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In order to explain and predict the properties of many physical systems, it is

essential to understand the interplay of different energy-scales. Here we present

investigations of the magnetic order in thermalised artificial spin ice structures,

with different activation energies of the interacting Ising-like elements. We

image the thermally equilibrated magnetic states of the nano-structures using

synchrotron-based magnetic microscopy. By comparing results obtained from

structures with one or two different activation energies, we demonstrate a clear

impact on the resulting magnetic order. The differences are obtained by the

analysis of the magnetic spin structure factors, in which the role of the activation

energies is manifested by distinct short-range order. These results highlight the

potential of artificial spin ice structures to serve as model systems for designing

various energy-scale hierarchies and investigating their impact on the collective

dynamics and magnetic order.

I. INTRODUCTION

Initially introduced as a playground for the experimental investigation of magnetic frus-

tration effects1, the area of artificial spin ices has evolved into a vibrant field of research. Us-

ing designed structures, collective order and dynamics can be controlled and directly visual-

ized by using, for example, nano-characterization techniques2. This approach has motivated

experimental investigations of celebrated classical spin models3–5, some of which display

non-conventional and exotic magnetic phases6–8,10. Furthermore, given the large freedom in

design, new topologies have been proposed by Morrison et al.11, promoting non-conventional

emergent order12,13. These are also currently investigated in thermally-active realizations of

artificial spin ice structures, allowing the study of their complex energetic manifolds in a

superparamagnetic regime14,15, in a similar way to the initially studied kagome and square

artificial spin ice geometries16–21. In a series of experimental investigations utilizing new

topologies9,13–15,22,23, particular attention has been given to the so-called Shakti lattice, a

variation of the square ice geometry. In this lattice, 25% of the square ice lattice elements

have been removed and certain pairs of islands merged as depicted in Fig. 1.

Theoretical and numerical studies have predicted an emergent magnetic order in the

Shakti geometry12 which retrieves the features of the six-vertex model4 on a larger length-
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scale. This behavior has been demonstrated experimentally by Gilbert et al.13 for the Shakti

lattice (SH), as well as for a modified Shakti lattice (mSH).

Given the mesoscopic nature of the structures, different activation energies are expected

for the long (TB1) and short islands (TB2), resulting in two blocking temperatures of the

elements (TB2 < TB1). The presence of two activation energies is therefore expected to in-

fluence the eventual magnetic correlations and order in the lattice, since the larger elements

could act as a source of quenched disorder. Such disorder would hinder the development of

any medium- or long-range magnetic order of the smaller islands, as these become arrested at

lower temperatures (TB2). Whilst the vertex statistics for both the Shakti lattices have been

experimentally investigated for a range of inter-island coupling strengths13, the thermally

driven kinetics in the modified Shakti lattice were only recently reported15. Consequently,

the impact of the hierarchy of the activation energies on the emergent order has not been

addressed to date. In this work, we undertake this task for the particular case of the Shakti

and the modified Shakti geometries. Using thermally-active elements, we characterize and

compare their final magnetic configurations using identical experimental protocols, high-

lighting the impact of different activation energies on the obtained magnetic correlations

and order.

II. EXPERIMENTAL DETAILS

A. Sample preparation

The samples were produced by a post-growth patterning process, applied to a thin film

of δ-doped Palladium (Iron) as described in Pärnaste et al.24. A thick bottom layer of

Pd (40 nm) is followed by 2.0 monolayers of Fe, defining the nominal Curie-temperature,

TC = 400 K24, as well as the thermally active temperature range for the δ-doped Pd(Fe).

The post-patterning was carried out at the Center for Functional Nanomaterials (CFN),

Brookhaven National Laboratory in Upton, New York. A positive high resolution e-Beam

resist (ZEP520A) was employed to create a Chromium mask of the nano-structures using

e-Beam lithography. The magnetic structures were formed by Argon ion milling. All in-

vestigated structures were produced on the same substrate from the same layer, ensuring

identical intrinsic material properties as well as the same thermal history for all the inves-
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tigated structures. Each array had a spatial dimension of 200 × 200 µm2. The lengths

of the large and small islands, were chosen to be 1050 nm and 450 nm, respectively, while

the width was kept at 150 nm. The lattice spacing between two parallel neighboring short

islands was set to 600 nm.

B. Thermal protocol

Similar to previous studies20,21, the thermal protocol involves a gradual cooling from a

superparamagnetic state of the elements, towards a completely arrested state at the lowest

temperatures. This process is schematically represented in Fig. 1 for both the Shakti and the

modified Shakti lattices. Notice the two distinctive stages of the superparamagnetic regime

for the Shakti lattice because to the presence of elements with different intrinsic activation

energies.

S
H

m
S
H

TB1TB2 TC
X-Ray

direction

FIG. 1. A schematic representation of the Shakti (SH) and modified-Shakti (mSH) lattices along

with magnetic states representative of each temperature regime, generally defined by the Curie

(Tc) and the blocking temperatures (TB1/B2). Elements in their paramagnetic state are gray,

superparamagnetic elements are light-blue and the frozen elements are represented with a magnetic

north (blue) and south (red) pole, reflecting their final magnetic orientation. The gray-scale images

to the left are representative PEEM-XMCD snapshots obtained at 65 K, the lowest temperature

reached during the cooling.
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When the temperature is lowered below the Curie temperature (Tc), the elements become

magnetic and can be considered as mesospins. The stray field of these islands is resulting in

a temperature-dependent magnetostatic coupling. The coupling between the elements has

a direct impact on the involved activation energies, biasing the otherwise equally-favoured

two magnetic states of the islands. On the lattice scale, this effectively results in a dynamic

distribution of blocking temperatures around the intrinsic energy barriers, a distribution

whose width depends on the strength of the inter-island interactions.

C. Interaction strength and its impact

There are three special cases to be considered: the strong, intermediate and weak coupling

limits. In the strong coupling limit, the intrinsic activation energy of the mesospins is much

smaller than the inter-island interactions. Consequently, the emergent order will not depend

on the differences in the activation energies, but significant effects on the dynamic response

cannot be ruled out. In the intermediate coupling limit, the strength of the inter-island

couplings is comparable to the intrinsic activation energy of the mesospins. This will give

rise to a complex interplay, in which the relation between the activation and interaction

energies will dictate both the order and dynamics of the magnetic phases. The individual

activation energies depend on the dynamically developing magnetic configurations, for both

long- and short-mesospins. In other words, these couplings can yield a strong overlap in

the two blocking temperature distributions of the short and long islands. Therefore, the

configurations of the long- and the short-mesospins will exhibit different degrees of order,

all depending on the relation of the activation and interaction energies. Conversely in the

weak coupling limit, the intrinsic activation energies of the long-mesospins are much larger

than the inter-island interactions. Around the intrinsic blocking temperature of the long

islands (TB1), the available thermal energy is higher than the energy difference given by

any magnetization reversal of the short islands. Therefore the lattice as a whole will be

in a disordered state when the long-mesospins freeze (TB1) and consequently the magnetic

orientation of the long elements will be randomly distributed, with no short- or long-range

correlations. However, at the blocking temperature for the short-mesospins (TB2) the inter-

island coupling strength can be comparable to their intrinsic activation energies, potentially

resulting in a short-range order below TB2. Thus, having two distinct activation energies is

5



expected to have a significant impact on the emergent order, for both the intermediate and

the weak coupling limits. By the same token, the presence of two or more activation energies

is expected to have a marginal impact in the strong coupling limit. Here, we focus on the

weak coupling limit and, as previously stated, we compare the obtained magnetic order in

SH and mSH lattices, ascertaining the impact of the hierarchical relation of inter-element

interactions and the activation energies involved.

D. Determination of the magnetization direction

The magnetic states were determined as a function of temperature using Photo Emission

Electron Microscopy (PEEM) capturing the X-ray Magnetic Circular Dichroism (XMCD)

contrast. The experimental studies were performed at the 11.0.1 PEEM3 beamline at the

Advanced Light Source, in Berkeley, California, USA. For the SH and mSH lattices the

islands were oriented 45◦ with respect to the incoming X-ray beam, to enable identification

of the magnetization direction of all elements in the lattices. For these lattices multiple,

partially overlapping, PEEM-XMCD images were acquired and stitched together to form

one large image containing over 4000 mesospins for each of the investigated lattices, see

Supplementary Materials Fig. 225. The images used for determining the magnetic states

were taken at 65 K, far below the Curie-temperature and the blocking temperatures of the

short- and long-mesospins. The sampling time (ts = 300 s) required for obtaining a PEEM-

XMCD image defines a time window linked to the thermal stability of the mesospins: At the

lowest temperatures, all magnetic states are stable (frozen) and the lattice can be imaged

for practically arbitrary long times, yielding the same result. However, if the reversal times

are much smaller than ts, no magnetic contrast is obtained. This allowed us to ask at

which temperature the spins have reversed their magnetization direction within a given

time window, thereby providing an estimation on the involved energy scales.

III. RESULTS

A. Activation energies of the mesospins

Magnetic interactions can affect the inferred activation energies in a profound way. We

therefore fabricated two additional lattices consisting of long- and short-mesospins, 1110 nm
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and 450 nm respectively, in which the distance was large enough to allow us to ignore any

effects arising from the interactions between the elements (see Supplementary Materials25).

The islands were oriented parallel with respect to the incoming X-ray beam, to determine

the magnetization direction of the mesospins.

Following the above line of argumentation, we determined that 50% of the short islands

reverse their magnetization direction within 300 s at 112 K, while a temperature of 149 K

is required for obtaining the same condition for the long islands. The determination of

the activation energies is model dependent. Using an expression for the probability of a

magnetic element not having altered its magnetization direction after a time period ts
21,26,

as described in the Supplementary Materials25, yields a ratio for the activation energies

of 0.49(4). This approach provides support for well separated energy-scales, which will be

assumed to be the case in the remainder of this communication.
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FIG. 2. Long-mesospin correlations in the Shakti lattice. The network-averaged magnetic cor-

relations for long-mesospins spatially oriented vertically/horizontally are shown in the left/right

graph. In blue/red the correlations of long-mesospins which are oriented in a string and in light-

blue/orange the correlations of the long-mesospins diagonally oriented are represented, as indicated

in the inset. All correlations show that already the first neighbor is randomly oriented and there-

fore the magnetic orientations of the long-mesospins are not correlated. Error bars represent one

standard deviation.
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B. Correlations of the long-mesospins in the Shakti lattice

The correlations between the long-mesospins were determined from the PEEM-XMCD

images recorded at 65 K, after cooling the samples from room temperature with a rate

of 1 K/minute. The results from analysis along different directions in the SH lattice are

illustrated in Fig. 2. As seen in the figure, no correlations between long-mesospins are

observed. The cooling of the sample below the blocking temperature of the short-mesospins

does not result in any observed order for the long-mesospins. Because of this, the effective

interaction mediated by the short-mesospins must be much smaller than the activation

energy of the long-mesospins.

C. Magnetic order on the vertex-level

Having established the randomness of the magnetic states of the long-mesospins in the

Shakti lattice, we now turn our attention to the overall magnetic order established within

the SH and mSH lattices. For square ice related geometries, a commonly-employed tool

for characterizing the obtained magnetic state is the determination of populations of the

various types of vertex configurations. The different vertex types for both the SH and the

mSH lattices are illustrated in Fig. 3(a)-(c). In the nomenclature used here, a roman numeral

denotes the vertex type along with a subscript representing the number of mesospins forming

the vertex. As an example, I4 represents four elements forming a Type-I vertex. The mSH

lattice has an additional degree of freedom as compared to the SH lattice, arising from the

two-fold coordinated vertex having two possible states: Type-I2 and Type-II2.

The vertex statistics obtained for the three- and four-fold coordinated vertices are pre-

sented in Fig. 3(d) and 3(e), respectively. Comparing the abundance of the different states

with published data from Gilbert et al.13, we can again confirm that our results are repre-

sentative for the weak coupling regime, as e.g . the previous works on ASI structures17,21.

Notice that these vertex statistics do not display a significant difference between the common

vertex states of the SH and mSH lattices, similar to previous reports13. This implies that

the final vertex populations are independent of the presence of the long islands in the Shakti

geometry and the related energy hierarchy. However, the vertex statistics yield only a partial

description of the final magnetic state and are insensitive to magnetic order established over

8



(d) (e)

Type-I3 Type-II3 Type-III3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
bu

nd
an

ce

Type-I4 Type-II4 Type-III4 Type-IV4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
bu

nd
an

ce

mSH

   SH

mSH

   SH

d

(a)

(b)

Type-I4 Type-II4 Type-III4 Type-IV4

Type-I3L Type-II3L Type-III3L

Type-II2

Type-I2

(c)

Type-I3S Type-II3S Type-III3S

FIG. 3. Vertex type definition and statistics for SH and mSH lattices. SEM image of the SH (a)

and mSH (b) lattice. The different vertex types are indicated by their respective colors. The real

space base vectors for the Shakti lattice are defined along the x- and y-direction and each have

a length of four times the lattice spacing (d = 600 nm). (c), Definition of the vertex states for

all different vertex types. While both lattices share the vertex type with a coordination number

of four (green), the mSH lattice contains vertices with coordination number three (red) and two

(orange). In the SH lattice the three-fold coordinated vertices (blue) include a long-mesospin. The

four- (d) and three-fold (e) coordinated vertex statistics for SH (dark-blue) and mSH (dark-red)

lattices show no significant differences. Error bars represent one standard deviation.

spatial extensions larger than the vertex size.
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D. Beyond the vertex-level

We use the calculated spin structure factor (SSF) to determine correlations beyond near-

est neighbours7,8,10,27. The transformation of real space experimental data has also a di-

rect relevance for the understanding of scattering experiment results on artificial spin ice

systems28–30. This invokes the use of a Fourier transformation of pairwise correlations of the

magnetic states in the following form:

I(q) =
1

N2

N∑
(i,j=1)

S⊥i · S⊥j · eiq·(ri−rj) (1)

where I(q) is the intensity for a given scattering vector q in reciprocal space, N denotes

the number of spins over which the SSF is calculated, S⊥i the spin component perpendicular

to q and ri is the position of the corresponding spin in the real-space lattice. The SH and

the mSH lattices have different lattice points, ri, for the long- and two short-mesospins, the

differences in the SSF of the SH and mSH data is dominated by this structural difference.

To facilitate a proper comparison between the two cases, only the mesospin sub-set found

in both geometries, namely the four-fold coordinated vertices, has been taken into account

1284-4-8-12
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FIG. 4. Spin structure factor maps computed for the four-fold coordinated vertex sub-lattices of

the mSH (left) and the SH (right) lattices. The real space lattice vectors as well as the sub-set of

four-fold coordinated vertices (red islands) are indicated in the insets.
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for the SSF computation. Therefore we calculate the SSF according to equation (1), in the

same manner as is explained in more detail by Östman et al.10, but only using the mesospins

of the vertices with a coordination number of four. Since this sub-lattice of mesospins is the

same in both the SH and mSH lattices, differences in the SSF represent different ordering

among these sub-sets of spins. Characteristic SSF maps for the SH and mSH networks are

presented in Fig. 4.

Although neither of the two maps presents specific features, such as pinch points or Bragg

peaks, their diffuse signals systematically exhibit clear differences. This is indicative of dif-

ferences in the global spin order, which have not been captured by the statistics determined

on the vertex-level (presented in Fig. 3(d) and 3(e)). The striking feature is the presence

of a hollow region (e.g . at the (±2,±2) (r.l.u.) points in reciprocal space) in the SH lat-

tice SSF map, with the same region having a more uniform intensity distribution in the

structure factor map of the mSH. To understand the origin of this effect and identify the

length-scales that are at play, we have computed magnetic structure factors for networks

of gradually-increasing size and network-averaged these individual signals for each chosen

network-size. Since the sample is large enough to assume ergodic conditions, this size reduc-

tion of the sampling window and the corresponding network-averaging, provides statistical

information about the magnetic state on the length-scale of the sampling window rather

than the high spatial frequencies of the speckle pattern (Fig. 4) obtained from the specific

global microstate.

Hence, we define

IL =
1

(4L)2M

M∑
m=1

4L∑
(i,j=1)

S⊥i · S⊥j · eiq·(ri−rj) (2)

as an incoherent31 spatial average over sampling windows with L four-fold coordinated ver-

tices. Each sampling window therefore consists of 4L spins (taking into account only the

short-mesospins). The SSF IL is the average of all M sampling windows present in the

measured global microstate.

Fig. 5(b) and 5(d) show a comparison of I1, i.e. the averaged SSF for a single four-

fold coordinated vertex (four mesospins) for the SH and mSH lattices. Both are virtually

indistinguishable, which is not surprising since I1 is merely a different representation of

the vertex statistics shown in Fig. 3(d). In other words, as the vertex statistics showed
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FIG. 5. Spatially-limited spin structure factor as indicator for short-range order. (a), Illustration

of the mesospin sub-set used in the SSF calculations. The real space lattice vectors (a1,a2) which

are used for the reciprocal lattice units (r.l.u.) are also shown. The real space input window

size for the averaged SSF I1 (red – SSF (b/d)) and I9 (blue – SSF (c/e)) are highlighted. b-e,

The averaged SSF maps for SH (b/c) and mSH (d/e) lattices, with reduced real space input size

according to equation (2). (f), Diagonal line-profiles for the SSF of different input sizes for the SH

(dark-blue) and mSH (dark-red) lattices. The modulation of the intensity in the SSF maps at (qx,

qy) = (2, 2) [r.l.u.] is clearly distinguishable for the case of the SH lattice and an indication of a

different order for these length-scales.

no significant differences, the SSF maps in Fig. 5(b) and Fig. 5(d) should also be similar,

traceable also in a comparison of the top-most diagonal line-profiles in Fig. 5(f). Expanding

the SSF input window to sixteen mesospins (I4, four four-fold coordinated vertices), a clear

difference between the SH and mSH appears, with a more pronounced dip in the intensity

at the (2,2) reciprocal space position for the SH lattice case (Fig. 5(f)). Expanding the

real space input window to thirty-six mesospins (I9, nine four-fold coordinated vertices),

the differences in the SSF maps between the SH (Fig. 5(c)) and mSH (Fig. 5(e)) become

even more pronounced (see also the line-profiles in Fig. 5(f)). The line-profiles in Fig. 5(f)

are diagonal cuts through the respective SSF maps I1, I4, I9 and I16 from reciprocal space

position (qx, qy) = (0, 0) [r.l.u.] to (qx, qy) = (4, 4) [r.l.u.]. The results from these spatially-

limited SSF maps in Fig. 5 are qualitatively similar to the features observed for the SSF

of the full microstate in Fig. 4 and capture differences in the magnetic short-range order,

exceeding the extension of just one vertex.

12



(b)

Ferromagnetic spin arrangement

A
bu

nd
an

ce

0.1

0.2

0.3

0.4

0.5

SH

mSH

random

A1 A2 A3

(a)

3

4
65

1

2

3

4
5

1

2

A1 A2 A3

FIG. 6. Spin arrangements across the long-mesospins / two-fold coordinated vertices. (a),

Schematic representation of all mesospins contained within two neighboring three-fold coordinated

vertices (gray numbered islands). We classify the arrangements of all these mesospins in three

classes, denoted as A1, A2 and A3. The abundance values of A1 and A2 are averages of the four

possible spin arrangements in these classes. One representative spin arrangement for each of the

three classes is depicted in (a). The magnetization direction of islands without arrows are not in

consideration for the specific spin arrangement and can be magnetized either way. The coupled

four-fold coordinated vertices are indicated by the light-green islands. The number of coupled

four-fold coordinated vertices across the Type-I2 vertex or a long-mesospin is two for A1, three for

A2 and all four for A3. (b), The abundance of these three classes is plotted for the SH (dark-blue)

and the mSH (dark-red) lattices, the abundance for each spin arrangement in a random mesospin

state is represented with a gray inside bar. The abundance revealing the distinct differences in the

arrangement of the mesospins around the Type-I2 vertex and is strongly indicating a defined tiling

for the four-fold coordinated vertices around the long-mesospins and the build-up of a short-range

order. Error bars represent one standard deviation.

13



E. Short-range magnetic order

We attribute the origin of the features observed in the SSF maps to the long elements in

the SH lattice and the difference in activation energies between the short and long islands.

To elaborate more on this premise, we have extracted the abundance of various spin arrange-

ments that connect four-fold coordinated vertices across a Type-I2 vertex in the mSH lattice

or a long-mesospin in the SH lattice. Here, we focus on three of the different configurations

of interest for such spin arrangements, as presented in Fig. 6(a). In the three vertex coupling

classes, A1, A2 and A3, a total of nine different ferromagnetic spin arrangements are investi-

gated. A detailed analysis of all nine spin arrangements can be found in the Supplementary

Materials Fig. 325. In Fig 6(b) we report their abundances for both lattices, along with the

estimated values given by a random distribution, in the absence of any interaction between

the considered mesospins. A1 and A2 are averages of four different spin arrangements (C1-

C4 and C5-C8, see Supplementary Materials Fig. 325), which have the same characteristic.

In the case of A1, one mesospin (mesospin 1 or 2 in schematic 6(a)) is ferromagnetically

aligned to the long-mesospin (or the two ferromagnetically aligned mesospins of the two-fold

coordinated vertex) and one mesospin on the other side (mesospin 3 or 4 in Fig. 6(a)). For

A2 one mesospin on one side is ferromagnetically aligned with two mesospins on the other

side of the long-mesospin (or the two ferromagnetically aligned mesospins of the two-fold

coordinated vertex). A3 represents the lowest energy configuration for these five (six in the

mSH) mesospins and arranges all mesospins (mesospin 1, 2, 3 and 4 in schematic Fig. 6(a))

ferromagnetically with respect to the long-mesospin (or the two ferromagnetically aligned

mesospins of the two-fold coordinated vertex).

IV. DISCUSSION

The spin arrangements in Fig. 6 highlight the development of a stronger correlation

between four-fold coordinated vertices across a long-mesospin in the SH lattice than in the

mSH, in which case the coupling is mediated via a two-fold coordinated vertex. In the Shakti

ground state manifold as described by Chern et al.12, the four-fold coordinated vertices are

always in their lowest energy state, Type-I4 (see definition Fig. 3c). This state has a two-fold

degeneracy, which we denote by Type-I4(A) and Type-I4(B) (see Supplementary Materials
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Fig. 4(b)25). A transition from Type-I4(A) to a Type-I4(B) is given by a magnetization

reversal of all four mesospin. Two Type-I4 vertices which are ferromagnetically coupled via

a Type-I2 or a long-mesospin will always be of opposite states, Type-I4(A) and Type-I4(B).

Returning to the SSF maps in Fig. 4 and Fig. 5, the distinct shape in the SSF can be

explained by the enhanced effective coupling of Type-I4(A) to Type-I4(B) vertices via the

long-mesospins in the SH lattice. In other words, although the long-mesospins freeze in a

random configuration, they are more effective in transmitting magnetic correlations from one

end of a Shakti plaquette to the other, than the two-fold vertex of the mSH lattice. While

this is a rather straightforward result for the case of one plaquette, it is a priori expected

that, on the lattice scale, the prior establishment of a random distribution of long-mesospin

states would yield an even more randomized configuration of short islands, a fact that the

mSH lattice might circumvent given the absence of these constraints.

To further discuss our results we would like to compare them with the ones previously

reported by Gilbert et al.13. For the strong coupling regime, they observed an almost

perfect ground-state ordering of the four-fold coordinated vertices for the mSH lattice, while

the SH lattice has only about 80% of these vertices in the lowest energy state, Type-I4.

These differences, in the light of our results, can be attributed to the distinct energy-scales.

As the long-mesospins freeze into a pre-defined disordered sub-lattice, the Shakti ground

state manifold is restricted and shaped by the long-mesospin sub-lattice. When coupling

four Type-I4 vertices via a long-mesospin, 16 different Type-I4-tilings are possible. The

Shakti ground state, as defined by Chern et al.12, can be obtained with only 12 out of

the total 16 tilings. The mSH lattice, with its mono-sized short-mesospins, can access the

entire ensemble of tilings. However, the pre-defined disordered long-mesospin arrangement

effectively reduces the possible states in the Shakti ground state manifold (see Supplementary

Materials Fig. 425). The frozen long-mesospin restricts the Type-I4-tiling amongst four four-

fold coordinated vertices to 7 out of 16 possible arrangements. As the system grows in size,

the Shakti ground state manifold is further reduced by each added frozen long-mesospin (for

further information see Supplementary Materials25). This is a plausible cause for the higher

order found in the mSH lattice for the strong-coupling regime reported by Gilbert et al.13

compared to the SH lattice. However, as the inter-island coupling strength is reduced, the

long-mesospins, although a source of randomness, provide a better locally-correlated state

than the two-fold coordinated vertices of the mSH lattice.
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V. CONCLUSIONS

Using thermally-active nano-patterned arrays of weakly-coupled magnetic mesospins, we

have highlighted the impact of distinct length- and energy-scales on the development of mag-

netic order in artificial spin ice. While our study is restricted to the Shakti geometry and

the weak-coupling regime, it captures the importance of the energy hierarchy in mesoscopic

architectures and its role for the obtained magnetic order. Given the vast opportunities in

geometrical design and the available choices of magnetic materials, the energy hierarchy can

be engineered, and, in combination with suitable thermal or even demagnetization proto-

cols, used as a tool for tailoring the magnetic order in mesoscopic magnetic structures. The

hierarchy of the energy-scales, as well as the interplay between them, lie behind the complex

emergent behavior and properties seen frequently across a range of natural systems32. Arti-

ficial spin systems provide, therefore, a unique opportunity to study emergence, by offering

a ‘designer’ fabrication route and parametrization of the relevant variables. This opportu-

nity potentially allows for a better understanding of problems in physics requiring multiple

scale-analysis33.
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3 I. Syôzi, Statistics of Kagomé Lattice, Progress of Theoretical Physics 6, 306–308 (1951).

4 E. H. Lieb, Exact Solution of the F Model of An Antiferroelectric, Phys. Rev. Lett. 18, 1046–

1048 (1967).

5 E. H. Lieb, Residual Entropy of Square Ice, Phys. Rev. 162, 162–172 (1967).

6 S. Zhang, I. Gilbert, C. Nisoli, G.-W. Chern, M. J. Erickson, L. O’Brien, C. Leighton, P. E.

Lammert, V. H. Crespi, and P. Schiffer, Crystallites of magnetic charges in artificial spin ice,

Nature 500, 553–557 (2013).

7 B. Canals, I.-A. Chioar, V.-D. Nguyen, M. Hehn, D. Lacour, F. Montaigne, A. Locatelli, T. O.
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