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We demonstrate the inplane anisotropy of longitudinal thermal conductivities and the weak lo-
calization of magnons in a disordered screw-type spiral magnet on a square lattice. We consider
a disordered spin system, described by a spin Hamiltonian for the antiferromagnetic Heisenberg
interaction and the Dzyaloshinsky-Moriya interaction with the mean-field type potential of impuri-
ties. We derive longitudinal thermal conductivities for the disordered screw-type spiral magnet in
the weak-localization regime by using the linear-response theory with the linear-spin-wave approx-
imation and performing perturbation calculations. We show that the inplane longitudinal thermal
conductivities are anisotropic due to the Dzyaloshinsky-Moriya interaction. This anisotropy may be
useful for experimentally estimating the magnitude of a ratio of the Dzyaloshinsky-Moriya interac-
tion to the Heisenberg interaction. We also show that the main correction term gives a logarithmic
suppression with the length scale due to the critical back scattering. This suggests that the weak
localization of magnons is ubiquitous for the disordered two-dimensional magnets having global
time-reversal symmetry. We finally discuss several implications for further research.

I. INTRODUCTION

Weak localization of magnons can occur in a disor-
dered collinear antiferromagnet1. A disordered magnet is
realized by substituting part of magnetic ions in a mag-
net by different ones, which are of the same family in
the periodic table1,2. This partial substitution modifies
the values of exchange interactions, and the main effect
can be treated as the mean-field type potential1,2. Since
collinear antiferromagnets have global time-reversal sym-
metry, magnons in disordered two-dimensional collinear
antiferromagnets will show some characteristic trans-
port properties in the weak-localization regime, where
the effects of disorder can be treated as perturbation.
(Here the time-reversal symmetry is defined as the sym-
metry against time-reversal operation for a closed, iso-
lated physical system3,4; our time-reversal symmetry is
global one because we have considered not the time-
reversal symmetry at a site, i.e., local one, but the time-
reversal symmetry for the system.) Actually, we demon-
strated several properties due to the weak localization of
magnons1,2. For example, by treating magnons of dis-
ordered Heisenberg antiferromagnets in the linear-spin-
wave approximation and deriving the longitudinal ther-
mal conductivity of magnons in the linear-response the-
ory with perturbation calculations, we showed that the
main correction term in the weak-localization regime in
two dimensions diverges in the thermodynamic limit and
drastically suppresses the magnon thermal current par-
allel to temperature gradient1.

The results1 of the disordered collinear antiferromag-
net provoke two key questions. The first one is whether
the weak localization of magnons occurs in other dis-
ordered magnets having global time-reversal symmetry;
the second one is how differences in the magnetic struc-
ture and exchange interactions affect transport properties
of disordered magnets. These questions will be natural
because global time-reversal symmetry is vital for the

weak localization1,5,6, and because some magnets, such
as Ba2CuGe2O7

7–9, have not only the Heisenberg interac-
tion, but also the Dzyaloshinsky-Moriya interaction10,11,
which is absent in the disordered collinear antiferromag-
net. These questions are also useful for understanding
generality of the weak localization of magnons and spe-
cific properties in each magnet.

To answer these questions, we may need to analyze
thermal transport of magnons in a disordered screw-type
spiral magnet. A screw-type spiral magnet12 has the
magnetic structure described by, for example, 〈Si〉 =
t(S sin θi 0 S cos θi) with θi = Q · i, where S is the
spin quantum number, and Q is the ordering vector.
Such a screw-type spiral state becomes the most stable
ground state in a spin model for the antiferromagnetic
Heisenberg interaction and the Dzyaloshinsky-Moriya in-
teraction on a square lattice14. Then the screw-type
spiral magnet has global time-reversal symmetry be-
cause its magnetic structure can be regarded as a set
of antiferromagnetic-like pairs with different, relative an-
gles (i.e., a set of the pair for 〈S0〉 and −〈S0〉, the pair for
〈S1〉 and −〈S1〉, etc.). This property is reasonable be-
cause the collinear Heisenberg antiferromagnet has global
time-reversal symmetry and the Dzyaloshinsky-Moriya
interaction is symmetric about time reversal13. Thus a
disordered screw-type spiral magnet is suitable for com-
parison with the disordered collinear antiferromagnet.

However, there is no theoretical study about magnon
transport in the disordered screw-type spiral magnet.
Such a study is needed to justify the weak localization of
magnons and understand the effects of the different mag-
netic structure and exchange interactions. While there
is a previous theoretical study15 about the effect of the
Dzyaloshinsky-Moriya interaction in a disordered mag-
net, this magnet lacks global time-reversal symmetry. It
may be desirable to study thermal transport properties
of magnons in the disordered screw-type spiral magnet.
This is because the back scattering is critical only in the
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presence of time-reversal symmetry2,6, because the criti-
cal back scattering is not sufficient to justify the weak lo-
calization and for the justification an analysis of a trans-
port property is necessary. Here the critical back scat-
tering means the divergence of the particle-particle-type
four-point vertex function in the limit |Q| = |q+q′| → 0.
Note that in a three-dimensional disordered metal the
correction term to the longitudinal conductivity in the
weak-localization regime approaches zero in the thermo-
dynamic limit, although the back scattering is critical6.
In the situation that the back scattering is critical, it is
also coherent (for the detail see Appendix A).

In this paper we study longitudinal thermal conduc-
tivities for a disordered two-dimensional spiral magnet
in the weak-localization regime. The aims of this pa-
per are to clarify effects of the Dzyaloshinsky-Moriya
interaction, which is absent in the disordered antiferro-
magnet1,2, and to justify whether the weak localization
of magnons occurs in another disordered magnet having
global time-reversal symmetry. Our spin Hamiltonian in-
cludes the antiferromagnetic Heisenberg interaction and
the Dzyaloshinsky-Moriya interaction on a square lattice
on a xz plane. We take account of the main effect of the
partial substitution of magnetic ions by the mean-field
type potential. Treating magnons in the linear-spin-wave
approximation16–18 and using the linear-response theory
and several approximations used for the disordered an-
tiferromagnet1, we derive the longitudinal thermal con-
ductivities of magnons for the disordered screw-type spi-
ral magnet in the weak-localization regime. We show
that the inplane longitudinal thermal conductivities are
anisotropic due to the Dzyaloshinsky-Moriya interaction,
which results in the difference between magnon propaga-
tion parallel and perpendicular to the spiral axis. We also
show that the weak localization of magnons occurs in the
disordered screw-type spiral magnet. Then we compare
the properties of the disordered spiral magnet with those
of the disordered antiferromagnet and discuss the valid-
ity of our approximation and the implications for further
theoretical or experimental studies.

II. MODEL

The Hamiltonian of our model consists of two parts:

Ĥ = Ĥ0 + Ĥimp, (1)

where Ĥ0 is the Hamiltonian without impurities, and
Ĥimp is the Hamiltonian of impurities. In the remain-

ing part of this section, we first explain the detail of Ĥ0,
and then the detail of Ĥimp. For Ĥ0 and Ĥimp expressed
in terms of magnon operators, see Eqs. (17) and (33).
Throughout this paper we set h̄ = 1 and kB = 1.

A. Ĥ0

As Ĥ0, we consider the Heisenberg interaction
and Dzyaloshinsky-Moriya interaction between nearest-
neighbor magnetic ions on a square lattice on a xz plane:

Ĥ0 =
∑
〈i,j〉

JijŜi · Ŝj −
∑
〈i,j〉

Dij

(
Ŝzi Ŝ

x
j − Ŝxi Ŝzj

)
=
∑
i,j

∑
α,β=x,y,z

Mαβ(i, j)Ŝαi Ŝ
β
j . (2)

Here
∑
〈i,j〉 = 1

2

∑
i,j is the summation for nearest-

neighbor magnetic ions at i = t(ix iz) and j = t(jx jz)
on the square lattice; Jij is the antiferromagnetic Heisen-
berg interaction, given by

Jij =


J (|jx − ix| = 1, iz = jz),

J (|jz − iz| = 1, ix = jx),

0 (otherwise),

(3)

where J > 0; Dij is the Dzyaloshinsky-Moriya interac-
tion, given by

Dij =


+D (jx − ix = +1, iz = jz),

−D (jx − ix = −1, iz = jz),

0 (otherwise),

(4)

whereD > 0. We use Eq. (2) as the Hamiltonian without
impurities because this is a minimal model for a screw-
type spiral magnet. As shown in Appendix B, the most
stable ground state in the mean-field approximation is a
screw-type spiral magnet, characterized by

〈Si〉 =

 〈Sxi 〉〈Syi 〉
〈Szi 〉

 =

 S sinQ · i
0

S cosQ · i

 , (5)

where Q = t(Qx Qz) with Qx = π− cos−1(J/
√
J2 +D2)

and Qz = π; the ground-state energy of this state is
always lower than that of the antiferromagnetic state for
q = t(π π) as long as D is finite. The magnetic structure
is schematically illustrated in Fig. 1.

To describe magnon properties of Ĥ0, we express Ĥ0

in terms of magnon operators by using the linear-spin-
wave approximation. For the detail of the linear-spin-
wave approximation for a noncollinear magnet, see Refs.
16, 17 and 18. First, we introduce a rotation matrix,
defined as follows:

〈Ŝi〉 = Ri〈Ŝ′i〉, (6)

where 〈Ŝ′i〉 = t(0 0 S). We have introduced this ma-
trix because the Holstein-Primakoff transformation for
a collinear ferromagnet is applicable to Ĥ0 expressed in
terms of Ŝ′i. For the screw-type spiral magnet, Ri is

Ri =

 cos(Q · i) 0 sin(Q · i)
0 1 0

− sin(Q · i) 0 cos(Q · i)

 . (7)
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Spiral
axis

FIG. 1: Schematic illustration of the magnetic structure of
the screw-type spiral magnet. Red arrows represent the spins.
The spin alignment in a x direction is spiral, and that in a
z direction is antiferromagnetic; because of this, we call a x
axis a spiral axis, which is represented by a green arrow.

By using this rotation matrix, we obtain the following
relation between the spin operators:

Ŝxi = cos(Q · i)Ŝ′xi + sin(Q · i)Ŝ′zi , (8)

Ŝyi = Ŝ′yi , (9)

Ŝzi = − sin(Q · i)Ŝ′xi + cos(Q · i)Ŝ′zi . (10)

Second, by using Eqs. (8)–(10), we express Ĥ0 in terms

of Ŝ′i. As a result, we obtain

Ĥ0 =−
∑
〈i,j〉

J̃ij(Ŝ′xi Ŝ
′x
j + Ŝ′zi Ŝ

′z
j ) +

∑
〈i,j〉

Jij Ŝ
′y
i Ŝ
′y
j , (11)

where

J̃ij =


√
J2 +D2 (|jx − ix| = 1, iz = jz),

J (|jz − iz| = 1, ix = jx),

0 (otherwise).

(12)

The detail of this derivation is described in Appendix
C. Third, we express Ĥ0 in terms of magnon operators
by using the Holstein-Primakoff transformation, which
connects spin operators and magnon operators as follows:

Ŝ′zi = S − b̂†i b̂i, (13)

Ŝ′xi =

√
S

2
(b̂i + b̂†i), (14)

Ŝ′yi = −i
√
S

2
(b̂i − b̂†i), (15)

where b̂†i and b̂i are creation and annihilation operators of
a magnon. (Because of this transformation, the vectorial

nature of spin waves, which are characterized as ∆Ŝ′i =

Ŝ′i − 〈Ŝ′i〉, can be taken into account in the theory using
the magnon operators.) Since only the quadratic terms
of magnon operators are considered in the linear-spin-
wave approximation, the magnon Hamiltonian without
impurities for the screw-type spiral magnet in the linear-
spin-wave approximation is given by

Ĥ0 =S
∑
〈i,j〉

J̃ij(b̂†i b̂i + b̂†j b̂j)− S

2

∑
〈i,j〉

J̃
(+)
ij (b̂ib̂j + b̂†i b̂

†
j)

− S

2

∑
〈i,j〉

J̃
(−)
ij (b̂†i b̂j + b̂ib̂

†
j), (16)

where J̃
(±)
ij = J̃ij ± Jij .

Then we can obtain the energy dispersion relation of
magnon bands for our spiral magnet by using the Fourier
transformations and the Bogoliubov transformation. By
using the Fourier transformations of the magnon opera-

tors in Eq. (16), e.g., b̂i = 1√
N

∑
q b̂qe

−iq·i, we obtain

Ĥ0 =
∑
q

A(q)(b̂†q b̂q + b̂−q b̂
†
−q) +

∑
q

B(q)(b̂−q b̂q + b̂†q b̂
†
−q)

=
∑
q

(
b̂†q b̂−q

)(
A(q) B(q)
B(q) A(q)

)(
b̂q
b̂†−q

)
. (17)

Here

A(q) =
S

2
J̃(0)− S

4
J̃ (−)(q), (18)

B(q) = −S
4
J̃ (+)(q), (19)

where J̃(0) =
∑z
j=1 J̃rirj and J̃ (±)(q) =∑z

j=1 J̃
(±)
rirje

iq·(ri−rj), with z, the coordination number.

Equation (17) can be also expressed as follows:

Ĥ0 =
∑
q

∑
a,b=1,2

Hab(q)x̂†qax̂qb, (20)

where x̂q1 = b̂q, x̂q2 = b̂†−q, H11(q) = H22(q) = A(q),
and H12(q) = H21(q) = B(q). We can diagonalize Eq.
(17) by using the Bogoliubov transformation,(

b̂q
b̂†−q

)
=

(
cosh θq − sinh θq
− sinh θq cosh θq

)(
γ̂q
γ̂†−q

)
, (21)

where the hyperbolic functions are determined by

tanh 2θq =
B(q)

A(q)
. (22)

The diagonalized Hamiltonian is given by

Ĥ0 =
1

2

∑
q

ε(q)(γ̂†qγ̂q + γ̂−qγ̂
†
−q)

=
1

2

∑
q

(
γ̂†q γ̂−q

)( ε(q) 0
0 ε(q)

)(
γ̂q
γ̂†−q

)
, (23)
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FIG. 2: Schematic illustration of our disordered system. Or-
ange circles represent original magnetic ions, and blue cir-
cles represent impurities, which are introduced by substitut-
ing part of the original magnetic ions by different ones.

where

ε(q) = 2
√
A(q)2 −B(q)2. (24)

The most important property of the energy dispersion re-
lation is the degeneracy of magnon bands because this de-
generacy results from global time-reversal symmetry19; a
similar degeneracy exists in a collinear antiferromagnet1.
(This degeneracy is similar to the Kramers degeneracy
in an electron system with time-reversal symmetry.) For
other important properties, see Appendix D.

B. Ĥimp

We construct Ĥimp in a similar way to the disordered
antiferromagnet1,2. We introduce impurities into the
screw-type spiral magnet by substituting part of mag-
netic ions by different ones, which belong to the same
family in the periodic table; our disordered system is
schematically illustrated in Fig. 2. We have considered
such a partial substitution because the magnetic ions in
the same family have the same S and because its main
effect is to modify the values of exchange interactions1,2.
For our spiral magnet, described by Eq. (11), such mod-
ification can be described as the following spin Hamilto-
nian:

Ĥimp =−
∑
〈i,j〉

∆J̃ij(Ŝ′xi Ŝ
′x
j + Ŝ′zi Ŝ

′z
j ) +

∑
〈i,j〉

∆Jij Ŝ
′y
i Ŝ
′y
j ,

(25)

where

∆J̃ij =


J̃ ′ij (i ∈ N0, j ∈ Nimp),

J̃ ′ij (i ∈ Nimp, j ∈ N0),

J̃ ′′ij (i, j ∈ Nimp),

0 (otherwise),

(26)

∆Jij =


J ′ (i ∈ N0, j ∈ Nimp),

J ′ (i ∈ Nimp, j ∈ N0),

J ′′ (i, j ∈ Nimp),

0 (otherwise),

(27)

with

J̃ ′ij =


√

(J ′)2 + (D′)2 (|jx − ix| = 1, iz = jz),

J ′ (|jz − iz| = 1, ix = jx),

0 (otherwise),

(28)

J̃ ′′ij =


√

(J ′′)2 + (D′′)2 (|jx − ix| = 1, iz = jz),

J ′′ (|jz − iz| = 1, ix = jx),

0 (otherwise).

(29)

In Eqs. (26) and (27) N0 represents nonsubstituted mag-
netic ions, orange circles in Fig. 2, and Nimp represents
impurities, blue circles in Fig. 2. We assume that J ′

and J ′′ are much smaller than J , and that D′ and D′′

are much smaller than D. Owing to these assumptions,
the effects of Ĥimp can be treated as perturbation; under
these assumptions the effects of J ′, J ′′, D′, and D′′ on
the spin-spiral angle, Q · i of 〈Si〉, are negligible. In ad-
dition, since the dominant terms of Eq. (25) come from
the mean-field terms and magnetic ions in the same fam-
ily in the periodic table have the same S, Ĥimp can be
approximated as follows:

Ĥimp = −2
∑
j∈N

V Ŝ′zj − 2
∑

j∈Nimp

V (imp)Ŝ′zj , (30)

where
∑

j∈N is the summation for all sites,

and
∑

j∈Nimp
is the summation for impurity

sites; V = (Sz′/2)[
√

(J ′)2 + (D′)2 + J ′] and

V (imp) = (Sz′′/2)[
√

(J ′′)2 + (D′′)2 + J ′′], where z′

and z′′ are the coordination numbers for ∆J̃ij = J̃ ′ij and

J̃ ′′ij , respectively. In the derivation of Eq. (30) we have

used 〈Ŝ′i〉 = t(0 0 S). In a similar way to Ĥ0, we can

express Ĥimp in terms of magnon operators:

Ĥimp = 2
∑
q

V b̂†q b̂q + 2
∑
q,q′

V (imp)(q − q′)b̂†q b̂q′ , (31)

where

V (imp)(q − q′) =
1

N

∑
j∈Nimp

V (imp)ei(q−q
′)·j . (32)
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In the following analyses we neglect the first term of Eq.
(31) for simplicity because its effect is a small, uniform

shift of the diagonal terms of Ĥ0 in Eq. (17), i.e., shifting
A(q) into A(q) + V . We thus use the following as the
Hamiltonian of impurities:

Ĥimp =2
∑
q,q′

V (imp)(q − q′)b̂†q b̂q′

=
∑
q,q′

∑
a=1,2

V (imp)(q − q′)x̂†qax̂q′a. (33)

III. LINEAR-RESPONSE THEORY

To analyze magnon transport of the disordered spiral
magnet, we consider longitudinal thermal conductivities
under local equilibrium with local energy conservation.
A longitudinal thermal conductivity, καα, is defined as
jαE = καα(−∂αT ), where (−∂αT ) is temperature gradi-
ent along α axis, and jαE is the density of the energy
current parallel to the temperature gradient. This con-
ductivity is suitable for analyses of the weak localization
of magnons in the presence of global time-reversal sym-
metry because this can be finite even with global time-
reversal symmetry. (Note that other conductivities, such
as the thermal Hall conductivity, are not suitable because
those can be zero at finite temperatures even without im-
purities.) Because of local equilibrium, local temperature
can be defined. Then, because of local energy conserva-
tion, the energy current operator can be derived from the
following equation20:

ĴE = i
∑
m,n

rn[ĥm, ĥn], (34)

where ĥj is given by Ĥ =
∑

j ĥj . By calculating the

right-hand side of Eq. (34) for Ĥ = Ĥ0, we obtain the
energy current operator of a magnon for our disordered
spiral magnet,

ĴE =
∑
q

∑
a,b=1,2

x̂†qaeab(q)x̂qb, (35)

where

e11(q) = −e22(q) = 2
∂B(q)

∂q
B(q)− 2

∂A(q)

∂q
A(q), (36)

e12(q) = e21(q) = −2
∂B(q)

∂q
A(q)− 2

∂A(q)

∂q
B(q). (37)

The detail of this derivation is described in Appendix E.
For the energy current operator we have neglected the
terms due to the combination of Ĥ0 and Ĥimp because in
the weak-localization regime these terms will be negligi-
ble compared with the terms of Eq. (35).

By using the linear-response theory for καα, we can
express καα as follows:

καα =
1

T
lim
ω→0

K
(R)
αα (ω)−K(R)

αα (0)

iω
, (38)

where K
(R)
αα (ω) = Kαα(iΩn → ω+i0+), with Ωn = 2πTn

(n = 0,±1, · · · ) and

Kαα(iΩn) =
1

N

∫ T−1

0

dτeiΩnτ 〈Tτ ĴαE (τ)ĴαE 〉. (39)

Substituting Eq. (35) into Eq. (39) and using a tech-
nique of the quantum field theory21–23, we can express
Kαα(iΩn) in terms of magnon Green’s functions:

Kαα(iΩn) =
1

N

∑
q,q′

∑
a,b,c,d

eαab(q)eαcd(q
′)

× T
∑
m

〈Dda(q′, q, iΩm)Dbc(q, q
′, iΩm + iΩn)〉, (40)

where Dab(q, q
′, iΩm) is the Green’s function of a

magnon in the Matsubara-frequency representation be-
fore taking the impurity averaging. Then, by calcu-
lating the summation over the Matsubara frequency in
Eq. (40) and carrying out the analytic continuation (i.e.,
iΩn → ω + i0+), καα can be expressed as follows:

καα =
1

TN

∑
q,q′

∑
a,b,c,d

eαab(q)eαcd(q
′)P

∫ ∞
−∞

dε

2π

[
−∂n(ε)

∂ε

]
×
[
〈D(A)

da (q′, q, ε)D
(R)
bc (q, q′, ε)〉

− 1

2
〈D(R)

da (q′, q, ε)D
(R)
bc (q, q′, ε)〉

− 1

2
〈D(A)

da (q′, q, ε)D
(A)
bc (q, q′, ε)〉

]
. (41)

Here n(ε) = (eε/T − 1) is the Bose distribution function;

D
(R)
ab (q, q′, ε) and D

(A)
ab (q, q′, ε) are the retarded and ad-

vanced Green’s functions in the real-frequency represen-
tation before taking the impurity averaging. Equation
(41) provides a starting point for formulating an approx-
imate theory in the weak-localization regime.

IV. WEAK-LOCALIZATION THEORY

We formulate the weak-localization theory for magnons
of our disordered spiral magnet. The weak-localization
theory is an approximate theory in the weak-localization
regime because this takes account of the main ef-
fect of impurities1,5,6 in the weak-localization regime.
Since in Eq. (41) the main contribution in the
weak-localization regime comes from the term includ-

ing 〈D(A)
da (q′, q, ε)D

(R)
bc (q, q′, ε)〉1,5,6, καα can be approx-

imated as follows:

καα =
1

TN

∑
q,q′

∑
a,b,c,d

eαab(q)eαcd(q
′)P

∫ ∞
−∞

dε

2π

[
−∂n(ε)

∂ε

]
× 〈D(A)

da (q′, q, ε)D
(R)
bc (q, q′, ε)〉. (42)

Then, by carrying out the perturbation expansions for
the magnon Green’s functions in Eq. (42), taking the
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impurity averaging, and considering only the dominant
terms, καα can be expressed as follows:

καα = κ(Born)
αα + ∆καα, (43)

where κ
(Born)
αα is the term in the Born approximation,

κ(Born)
αα =

1

TN

∑
q

∑
a,b,c,d

eαab(q)eαcd(q)P

∫ ∞
−∞

dε

2π

[
−∂n(ε)

∂ε

]
× D̄(A)

da (q, ε)D̄
(R)
bc (q, ε), (44)

and ∆καα is the main correction term in the weak-
localization regime,

∆καα =
1

TN

∑
q,q′

∑
a,b,c,d

eαab(q)eαcd(q
′)P

∫ ∞
−∞

dε

2π

[
− ∂n(ε)

∂ε

]
×

∑
a′,b′,c′,d′

D̄
(A)
dd′ (q

′, ε)D̄
(A)
a′a (q, ε)Γa′b′c′d′(q + q′, ε)

× D̄(R)
bb′ (q, ε)D̄

(R)
c′c (q′, ε). (45)

We have introduced the following quantities: D̄
(R)
ab (q, ε)

and D̄
(A)
ab (q, ε) are the retarded and advanced Green’s

functions after taking the impurity averaging; Γabcd(Q, ε)
is the particle-particle type four-point vertex function.
These Green’s functions are determined from the Dyson
equation for the self-energy in the Born approximation;

for example, D̄
(R)
ab (q, ε) is given by

D̄
(R)
ab (q, ε) =D

0(R)
ab (q, ε)

+
∑
a′,b′

D
0(R)
aa′ (q, ε)Σ

(R)
a′b′(ε)D̄

(R)
b′b (q, ε), (46)

with

D
0(R)
ab (q, ε) =

Uaα(q)Ubα(q)

ε− ε(q) + iδ
− Uaβ(q)Ubβ(q)

ε+ ε(q) + iδ
, (47)

Σ
(R)
ab (ε) =

nimpV
2
imp

N

∑
q

D̄
(R)
ab (q, ε), (48)

where δ = 0+, U1α(q) = U2β(q) = cosh θq, U1β(q) =
U2α(q) = − sinh θq, and nimp is the impurity concen-
tration. In addition, Γabcd(Q, ε) is determined from the
following Bethe-Salpeter equation:

Γabcd(Q, ε) =γ2
impΠabcd(Q, ε)

+
∑
e,f

γimpΠaecf (Q, ε)Γfbed(Q, ε), (49)

where γimp =
nimpV

2
imp

N and

Πabcd(Q, ε) =
∑
q1

D̄
(R)
bc (q1, ε)D̄

(A)
da (Q− q1, ε). (50)

Then we introduce two simplifications. One is to ne-
glect the real part of the self-energy, i.e., consider only
the imaginary part; as a result,

Σ
(R)
ab (ε) = −iγab(ε), (51)

Σ
(A)
ab (ε) = iγab(ε), (52)

where

γab(ε) = −γimp

∑
q

ImD̄
(R)
ab (q, ε). (53)

The other is to approximate D
0(R)
ab (q, ε) and D

0(A)
ab (q, ε)

as follows:

D
0(R)
ab (q, ε) ∼


Uaα(q)Ubα(q)

ε− εq + iδ
(ε > 0),

−Uaβ(q)Ubβ(q)

ε+ εq + iδ
(ε < 0),

(54)

D
0(A)
ab (q, ε) ∼


Uaα(q)Ubα(q)

ε− εq − iδ
(ε > 0),

−Uaβ(q)Ubβ(q)

ε+ εq − iδ
(ε < 0).

(55)

These simplifications, which are similar to those for the
disordered antiferromagnet1, will be appropriate for a
rough estimate of the main effect of impurities because
the imaginary part of the self-energy is vital for the weak
localization1,5,6, and because the main contribution to

D
0(R)
ab (q, ε) for ε > 0 or ε < 0 comes from respectively

the first or second term of Eq. (47).
By using the above two simplifications, we can obtain

the approximate expressions of D̄
(R)
ab (q, ε), D̄

(A)
ab (q, ε),

Πabcd(Q, ε), and Γabcd(Q, ε). First, by combining the

simplifications with the Dyson equation, D̄
(R)
ab (q, ε) and

D̄
(A)
ab (q, ε) can be expressed as follows:

D̄
(R)
ab (q, ε) ∼


Uaα(q)Ubα(q)

ε− ε(q) + iγ̃(ε)
(ε > 0),

− Uaβ(q)Ubβ(q)

ε+ ε(q) + iγ̃(−ε)
(ε < 0),

(56)

D̄
(A)
ab (q, ε) ∼


Uaα(q)Ubα(q)

ε− ε(q)− iγ̃(ε)
(ε > 0),

− Uaβ(q)Ubβ(q)

ε+ ε(q)− iγ̃(−ε)
(ε < 0).

(57)

with

γ̃(ε) =(cosh2 θq + sinh2 θq)2γ(ε)

=(cosh2 θq + sinh2 θq)2πnimpV
2
impρ(ε), (58)

where q of cosh2 θq and sinh2 θq are determined by
ε(q) = |ε|, and ρ(ε) is the density of states. Second,
by substituting Eqs. (56) and (57) into Eq. (50) and
performing the calculations described in Appendix F, we
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can express Πabcd(Q, ε) for small Q = |Q| as follows:

Πabcd(Q, ε)

∼


ubαucαudαuaα
γimp(c20 + s2

0)2
[1−DS(ε)Q2τ̃(ε)] (ε > 0),

ubβucβudβuaβ
γimp(c20 + s2

0)2
[1−DS(−ε)Q2τ̃(−ε)] (ε < 0),

(59)

where uaν = Uaν(q0) (ν = α, β), c20 = cosh2 θq0
, s2

0 =

sinh2 θq0
, DS(ε) = 1

8 [∂ε(q0)
∂q0

]2τ̃(ε) = 1
8v

2
q0
τ̃(ε), and τ̃(ε) =

(c20 + s2
0)−2γ(ε)−1. In the derivation of Eq. (59) we have

approximated momentum-dependent quantities, Uaν(q1)

and [∂ε(q1)
∂q1

], as the typical values at a certain, small mo-

mentum q0 for a rough estimate because the dominant
contributions come from the contributions for small q1 =
|q1|. Note, first, that the group velocity of the magnon
for q = 0 is zero in our spiral magnet; second, that since
the small-momentum contributions are dominant in the
summation, the sum of a function F (q) might be approx-
imated by

∑
q F (q) ∼

∑
0≤|q|≤qc F (q) ∼ F (q0), where qc

is a cut-off value. (In a rough sense this approximation
is similar to a replacement of a momentum-dependent
quantity in an electron system by the quantity at the
Fermi momentum.) We have shown the approximate ex-
pression of Πabcd(Q, ε) only for small Q because the con-
tributions for small Q lead to the main contribution to
∆καα through the diverging contribution of Γabcd(Q, ε)
for Q = q + q′. Third, by combining Eq. (59) with Eq.
(49) and solving the Bethe-Salpeter equation in the way
described in Appendix G, we obtain the approximate ex-
pression of Γabcd(Q, ε) for small Q:

Γabcd(Q, ε) ∼


ubαucαudαuaαγimp

DS(ε)Q2τ̃(ε)
(ε > 0),

ubβucβudβuaβγimp

DS(−ε)Q2τ̃(−ε)
(ε < 0).

(60)

Since Γabcd(Q, ε) diverges in the limit Q → 0, the
particle-particle type multiple scattering, described by
Γabcd(Q, ε), for Q = q + q′ = 0 provides the diverging
contribution to ∆καα.

We can also obtain the approximate expressions of

κ
(Born)
αα and ∆καα. First, by combining Eqs. (44), (36),

(37), (56), and (57), we obtain

κ(Born)
αα =

1

TN

∑
q

ẽα(q)2
{
−∂n[ε(q)]

∂ε(q)

}
τ̃ [ε(q)], (61)

where

ẽα(q)2 = eα11(q)2 + eα12(q)2 sinh2 2θq. (62)

In deriving Eq. (61) we have approximated [−∂n(ε)
∂ε ] and

τ̃(ε) as {−∂n[ε(q)]
∂ε(q) } and τ̃ [ε(q)] because the contributions

near ε = ε(q) or ε = −ε(q) are dominant for ε > 0 or
ε < 0, respectively. Then we can obtain the approximate

expression of ∆καα in the following way. To estimate
the main effect of the diverging contribution of Γabcd(q+
q′, ε), we set q′ = −q in Eq. (45) except for Γabcd(q +
q′, ε) and introduce the cutoff values for the upper and
lower values of the summation over q′; the lower cutoff
value is |Q| = |q + q′| = L−1, which approaches zero in
the thermodynamic limit, and the upper cutoff value is
|Q| = |q + q′| = L−1

m with the mean-free path Lm. As a
result, ∆καα is given by

∆καα = − 1

TN

∑
q

∑
a,b,c,d

eαab(q)eαcd(q)P

∫ ∞
−∞

dε

2π

[
−∂n(ε)

∂ε

]
×

∑
a′,b′,c′,d′

D̄
(A)
dd′ (q, ε)D̄

(A)
a′a (q, ε)D̄

(R)
bb′ (q, ε)D̄

(R)
c′c (q, ε)

×
∑
Q

′Γa′b′c′d′(Q, ε), (63)

where 1
N

∑′
Q =

∫ L−1
m

L−1
dq

(2π)2 2πq. Combining Eqs. (63),

(36), (37), (56), (57), and (60), we obtain

∆καα ∼ −
1

TN

∑
q

ẽα(q)2
{
−∂n[ε(q)]

∂ε(q)

}
τ̃ [ε(q)]

×
nimpV

2
imp

8πDS[ε(q0)]γ[ε(q0)]

(c0 − s0)4

(c20 + s2
0)4

ln
( L

Lm

)
= −κ(Born)

αα

nimpV
2
imp

πṽ2
0

ln
( L

Lm

)
, (64)

where

ṽ2
0 = v2

0

(c20 + s2
0)4

(c0 − s0)4
. (65)

In this derivation we have used the approximations used
to derive Eqs. (59) and (61). Equation (64) shows that
∆καα leads to a negative logarithmic divergence in the
thermodynamic limit. This is the same behavior as the
weak localization of magnons in the disordered antifer-
romagnet1; the differences between the disordered spiral
magnet and the disordered antiferromagnet are the dif-

ferent expressions of κ
(Born)
αα and ṽ2

0 . We thus conclude
that the weak localization of magnons occurs in the dis-
ordered screw-type spiral magnet in two dimensions.

We now turn to the inplane anisotropy of longitudi-
nal thermal conductivities. For our screw-type spiral
magnet on a xz plane, the spiral axis is parallel to a
x axis and perpendicular to a z axis, as shown in Fig. 1;
this is because 〈Si〉 = t(S sinQ · i 0 S cosQ · i) with

Qx = π − cos−1(J/
√
J2 +D2) and Qz = π. Since

this spiral alignment in a x direction results from the
combination of the antiferromagnetic Heisenberg inter-
action and the Dzyaloshinsky-Moriya interaction, we ex-
pect that κxx and κzz are different and this difference
is connected to a ratio of the Dzyaloshinsky-Moriya in-
teraction to the Heisenberg interaction. To justify this
expectation, we estimate κxx/κzz; the situations for κzz
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FIG. 3: Schematic illustrations of the situations for (a) κzz and (b) κxx. Red rectangles and blues rectangles represent the
temperature gradient; green arrows represent the spiral axis; short and long arrows represent the spins and the magnon thermal
currents, respectively.

and κxx are schematically illustrated in Fig. 3. From
Eqs. (43), (61), and (64) we have

κxx
κzz

=
κ

(Born)
xx

κ
(Born)
zz

=

∑
q
ẽx(q)2

{
−∂n[ε(q)]

∂ε(q)

}
τ̃ [ε(q)]∑

q
ẽz(q)2

{
−∂n(εq)

∂ε(q)

}
τ̃ [ε(q)]

. (66)

Since the contributions for small q = |q| are dominant

due to the factor {−∂n[ε(q)]
∂ε(q) }, we estimate κxx/κzz by re-

placing q in ẽx(q)2 and ẽz(q)2 by q0; as described above,
q0 is a certain momentum whose magnitude is small. As
a result, κxx/κzz is estimated as follows:

κxx
κzz
∼ ẽx(q0)2

ẽz(q0)2
=
ex11(q0)2 + ex12(q0)2 sinh2 2θq0

ez11(q0)2 + ez12(q0)2 sinh2 2θq0

. (67)

To estimate this quantity, we calculate the numerator
and denominator by considering the dominant terms in-
cluding the leading correction from D/J because D will
be typically smaller than J . After some calculations, de-
scribed in Appendix H, we obtain

κxx
κzz
∼ 1 +

3

8

(D
J

)2

q2
0 . (68)

Thus the inplane anisotropy of longitudinal thermal con-
ductivities is proportional to the squared ratio of the
Dzyaloshinsky-Moriya interaction to the Heisenberg in-
teraction:

κxx − κzz
κzz

∝
(D
J

)2

. (69)

This result indicates that it is possible to estimate the
magnitude of D/J by measuring the inplane anisotropy
of longitudinal thermal conductivities.

V. DISCUSSION

We first compare properties for the disordered spiral
magnet and the disordered collinear antiferromagnet1.
The same properties are global time-reversal symmetry,
the diverging behavior of the particle-particle type four-
point vertex function for the back scattering, and the neg-
ative logarithmic divergence of ∆καα for L → ∞. This
suggests that the weak localization of magnons is not
unique only for the disordered collinear antiferromagnet,
but ubiquitous for the disordered magnets having global
time-reversal symmetry. The major differences are the
alignment of spins and the inplane anisotropy of longitu-
dinal thermal conductivities: only one of the three com-
ponents of 〈Ŝαi 〉 (α = x, y, z) is finite in the collinear
antiferromagnet, while two are finite in the screw-type
spiral magnet; κxx and κyy are the same in the collinear
antiferromagnet on a xy plane, while κxx and κzz are
different in the screw-type spiral magnet on a xz plane.
The difference in the spin alignment arises from the ef-
fect of the Dzyaloshinsky-Moriya interaction, which is
finite only for the screw-type spiral magnet. The dif-
ference in the inplane anisotropy of καα arises from the
different spin alignment; in the screw-type spiral magnet
the inplane longitudinal thermal conductivities become
anisotropic due to the difference between magnon prop-
agation parallel and perpendicular to the spiral axis.

We next discuss the validity of our approximation.
We used the linear-spin-wave approximation, which took
account of the quadratic terms of magnon operators.
We believe this approximation is sufficient to analyze
transport properties for low-energy magnons in two-
dimensional magnets at low temperatures because sev-
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eral previous theoretical studies suggest that the terms
neglected in the linear-spin-wave approximation may not
change our main results at least qualitatively. First, some
studies24 for a S = 1/2 Heisenberg antiferromagnet on a
square lattice show that the effects of the zero-point fluc-
tuations and the magnon-magnon interaction are small
at low temperatures. This result suggests that the cor-
rections due to the zeroth-order term of magnon opera-
tors and the fourth-order (and higher-order) terms will
be small at least at low temperatures. Then the theoret-
ical studies for noncollinear antiferromagnets25,26 show
that the third-order terms of magnon operators induce
the magnon-magnon interaction characteristic of non-
collinear magnets, such as spiral magnets, and that its
effects on the energy dispersion and damping for low-
energy magnons are small. Since low-energy magnons
give the dominant contributions to the longitudinal ther-
mal conductivities of magnons, the third-order terms also
may not change our main results at least qualitatively.

We turn to implications for further theoretical studies.
First, an analogy with the disordered collinear antiferro-
magnet2 suggests that the disordered screw-type spiral
magnet may show a characteristic property of magne-
tothermal magnon transport in the presence of a weak
external magnetic field. This could be demonstrated
by the theory for the disordered spiral magnet with the
weak external magnetic field. Second, by combining our
theory without using the two simplifications with first-
principles calculations, it is possible to study material
varieties of the weak localization of magnons in various
disordered magnets. For the first-principles calculations,
a set of Eqs. (43)–(50) is more appropriate than the
theory using the two simplifications. Third, our the-
ory can be extended to not only other disordered spi-
ral magnets, but also disordered chiral magnets, which
have finite spin scalar chirality. While spin scalar chi-
rality for certain three sites breaks local time-reversal
symmetry for the three sites, global time-reversal sym-
metry could hold in some disordered chiral magnets; this
could be possible if the disordered chiral magnet has the
magnetic structure consisting of time-reversal symmetric
pairs for spin scalar chirality [e.g., 〈Ŝi · (Ŝj × Ŝk)〉 and

〈Ŝi′ · (Ŝj′ × Ŝk′)〉 = −〈Ŝi · (Ŝj × Ŝk)〉].
We finally discuss implications for experiments. First,

the weak localization of magnons in our disordered spi-
ral magnet can be experimentally observed by measur-
ing καα. If καα is measured at very low temperatures, at
which the inelastic scattering due to the magnon-magnon
interaction is negligible, the weak localization of magnons
will be observed as the drastic suppression of the magnon
thermal current parallel to temperature gradient as a re-
sult of the logarithmic dependence of ∆καα on L. If the
measurement is done at low temperatures, at which the
inelastic scattering is small but non-negligible, the weak
localization of magnons would be observed as the loga-
rithmic temperature dependence of καα; this is based on
a similar argument1 to the effect of the inelastic scat-
tering for electrons27,28. Second, the inplane anisotropy

of longitudinal thermal conductivities could be used to
experimentally estimate the magnitude of D/J in the
screw-type spiral magnet. In particular, this method
may be convenient for experimentally estimating whether
the Dzyaloshinsky-Moriya interaction is small or large.
Third, our main results, the weak localization of magnons
and the inplane anisotropy of longitudinal thermal con-
ductivities, may be realized in a realistic material, for ex-
ample, Ba2Cu1−xAgxGe2O7. The magnetic properties of
Ba2CuGe2O7 are described by the spin Hamiltonian con-
sisting of the antiferromagnetic Heisenberg interaction
and the Dzyaloshinsky-Moriya interaction for S = 1/2
Cu2+ ions7–9. Furthermore, Ba2CuGe2O7 at very low
temperatures can be regarded as a screw-type spiral mag-
net on a square lattice7–9; in this magnet, the spin align-
ment along a direction on the square lattice is spiral, and
the spin alignment along the perpendicular direction is
antiferromagnetic. These spin alignments are similar to
those for our screw-type spiral magnet, while there are
some differences in the details. Then replacing part of
Cu ions by Ag ions will be suitable for impurities because
this replacement keeps the spin quantum number S un-
changed and its main effect is to modify the exchange in-
teractions1,2. We believe Ba2Cu1−xAgxGe2O7 is a prob-
able material for the weak localization of magnons and
the inplane anisotropy of longitudinal thermal conduc-
tivities. This is because the inplane anisotropy results
from the difference between magnon propagation along
the spiral spin alignment and along the antiferromag-
netic spin alignment, and because the magnetic structure
of Ba2Cu1−xAgxGe2O7 without external fields may have
global time-reversal symmetry and such spin alignments.

VI. SUMMARY

We have studied the longitudinal thermal conductivi-
ties of magnons in the disordered screw-type spiral mag-
net in the weak-localization regime. We used the spin
Hamiltonian consisting of the antiferromagnetic Heisen-
berg interaction and the Dzyaloshinsky-Moriya interac-
tion on a square lattice on a xz plane. We also consid-
ered the mean-field type spin Hamiltonian of impurities
by treating disorder effects as the changes of these ex-
change interactions. By using the linear-response theory
with the linear-spin-wave approximation for the screw-
type spiral magnet and performing the perturbation cal-
culations, we derived the longitudinal thermal conduc-
tivities including the main correction term in the weak-
localization regime. We showed that κxx and κzz are
different due to the difference between magnon propaga-
tion parallel and perpendicular to the spiral axis. This
anisotropy is different from the isotropic result in the dis-
ordered two-dimensional antiferromagnet, and its mea-
surement may be useful for experimentally estimating the
magnitude of D/J . We also showed that the main cor-
rection term gives the negative logarithmic divergence in
the thermodynamic limit due to the critical back scatter-
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FIG. 4: Schematic illustrations of the possible relations between the wave packets for k and −k. Panel (a) shows the perfectly
coherent case, while panels (b) and (c) show imperfectly coherent cases; in our definition the back scattering only in panel (a)
is the coherent one. The amplitude difference and phase difference in panel (b) are smaller than in panel (c).

ing. This is the same as the weak localization of magnons
in the disordered two-dimensional antiferromagnet1, and
thus suggests the generality of the weak localization of
magnons in the disordered two-dimensional magnets hav-
ing global time-reversal symmetry.
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Appendix A: Remarks about coherence of the back scattering

In this Appendix we explain our definition of the coherent back scattering and its implications. We also show the
relation between the coherence of the back scattering and time-reversal symmetry of a system.

In our definition the back scattering is coherent only if the amplitude and phase of the back scattered wave packet,
the wave packet for −k, are the same as those of the wave packet for k [Fig. 4(a)]. Even if the amplitude remains
large and the phase difference is small [Fig. 4(b)], such back scattering is not the coherent one in our definition.
Figure 4 shows the possible relations between the wave packets for k and −k.

We have used this definition because only in the perfectly coherent case the wave packets for k and −k can form
the standing wave even in the weak-localization regime. In an imperfectly coherent case the imbalance between the
wave packets for k and −k could lead to finite conduction in the weak-localization regime. Actually, in such a case
the back scattering amplitude is suppressed29 compared with that in the perfectly coherent case. This suppression, as
well as the suppression of the critical back scattering2, results from the effect of the time-reversal symmetry breaking.

Then we can see the relation between coherence of the back scattering and time-reversal symmetry of a system
from the following arguments. To see that relation, we argue the property of time reversal for a single-particle Green’s
function. The retarded single-particle Green’s function is defined as G(R)(k, ω) ≡ 〈k| 1

ω−H+iδ |k〉, where H is the
Hamiltonian of a system. We assume that H has time-reversal symmetry. This means HΘ = ΘH, where Θ is the time-
reversal operator4. Since Θ is antiunitary, we have 〈β|α〉 = 〈α′|β′〉, where |α′〉 = Θ|α〉 and |β′〉 = Θ|β〉. By applying
this equation to the case for |α〉 = 1

ω−H+iδ |k〉 and |β〉 = |k〉 and usingHΘ = ΘH, we obtainG(R)(k, ω) = G(R)(−k, ω).
This equation shows that as a result of time-reversal symmetry the single particles for k and −k have the same
amplitude and phase.

Appendix B: Ground-state properties of Ĥ0

In this Appendix we show the ground-state properties of Ĥ0 in the mean-field approximation. For the detail of
the mean-field approximation for a spin Hamiltonian, see, for example, Refs. 14, 18, and 30. In the mean-field
approximation we can determine the most stable ground state for Eq. (2) by finding the lowest eigenvalue and the
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eigenfunction for the following equation under the hard-spin constraint:

〈Ĥ0〉 =
∑
i,j

∑
α,β=x,y,z

Mαβ(i, j)〈Ŝαi 〉〈Ŝ
β
j 〉

=
∑
q

∑
α,β=x,y,z

Mαβ(q)〈Ŝαq 〉∗〈Ŝβq 〉

=
∑
q

〈Ŝq〉†
 J(q) 0 D(q)∗

0 J(q) 0
D(q) 0 J(q)

 〈Ŝq〉, (B1)

where

〈Ŝαi 〉 =
1√
N

∑
q

e−iq·i〈Ŝαq 〉, (B2)

Mαα(q) = J(q) = J(cos qx + cos qz), (B3)

Mzx(q) = Mxz(q)∗ = D(q) = iD sin qx, (B4)

and 〈Ŝαi 〉 satisfies the hard-spin constraint,

S2 =
1

N

∑
i

∑
α

|〈Ŝαi 〉|2. (B5)

Since the eigenvalues of the 3×3 matrix Mαβ(q) are λ0(q) = J(q), λ+(q) = J(q)+ |D(q)|, and λ−(q) = J(q)−|D(q)|,
the minimum of λ−(q) is the lowest eigenvalue. For finite J and D, λ−(q) is minimum at q = Q = t(Qx Qz), where
Qz = π, and Qx is determined by

cosQx = − J√
J2 +D2

, sinQx =
D√

J2 +D2
. (B6)

Since λ−(Q) = −J −
√
J2 +D2 is smaller than λ−(q) at q = QAF = t(π π), λ−(QAF) = −2J , the magnetic state

for q = Q is more stable than the antiferromagnetic state even for tiny D. Then we can determine the eigenfunction
for the most stable ground state as follows. In the mean-field approximation for the magnetic state for q = Q
only 〈ŜQ〉 and 〈Ŝ−Q〉 are finite and the other 〈Ŝq〉 are zero. Since 〈ŜQ〉 is given by the eigenfunction for Mαβ(Q),

〈ŜQ〉 = At(i 0 1), and A is determined from Eq. (B5), the magnetic structure for q = Q is described by

〈Si〉 = S

 sinQ · i
0

cosQ · i

 . (B7)

This equation with Eq. (B6) and Qz = π shows that the alignment of spins in a x direction is spiral and the alignment
in a z direction is antiferromagnetic (see Fig. 1).

Appendix C: Derivation of Eq. (11)

In this Appendix we derive Eq. (11). By using Eqs. (8)–(10), we can express Eq. (2) as follows:

Ĥ0 =
∑
〈i,j〉

{
Jij cos[Q · (i− j)] +Dij sin[Q · (i− j)]

}
(Ŝ′xi Ŝ

′x
j + Ŝ′zi Ŝ

′z
j ) +

∑
〈i,j〉

Jij Ŝ
′y
i Ŝ
′y
j

+
∑
〈i,j〉

{
Jij sin[Q · (i− j)]−Dij cos[Q · (i− j)]

}
(Ŝ′zi Ŝ

′x
j − Ŝ′xi Ŝ′zj ). (C1)

By using Eqs. (3), (4), and (B6) and Qz = π, the coefficients of the first and third terms in the above equation can
be rewritten in a simpler expression: the coefficients for j − i = (1 0) are

Jij cos[Q · (i− j)] +Dij sin[Q · (i− j)] = −
√
J2 +D2, (C2)

Jij sin[Q · (i− j)]−Dij cos[Q · (i− j)] = 0, (C3)
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and the coefficients for j − i = (0 1) are

Jij cos[Q · (i− j)] +Dij sin[Q · (i− j)] = −J, (C4)

Jij sin[Q · (i− j)]−Dij cos[Q · (i− j)] = 0. (C5)

Thus Eq. (C1) is reduced to Eq. (11).

Appendix D: Properties of the energy dispersion relation of magnon bands

In this Appendix we explain several important properties of the energy dispersion relation of magnon bands for our
spiral magnet. Before explaining the properties, we show the equation of ε(q) in terms of J and D. Since A(q) and
B(q) for our model are expressed as

A(q) = S(
√
J2 +D2 + J)− S

2
(
√
J2 +D2 − J) cos qx (D1)

and

B(q) = −S
2

(
√
J2 +D2 + J) cos qx − SJ cos qz, (D2)

respectively, we obtain

ε(q) =2
√
A(q)2 −B(q)2

=2S
[
2J2 +D2 + 2J

√
J2 +D2 −D2 cos qx − (J2 + J

√
J2 +D2) cos qx cos qz

− J
√
J2 +D2 cos2 qx − J2 cos2 qz

] 1
2

. (D3)

If we set q = 0 in Eq. (D3), we obtain ε(0) = 0. This means that the screw-type spiral magnet has the Goldstone-
type gapless excitation. This is consistent with the argument based on the rotational symmetry in the spin space31

because in our spiral magnet two of the three components of 〈Ŝαi 〉 (i.e., 〈Ŝxi 〉 and 〈Ŝzi 〉) are finite and because in such
a case the Goldstone-type gapless excitation is expected to exist without magnetic anisotropy terms.

Then, since the magnon energy is non-negative, the magnon energy is minimum at q = 0 in our spiral magnet.
This result is consistent with the assumption that the screw-type spiral state remains stable even including low-energy
excitations, i.e., magnons, because magnons describe the displacement of spins from the ground-state alignment,
because the magnon for q = 0 corresponds to the uniform displacement, and because the uniform displacement
induces no additional symmetry breaking. If the magnon energy is minimum at q = QI and −QI, this means either
that magnons break a certain inversion symmetry which exists without magnons, or that it is necessary to choose a
more stable ground state as the starting point for considering magnons.

Appendix E: Derivation of Eq. (35)

In this Appendix we derive Eq. (35) from Eq. (34) for Ĥ = Ĥ0 for Eq. (16). This derivation consists of four steps.

First, we decompose ĥi and ĥj in Eq. (34) as follows: ĥi = Âi + Â†i and ĥj = Âj + Â†j , where

Âi =
S

4

∑
l

Milb̂
†
i b̂l −

S

4

∑
l

J̃
(+)
il b̂ib̂l, (E1)

with Mil = 2
∑

k J̃ikδi,l − J̃
(−)
il . Because of these decompositions, Eq. (34) is reduced to

ĴE =i
∑
m,n

rn[Âm, Ân] +
(
i
∑
m,n

rn[Âm, Ân]
)†

+ i
∑
m,n

rn[Âm, Â
†
n] +

(
i
∑
m,n

rn[Âm, Â
†
n]
)†
. (E2)
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Second, we calculate [Âm, Ân] and [Âm, Â
†
n]. The results are as follows:

[Âm, Ân] =
(S

4

)2∑
j,l

MmjMnl(b̂
†
mb̂lδj,n − b̂†nb̂jδl,m) +

(S
4

)2∑
j,l

Mmj J̃
(+)
nl (b̂nb̂jδl,m + b̂lb̂jδn,m)

−
(S

4

)2∑
j,l

J̃
(+)
mjMnl(b̂mb̂lδj,n + b̂j b̂lδn,m), (E3)

[Âm, Â
†
n] =

(S
4

)2∑
j,l

MmjMnl(b̂
†
mb̂nδj,l − b̂

†
l b̂jδn,m)−

(S
4

)2∑
j,l

Mmj J̃
(+)
nl (b̂†mb̂

†
nδl,j + b̂†mb̂

†
l δn,j)

−
(S

4

)2∑
j,l

J̃
(+)
mjMnl(b̂mb̂nδj,l + b̂j b̂nδl,m)

+
(S

4

)2∑
j,l

J̃
(+)
mj J̃

(+)
nl (b̂mb̂

†
nδj,l + b̂mb̂

†
l δj,n + b̂†l b̂jδm,n + b̂†nb̂jδl,m). (E4)

Third, we combine these equations with Eq. (E2). After some algebra, we obtain

ĴE =2i
(S

4

)2 ∑
m,n,l

(−rn + rl)MmlMnmb̂
†
nb̂l + 2i

(S
4

)2 ∑
m,n,l

(rn − rm)J̃
(+)
ml J̃

(+)
nl b̂mb̂

†
n

+ 2i
(S

4

)2 ∑
m,n,l

(rn − rl)J̃
(+)
nmMmlb̂nb̂l − 2i

(S
4

)2 ∑
m,n,l

(rn − rl)MmlJ̃
(+)
nmb̂

†
l b̂
†
n. (E5)

Fourth, by using the Fourier coefficient of each quantity in Eq. (E5), we express ĴE as a function of a momentum.
By carrying out this calculation, we obtain Eq. (35).

Appendix F: Derivation of Eq. (59)

In this Appendix we derive Eq. (59) from Eq. (50) with Eqs. (56) and (57). We here describe this derivation only
for ε > 0 because the expression for ε < 0 can be similarly derived. By substituting Eqs. (56) and (57) for ε > 0 into
Eq. (50), we can express Πabcd(Q, ε) for ε > 0 as follows:

Πabcd(Q, ε) =
∑
q1

Ubα(q1)Ucα(q1)Udα(Q− q1)Uaα(Q− q1)

[ε− ε(q1) + iγ̃(ε)][ε− ε(Q− q1)− iγ̃(ε)]
. (F1)

Since for small Q, Uaν(Q− q1) ∼ Uaν(q1) and ε(Q− q1) ∼ ε(q1)− ∂ε(q1)
∂q1

·Q = ε(q1)− vq1 ·Q, we can approximate

Eq. (F1) as follows:

Πabcd(Q, ε) ∼
∑
q1

Ubα(q1)Ucα(q1)Udα(q1)Uaα(q1)

[ε− ε(q1) + iγ̃(ε)][ε− ε(q1) + vq1
·Q− iγ̃(ε)]

. (F2)

For a rough estimate of Eq. (F2) we approximate momentum-dependent Uaα(q1) and vq1 as the typical values at a
certain, small momentum q0, Uaα(q0) = uaα and vq0

; this will be sufficient because the dominant contributions come
from the small-q1 contributions. As a result of this approximation, Eq. (F2) is expressed as follows:

Πabcd(Q, ε) ∼
∑
q1

ubαucαudαuaα
[ε− ε(q1) + iγ̃(ε)][ε− ε(q1) + vq0

·Q− iγ̃(ε)]
. (F3)

Here we have replaced (cosh2 θq1 + sinh2 θq1)2 in γ̃(ε) by (cosh2 θq0 + sinh2 θq0)2 = (c20 + s2
0)2. Then, by replacing the

summation over q1 by the corresponding integral and carrying out this integral, we obtain

Πabcd(Q, ε) ∼ ubαucαudαuaαNπρ(ε)τ̃(ε)[1− 1

8
v2
q0
Q2τ̃(ε)2] =

ubαucαudαuaα
γimp(c20 + s2

0)2
[1−DS(ε)Q2τ̃(ε)]. (F4)

This is Eq. (59) for ε > 0. We can also obtain Eq. (59) for ε < 0 by using Eqs. (56) and (57) for ε < 0 and carrying
out the similar calculation.
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Appendix G: Derivation of Eq. (60)

In this Appendix we derive Eq. (60). This derivation consists of three steps. First, we rewrite the Bethe-Salpeter
equation in the matrix form. By introducing 4× 4 matrices for Γabcd(Q, ε) and Πabcd(Q, ε),

Γ =

Γ1111(Q, ε) Γ1112(Q, ε) Γ1121(Q, ε) Γ1122(Q, ε)
Γ1211(Q, ε) Γ1212(Q, ε) Γ1221(Q, ε) Γ1222(Q, ε)
Γ2111(Q, ε) Γ2112(Q, ε) Γ2121(Q, ε) Γ2122(Q, ε)
Γ2211(Q, ε) Γ2212(Q, ε) Γ2221(Q, ε) Γ2222(Q, ε)

 , (G1)

Π =

Π1111(Q, ε) Π1112(Q, ε) Π1121(Q, ε) Π1122(Q, ε)
Π1211(Q, ε) Π1212(Q, ε) Π1221(Q, ε) Π1222(Q, ε)
Π2111(Q, ε) Π2112(Q, ε) Π2121(Q, ε) Π2122(Q, ε)
Π2211(Q, ε) Π2212(Q, ε) Π2221(Q, ε) Π2222(Q, ε)

 , (G2)

we can express the Bethe-Salpeter equation Eq. (49) as follows:

Γ = γ2
impΠ + γimpΠΓ. (G3)

Solving this matrix equation, we obtain the formal solution,

Γ = M−1γ2
impΠ, (G4)

where M−1 is the inverse matrix of Mabcd, given by

Mabcd = δa,dδb,c − γimpΠabcd(Q, ε). (G5)

Second, we calculate M−1. By using Eqs. (G2) and (G5), we can express the 4× 4 matrix M as follows:

M =

 1−A −C −C −F
−C −F 1− F −D
−C 1− F −F −D
−F −D −D 1−B

 , (G6)

where

A = γimpΠ1111(Q, ε), (G7)

B = γimpΠ2222(Q, ε), (G8)

C = γimpΠ1112(Q, ε) = γimpΠ1121(Q, ε) = γimpΠ1211(Q, ε) = γimpΠ2111(Q, ε), (G9)

D = γimpΠ2221(Q, ε) = γimpΠ2212(Q, ε) = γimpΠ2122(Q, ε) = γimpΠ1222(Q, ε), (G10)

F = γimpΠ1122(Q, ε) = γimpΠ1212(Q, ε) = γimpΠ2112(Q, ε)

= γimpΠ1221(Q, ε) = γimpΠ2121(Q, ε) = γimpΠ2211(Q, ε). (G11)

To obtain M−1, we need to calculate the cofactor matrix and determinant of M . After some algebra, we obtain

M−1 =
1

detM

−1 + 2F +B −C −C −F
−C −F −1 +A+B + F −D
−C −1 +A+B + F −F −D
−F −D −D −1 +A+ 2F

 , (G12)

where

detM =− 1 +A+B + 2F =

{
−DS(ε)Q2τ̃(ε) (ε > 0),

−DS(−ε)Q2τ̃(−ε) (ε < 0).
(G13)

In deriving Eq. (G13) we have used Eqs. (G7), (G8), (G11) and Eq. (59). Third, we combine Eqs. (G12), (G4) and
(G2). As a result, Γabcd(Q, ε) is given by

Γabcd(Q, ε) =− γimp

detM
γimpΠabcd(Q, ε) =


ubαucαudαuaαγimp

DS(ε)Q2τ̃(ε)
(ε > 0),

ubβucβudβuaβγimp

DS(−ε)Q2τ̃(−ε)
(ε < 0).

(G14)
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Appendix H: Derivation of Eq.(68)

In this Appendix we derive Eq. (68) from Eq. (67) by calculating the dominant terms including the leading
correction from D/J . Since the quantities on the right-hand side of Eq. (67) can be expressed in terms of A(q0),
B(q0), ∂A(q0)/∂q0, and ∂B(q0)/∂q0, we first calculate the dominant terms of ∂A(q)/∂q and ∂B(q)/∂q. From Eqs.
(D1) and (D2) we obtain

∂A(q)

∂qx
=
S

2
(
√
J2 +D2 − J) sin qx ∼

S

4

D2

J
sin qx, (H1)

∂A(q)

∂qz
= 0, (H2)

∂B(q)

∂qx
=
S

2
(
√
J2 +D2 + J) sin qx ∼ SJ sin qx +

S

4

D2

J
sin qx, (H3)

∂B(q)

∂qz
=SJ sin qz. (H4)

Second, by using these equations, we estimate eα11(q) and eα12(q). The results are as follows:

ex11(q) ∼ 2SJ sin qxB(q)
[
1−

( D
2J

)2A(q)−B(q)

B(q)

]
, (H5)

ez11(q) ∼ 2SJ sin qzB(q), (H6)

ex12(q) ∼ −2SJ sin qxA(q)
[
1 +

( D
2J

)2A(q) +B(q)

A(q)

]
, (H7)

ez12(q) ∼ −2SJ sin qzA(q). (H8)

Third, by using these equations and Eq. (22), we rewrite the numerator and denominator in Eq. (67). We thus obtain

ex11(q0)2 + ex12(q0)2 sinh2 2θq0

ez11(q0)2 + ez12(q0)2 sinh2 2θq0

= 1 +
1

2

(D
J

)2 2A(q0)2 −B(q0)2 +A(q0)B(q0)

2A(q0)2 −B(q0)2
. (H9)

Then the dominant terms of A(q0) and B(q0) are given by A(q0) ∼ 2SJ and B(q0) ∼ −2SJ(1 − q20
4 ); here we have

approximated cos q0x and cos q0z as cos q0x ∼ 1− q20x
2 and cos q0z ∼ 1− q20z

2 and considered only the leading terms. By
substituting these equations of A(q0) and B(q0) into Eq. (H9), we finally obtain Eq. (68).
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