic bandgap.

We employ and extend the iterative technique de-
scribed in Ref. 27 to solve the set of non-linear equa-
tions 11–16 in steady-state. Since the density of states
and the associated phonon power transmission factors are
difficult to determine accurately for a given system, the
constants B, H, and G are solved simultaneously with
the particle occupations f(E), n(Ω), and m(Ω) for a self
consistent solution that conserves energy. Table I sum-
marizes the superconducting materials parameters used
to model the electron-phonon system shown in Fig. 1.

TABLE I. Intrinsic parameters of the superconducting metal
(Al) and membrane described in the text. The bath temper-
ature of the system is 0.1Tc.

Tc 1.18 [K]

∆ 180 [µeV]

ξ 1.1×10−3 [∆]

N(0) 1.7×106 [µeV−1µm−3]

b 10−5 [∆−2]

Nion 7.1×1010 [µm−3]

ΩD 37 [meV]

τ0 438 [ns]

τφ0 0.26 [ns]

τK 0.26 [ns]
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